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Abstract. We show that the property of a C∗-algebra that all its Hilbert modules
have a frame, in the case of σ -unital C∗-algebras, is preserved under Rieffel–Morita
equivalence. In particular, we show that a σ -unital continuous-trace C∗-algebra with
trivial Dixmier–Douady class, all of whose Hilbert modules admit a frame, has discrete
spectrum. We also show this for the tensor product of any commutative C∗-algebra
with the C∗-algebra of compact operators on any Hilbert space.

2010 Mathematics Subject Classification. Primary 46L08; Secondary 42C15,
46L05.

1. Introduction. In 1952, Duffin and Schaeffer [3] introduced the concept of a
Hilbert space frame to deal with certain problems in non-harmonic Fourier analysis.
Frank and Larsen generalized the notion of frame in a Hilbert space to the setting
of a Hilbert C∗-module [4]. Unlike the case of Hilbert spaces it is not known exactly
for which C∗-algebras A, every Hilbert A-module has a frame. Using the Kasparov
stabilization theorem [5], Frank and Larson [4] showed that for any C∗-algebra A,
every countably generated Hilbert A-module has a frame. The problem of finding
those C∗-algebras A for which all Hilbert A-modules have a frame is open [4]. In
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2010, Li solved the problem in the case of a commutative unital C∗-algebra as follows
[7, Theorem 1.1].

THEOREM 1.1. A commutative unital C∗-algebra A is finite-dimensional if, and only
if, every Hilbert A-module has a frame.

QUESTION 1.2. Let A be a unital C∗-algebra such that every Hilbert A-module has
a frame. Must A be finite-dimensional?

Close inspection of the proof of the main result of Li [7] shows that this holds also
for a locally compact Hausdorff space. In particular, just as in Proposition 2.4 and
Lemma 3.2 of Li [7], we have the following construction.

PROPOSITION 1.3. Let Z be an infinite locally compact Hausdorff space having a
countable subset W ⊆ Z with a point z∞ ∈ W \ W. Then, there exists a continuous field
of Hilbert spaces ((Hz)z∈Z, �) over Z, such that Hz is separable for every z ∈ W while
Hz∞ is non-separable. Any such �, as a Hilbert C0(Z)-module, has no frame.

It is clear (as a consequence of the case of a compact space, dealt with in Proposition
2.4 of Li [7]), that every infinite locally compact Hausdorff space Z satisfies the
condition stated in the above proposition, except when Z is discrete. Also, it is well
known that a commutative C∗-algebra A = C0(Z) is a C∗-algebra of compact operators
exactly when Z is discrete [2, 4.7.20].

On the other hand, Bakic and Guljas showed [1] that if A is a C∗-algebra of
compact operators, then every Hilbert A-module has a basis (in the sense of Bakic and
Guljas [1]). (The converse is also true [9].)

It follows that a non-unital version of Li’s theorem [7] can be stated as follows.

THEOREM 1.4. Let A be a commutative C∗-algebra. Then, A is a C∗-algebra of
compact operators (equivalently, has discrete spectrum) if, and only if, every Hilbert
A-module has a frame.

The following question naturally arises.

QUESTION 1.5. Let A be a C∗-algebra such that every Hilbert A-module has a
frame. Is it true that A must be a C∗-algebra of compact operators?

It is clear that an affirmative answer to Question 1.5 also gives an affirmative answer
to Question 1.2, since unital C∗-algebras of compact operators are finite-dimensional.

Recall that a C∗-algebra A is a C∗-algebra of compact operators if and only
if the spectrum of every maximal commutative C∗-subalgebra is discrete [2, 4.7.20].
Therefore, Theorem 1.4 implies the following result.

THEOREM 1.6. For every C∗-algebra A, the following conditions are equivalent:
(i) A is a C∗-algebra of compact operators;
(ii) every Hilbert C∗-module over every maximal commutative C∗-subalgebra B of A

has a frame.

Consequently, an affirmative answer to the following question would give an
affirmative answer to Question 1.5 (and so to Question 1.2).

QUESTION 1.7. Let A be a C∗-algebra. Are the following conditions equivalent:
(i) every Hilbert C∗-module over A has a frame;
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(ii) every Hilbert C∗-module over every (maximal commutative) C∗-subalgebra B
of A has a frame?

In the next section, we shall show that if two C∗-algebras A and B are Rieffel–
Morita equivalent and A is unital (or σ -unital), then if every Hilbert C∗-module over
A has a frame, the same is true for every Hilbert C∗-module over B. This provides
an example of a non-commutative unital C∗-algebra A which has a Hilbert A-module
with no frame.

2. Frames in Hilbert C∗-modules. Let A be a C∗-algebra and E be a Hilbert A-
module. A family {xi}i∈I of elements in E is called a frame if there are real constants
C, D > 0 such that

∑
i∈I〈x, xi〉A〈xi, x〉A converges in the ultraweak topology to some

element in the universal enveloping von Neumann algebra A∗∗ of A and

C〈x, x〉A ≤
∑
i∈I

〈x, xi〉A〈xi, x〉A ≤ D〈x, x〉A,

for every x ∈ E. (The ultraweak convergence in fact follows from the second inequality.)
A frame is said to be standard if the sum in the middle of the above inequality converges
in norm for every x ∈ E, and to be normalized if C = D = 1. (Normalized implies
standard, by Dini’s theorem.)

DEFINITION 2.1. Two C∗-algebras A and B are Rieffel–Morita equivalent (called
strongly Morita equivalent in Rieffel [11]) if there is an A-B-imprimitivity bimodule,
i.e., an A-B-bimodule, X , such that

(i) X is a full left Hilbert A-module and a full right Hilbert B-module, and
(ii) for all x, y, z ∈ X , a ∈ A, and b ∈ B,

〈ax, y〉B = 〈x, a∗y〉B , 〈xb, y〉A = 〈x, yb∗〉A and 〈x, y〉Az = x〈y, z〉B.

For every x, y in a right Hilbert A-module E, we define an operator θx,y : E → E
by θx,y(z) = x〈y, z〉A. The closed linear span of {θx,y|x, y ∈ E} is a C∗-algebra, K(E),
and is referred to (informally) as the algebra of compact operators on E (these are not
necessarily compact on E as a Banach space). If E is a full right Hilbert A-module, then
E is a K(E)-A-imprimitivity bimodule, and K(E) and A are Rieffel–Morita equivalent.

The main result of this paper, Theorem 2.4, below, asserts that the existence of
frames in all Hilbert A-modules is preserved under Rieffel–Morita equivalence, when
A is unital or σ -unital.

The σ -unital case is more subtle than the unital case, and a discussion of this case,
and an even somewhat more general case, is given in Lemma 2.3, which is based on
the assumption of a certain kind of approximate unit, including the countable case.
To motivate the discussion, let A be a C∗-algebra and let X be a full left Hilbert A-
module. Let X+ denote the set of all finite sums

∑n
i=1〈xi, xi〉 with n ∈ � and xi ∈ X ,

for 1 ≤ i ≤ n. Then, it is easy to see that A has an increasing approximate identity
{uλ}λ∈� in X+. Indeed, denote by � the set of all finite subsets of X , ordered by
inclusion. For λ = {x1, . . . , xn} ∈ �, set vλ = ∑n

i=1〈xi, xi〉 and uλ = vλ( 1
n + vλ)−1 =

( 1
n + vλ)−

1
2 vλ( 1

n + vλ)−
1
2 . Then, uλ = ∑n

i=1〈yλ
i , yλ

i 〉, where yλ
i = ( 1

n + vλ)−
1
2 xi. As shown

in Dixmier [2, 1.7.2 ], {uλ}λ∈� is an increasing approximate identity for A.
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Next, observe that this construction does not guarantee the existence of an
approximate identity for A of the form {∑i∈F 〈xi, xi〉}F∈F , where {xi}i∈I is in X and F
is the set of all finite subsets of I , i.e., with

∑
i∈I 〈xi, xi〉 = 1M(A), in the strict topology

in the multiplier algebra M(A) of A (equivalently, by Dini’s theorem, in the ultraweak
topology in A∗∗).

In fact, if there is such a family, then {xi}i∈I is a normalized frame for X as a
Hilbert K(X)-module. Conversely, if {xi}i∈I is a normalized frame for X as a Hilbert
A-module then {∑i∈F θxi,xi}F∈F is an increasing approximate identity for K(X).

For example, for Z = [0, 1], there exists a right Hilbert C(Z)-module E with no
frame [7]. Hence, for A = K(E), there is no approximate identity for A of the above
form (not even one consisting of the finite sums of just some family of positive elements,
as each of these would be a sum of (possibly infinitely many) rank one positive elements
of the form θx,x). (Using the increasing approximate unit consisting of finite sums of
rank one operators θx,x, one obtains (multiplying on both sides by the square root)
that an arbitrary positive element of K(E) can be approximated from below by such
an element, and subtracting and repeating one obtains an expression of the element as
an infinite sum of (finite sums of) elements θx,x.)

Consider a full left Hilbert A-module X . When A is unital, there is a finite family
{xi}n

i=1 in X such that
∑n

i=1 A〈xi, xi〉 = 1A [8, Lemma 2.4.3]. Hence, the family {xi}n
i=1 is

a finite frame for the Hilbert K(X)-module X . When A is σ -unital, there is a sequence
{xi}∞i=1 in X such that

∑∞
i=1 A〈xi, xi〉 = 1M(A) in the strict topology [6, Lemma 7.3].

As a non-unital example, suppose that H is an infinite dimensional Hilbert space
with orthonormal basis {ei}i∈I and consider the corresponding rank-one projections
pi = ei ⊗ ei. If E is a full Hilbert K(H)-module, then for each i ∈ I , there is xi ∈ E such
that 〈xi, xi〉 = pi [1], and {∑i∈F 〈xi, xi〉}F∈F is an increasing approximate identity for
K(H).

To prove the main result of this section, we need some technical lemmas. Note that
Ak = A ⊕ · · · ⊕ A (k times) is a Hilbert A-module with the inner product

〈a, b〉 =
k∑

r=1

a∗
r br, a = [a1, . . . , ak]tr, b = [b1, . . . , bk]tr ∈ Ak.

In particular, �k(A) ∼= K(Ak).
Also, observe that if c is a self-adjoint element of A∗∗ such that aca∗ ≥ 0, for all

a ∈ A, then c ≥ 0, since eαceα → c, in the strong operator topology, for any bounded
approximate identity {eα} of A.

LEMMA 2.2. Let M be a right Hilbert A-module and {mj}j∈J be a frame for M with
frame bounds C and D. Then, for each k ∈ � and n1, . . . , nk in M

C[〈nr, ns〉A]r,s ≤
⎡
⎣∑

j∈J

〈nr, mj〉A〈mj, ns〉A

⎤
⎦

r,s

≤ D[〈nr, ns〉A]r,s,

in �k(A∗∗).
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Proof. We identify �k(A∗∗) with K((A∗∗)k). For each a = [a1, . . . , ak]tr in Ak,

〈a, [〈nr, ns〉A]r,sa〉 =
k∑

r,s=1

a∗
r 〈nr, ns〉Aas =

〈
k∑

r=1

nrar,

k∑
s=1

nsas

〉
A

,

and

〈
a,

⎡
⎣∑

j∈J

〈nr, mj〉A〈mj, ns〉A

⎤
⎦

r,s

a

〉
=

∑
j∈J

k∑
r,s=1

a∗
r 〈nr, mj〉A〈mj, ns〉Aas

=
∑
j∈J

〈
k∑

r=1

nrar, mj

〉
A

〈
mj,

k∑
s=1

nsas

〉
A

,

and we get the desired frame inequalities, namely,

C〈a, [〈nr, ns〉A]r,sa〉 ≤
〈

a,

⎡
⎣∑

j∈J

〈nr, mj〉A〈mj, ns〉A

⎤
⎦

r,s

a

〉

≤ D〈a, [〈nr, ns〉A]r,sa〉,

for every a = [a1, . . . , ak]tr ∈ Ak, and hence by continuity for every a ∈ (A∗∗)k. It follows
that

C[〈nr, ns〉A]r,s ≤
⎡
⎣∑

j∈J

〈nr, mj〉A〈mj, ns〉A

⎤
⎦

r,s

≤ D[〈nr, ns〉A]r,s.

�
LEMMA 2.3. Suppose that X is a full left Hilbert A-module and there is a family

{xi}i∈I in X such that {∑i∈F A〈xi, xi〉}F∈F is an approximate identity for A, where F is
the set of all finite subsets of I.

If M is a right Hilbert A-module with a frame, then the right Hilbert K(X)-module
M ⊗A X has a frame.

Proof. Let {mj}j∈J be a frame for M with frame bounds C and D. For every n ∈ M,
we have

C〈n, n〉A ≤
∑
j∈J

〈n, mj〉A〈mj, n〉A ≤ D〈n, n〉A.

We know that M ⊗A X is a right Hilbert K(X)-module with K(X)-valued inner product
〈m1 ⊗ x1, m2 ⊗ x2〉 := 〈x1, 〈m1, m2〉Ax2〉K(X). Also, by assumption,

∑
i∈I A〈xi, xi〉a =

a, for all a ∈ A. We assert that {mj ⊗ xi : j ∈ J, i ∈ I} is a frame for M ⊗A X .
If f is a positive functional on K(X), then for every y ∈ X , we define a positive

functional ϕ on A by ϕ(a) = f (〈y, ay〉K(X)), for a ∈ A. For every n ∈ M, we have

Cϕ(〈n, n〉A) ≤
∑
j∈J

ϕ(〈n, mj〉A〈mj, n〉A) ≤ Dϕ(〈n, n〉A). (1)
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On the other hand,

ϕ(〈n, n〉A) = f (〈y, 〈n, n〉Ay〉K(X)) = f (〈n ⊗ y, n ⊗ y〉K(X)),

and also∑
j∈J

ϕ(〈n, mj〉A〈mj, n〉A) =
∑
j∈J

f (〈y, 〈n, mj〉A〈mj, n〉Ay〉K(X))

=
∑
j∈J

f (〈y, 〈n, mj〉A

(∑
i∈I

A〈xi, xi〉〈mj, n〉A

)
y〉K(X))

=
∑
j∈J

∑
i∈I

f (〈y, 〈n, mj〉AA〈xi, xi〉〈mj, n〉Ay〉K(X))

=
∑
j∈J

∑
i∈I

f (〈y, 〈n, mj〉Axi〈xi, 〈mj, n〉Ay〉K(X)〉K(X))

=
∑
j∈J

∑
i∈I

f (〈y, 〈n, mj〉Axi〉K(X)〈xi, 〈mj, n〉Ay〉K(X))

=
∑
j∈J

∑
i∈I

f (〈n ⊗ y, mj ⊗ xi〉〈mj ⊗ xi, n ⊗ y〉)

=
∑

(i,j)∈I×J

f (〈n ⊗ y, mj ⊗ xi〉〈mj ⊗ xi, n ⊗ y〉).

(To see the third equality, note that
∑

i∈I A〈xi, xi〉〈mj, n〉A is convergent in norm.)
Hence, by (2.1), for every state f of K(X) and every n ∈ M and y ∈ X , we have

Cf (〈n ⊗ y, n ⊗ y〉) ≤
∑

(i,j)∈I×J

f (〈n ⊗ y, mj ⊗ xi〉〈mj ⊗ xi, n ⊗ y〉)

≤ Df (〈n ⊗ y, n ⊗ y〉).

Now, as in the proof of Proposition 3.1 in Li [7], we conclude that

∑
(i,j)∈I×J

〈n ⊗ y, mj ⊗ xi〉〈mj ⊗ xi, n ⊗ y〉,

is convergent in K(X)∗∗ in the ultra-weak topology, and

C〈n ⊗ y, n ⊗ y〉 ≤
∑

(i,j)∈I×J

〈n ⊗ y, mj ⊗ xi〉〈mj ⊗ xi, n ⊗ y〉

≤ D〈n ⊗ y, n ⊗ y〉.

These inequalities pass to the finite sums
∑k

r=1 nr ⊗ yr by the previous lemma and the
following equalities

〈
k∑

r=1

nr ⊗ yr,

k∑
s=1

ns ⊗ ys

〉
=

k∑
r,s=1

〈yr, 〈nr, ns〉Ays〉

= 〈[y1, . . . , yk]tr, [〈nr, ns〉A]r,s[y1, . . . , yk]tr〉.
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Finally, the frame inequalities (2.2) hold for n ⊗ y replaced by an arbitrary element in
M ⊗A X , by continuity of the inner product. �

If the C∗-algebras A and B are Rieffel–Morita equivalent and X is an A-B-
imprimitivity bimodule (giving rise to the Morita equivalence of A and B), then
B ∼= K(AX). Now, if A and X satisfy the conditions of the above lemma (for instance,
if A is unital or σ -unital—see above), then the right Hilbert B-module M ⊗A X has a
frame whenever the right Hilbert A-module M has a frame. On the other hand, if E
is any right Hilbert B-module then E ∼= E ⊗B X ⊗A X and so if the right Hilbert A-
module M = E ⊗B X has a frame then so does E. In particular, we obtain the following
result.

THEOREM 2.4. Suppose that the C∗-algebras A and B are Rieffel–Morita equivalent
and A is σ -unital. If every Hilbert A-module has a frame, then every Hilbert B-module
has a frame.

Note that in Lemma 2.3 and Theorem 2.4, “frame” can be replaced by “standard
frame”. One just needs to observe that convergence in the ultraweak operator topology
could be replaced by norm convergence, everywhere. Therefore, the existence of
standard frames for Hilbert modules over unital (or σ -unital) C∗-algebras is also
preserved under Rieffel–Morita equivalence of the base C∗-algebras.

The above theorem implies certain well known results. For instance, since every
finite-dimensional C∗-algebra A is Rieffel–Morita equivalent to �k for some k, by
Theorems 1.1 and 2.4, every Hilbert A-module has a frame. Also, if H is a Hilbert
space, then every Hilbert K(H)-module has a frame, since � and K(H) are Rieffel–
Morita equivalent. For more general commutative algebras, Theorem 1.1 yields:

COROLLARY 2.5. If Z is a locally compact, σ -compact, Hausdorff space and n ∈ �,
then every Hilbert C0(Z) ⊗ Mn(�)-module has a frame if and only if Z is discrete.

The above corollary provides an example of a non-commutative C∗-algebra A
which has a Hilbert A-module with no frame.

COROLLARY 2.6. Let A be a nuclear C∗-algebra which is also a von Neumann algebra.
If every Hilbert A-module has a frame, then A is finite-dimensional.

Proof. As a nuclear von Neumann algebra, A must be of the form
⊕m

i=1 Ai ⊗
Mni (�), where m ∈ � and Ai is an abelian von Neumann algebra, for i ∈ {1, . . . , m}. If
every Hilbert A-module has a frame, then so does every Hilbert Ai ⊗ Mni (�)-module,
for each i ∈ {1, . . . , m}. Hence, by Corollary 2.5, each Ai is finite-dimensional, and so
is A. �

Recall that if A is a unital continuous-trace C∗-algebra with finite spectrum, then
A is finite-dimensional.

COROLLARY 2.7. Let a unital C∗-algebra A be Rieffel–Morita equivalent to a unital
commutative C∗-algebra. Then, every Hilbert A-module has a frame if and only if A is
finite-dimensional.

Proof. Since A is Rieffel–Morita equivalent to a commutative C∗-algebra, A is
a continuous-trace C∗-algebra such that the Dixmier–Douady class δ(A) vanishes
in H3(T ; �) (see [10]). Therefore, A and C(Â) are Rieffel–Morita equivalent, where
Â is the spectrum of A. If every Hilbert A-module has a frame, then Theorem 2.4
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and Li’s theorem (Theorem 1.1 above) imply that Â is finite. Therefore, A is finite-
dimensional. �

Finally, let us consider the question when every Hilbert module over a C∗-algebra
of the form C0(Z) ⊗ A has a frame, where Z is locally compact and Hausdorff and A is
an arbitrary C∗-algebra. We have the following result (compare with Proposition 1.3).

THEOREM 2.8. Let A be a non-zero C∗-algebra (in Proposition 1.3, A is just �). Let
((Hz)z∈Z, �) be a continuous field of Hilbert spaces over a locally compact Hausdorff
space Z. Suppose that there is a countable subset W ⊆ Z with a point z∞ ∈ W \ W
such that Hz is separable for every z ∈ W, while Hz∞ is non-separable. (As stated in
Proposition 1.3, such a field exists whenever Z is not discrete.) Then, � ⊗ A as a left
Hilbert C0(Z) ⊗ A-module has no frame.

Proof. First, we note that the C0(Z) ⊗ A-valued inner product on � ⊗ A is given
by 〈x ⊗ a, y ⊗ b〉 = 〈x, y〉 ⊗ a∗b, for every x, y ∈ � and a, b ∈ A.

Let {uj}j∈J be a frame for � ⊗ A with frame bounds C and D. We may suppose
that for every j ∈ J, uj = limn ujn, where ujn = ∑∞

i=1 xi
jn ⊗ ai

jn, xi
jn ∈ �, ai

jn ∈ A, and for
each (j, n) ∈ J × �, xi

jn = 0 and ai
jn = 0, for all but finitely many i. Therefore,

Cϕ(〈u, u〉) ≤
∑
j∈J

ϕ(〈u, uj〉〈uj, u〉) ≤ Dϕ(〈u, u〉), (2)

for every u ∈ � ⊗ A and every state ϕ of C0(Z) ⊗ A.
Fix an element of norm one b ∈ A and a state ψb of A such that ψb(b∗b) = 1. For

each z ∈ Z denote by ϕz the state of C0(Z) given by evaluation at z. Then, ϕz ⊗ ψa is a
state of C0(Z) ⊗ A. Taking u = x ⊗ b and ϕ = ϕz ⊗ ψb in inequality (2.3), we get

C‖x(z)‖2 ≤
∑
j∈J

ϕz ⊗ ψb(〈u, uj〉〈uj, u〉) ≤ D‖x(z)‖2.

For any z ∈ Z and any vector w ∈ Hz, by Dixmier [2, Proposition 10.1.10] we can find
x ∈ � with x(z) = w. Thus, we have

C‖w‖2 ≤
∑
j∈J

�j(z, w) ≤ D‖w‖2, (3)

where

�j(z, x(z)) := ϕz ⊗ ψb(〈u, uj〉〈uj, u〉)

= lim
n

∞∑
i,k=1

〈xi
jn(z), x(z)〉〈x(z), xk

jn(z)〉ψb(b∗ai
jn(ak

jn)∗b).

Using the identification C0(Z) ⊗ A = C0(Z, A), we see that the map (z, u) �→ ϕz ⊗
ψb(〈u, uj〉〈uj, u〉) is continuous and hence �j(z, x(z)) is continuous with respect to z and
x, for every j ∈ J.

For each z ∈ Z, choose an orthonormal basis Sz of Hz. The second inequality in
(2.4) implies that for each w ∈ Sz the set Fw = {j ∈ J : �j(z, w) �= 0} is countable.
If Fz = {j ∈ J : ∃w ∈ Sz,�j(z, w) �= 0}, then we have Fz = ⋃

w∈Sz
Fw and so Fz is

countable, for every z ∈ W . Hence, the set F := ⋃
z∈W Fz is countable.
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We note that the zero set of �j(z, ·) is a linear subspace of Hz. In fact, if
ϕ(〈u, uj〉〈uj, u〉) = 0, then ϕ(〈u, uj〉〈uj, u′〉) = 0 for all u′ ∈ C0(Z) ⊗ A. Consequently,
if also ϕ(〈u′, uj〉〈uj, u′〉) = 0, then ϕ(〈u + u′, uj〉〈uj, u + u′〉) = 0.

Therefore, for each j ∈ J \ F , z ∈ W and w1, . . . , wn ∈ Sz and λ1, . . . , λn ∈ �, we
have �j(z,

∑n
i=1 λiwi) = 0.

Now, by continuity of �j(z, x(z)) with respect to x, we can conclude that if j ∈ J \ F ,
then �j(z, x(z)) = 0 for all z ∈ W and x ∈ �.

Since F × � × � is countable and Hz∞ is non-separable, there is a unit vector
w ∈ Hz∞ orthogonal to xi

jn(z∞) for all (j, n, i) ∈ F × � × �, and so �j(z∞, w) = 0 for
all j ∈ F . On the other hand, if j ∈ J \ F , then �j(z, x(z)) = 0 for all z ∈ W and x ∈ �.
This implies that �j(z∞, w) = 0, since the map z �→ �j(z, x(z)) is continuous. Therefore,
�j(z∞, w) = 0 for all j ∈ J, which contradicts (2.4). This shows that � ⊗ A does not
have a frame. �

LEMMA 2.9. Let A be a C∗-algebra and I an arbitrary index set, and set A∞ =⊕
i∈I Ai (C∗-algebra direct sum), where Ai = A, for all i ∈ I. Then, every Hilbert A∞-

module has a frame if and only if every Hilbert A-module has a frame.

Proof. We only need to prove the sufficiency. Let E be a Hilbert A∞-module. Then
E = ⊕

i∈I Ei (Hilbert A∞-module direct sum), where Ei := E · Ãi and

Ãi := {(aj)j∈I : aj ∈ Aj, aj = 0 (j �= i)}.
Note that each Ei could be considered as a Hilbert A-module and

〈(xi)i∈I , (yi)i∈I 〉A∞ = (〈xi, yi〉A)i∈I ,

for all (xi)i∈I , (yi)i∈I ∈ E.
Consider the Hilbert A-module direct sum

H := {(xi)i∈I ∈
⊕
i∈I

Ei|
∑
i∈I

〈xi, xi〉A is convergent in A},

which has a frame F = {(mj
i)i∈I}j∈J , say with bounds C and D. Clearly, for every i ∈ I ,

Fi = {mj
i}j∈J is a frame for the Hilbert A-module Ei with the same bounds C and D.

We show that F is a frame for E, too. Indeed, for every (xi)i∈I ∈ E we have

〈(xi)i∈I , (xi)i∈I 〉A∞ = (〈xi, xi〉A)i∈I ,

and ∑
j∈J

〈(xi)i∈I , (mj
i)i∈I〉A∞〈(mj

i)i∈I , (xi)i∈I 〉A∞ =
∑
j∈J

(〈xi, mj
i〉A〈mj

i, xi〉A)i∈I

=
⎛
⎝∑

j∈J

〈xi, mj
i〉A〈mj

i, xi〉A

⎞
⎠

i∈I

,

therefore,

C〈(xi)i∈I , (xi)i∈I 〉A∞ ≤
∑
j∈J

〈(xi)i∈I , (mj
i)i∈I 〉A∞〈(mj

i)i∈I , (xi)i∈I〉A∞

≤ D〈(xi)i∈I , (xi)i∈I 〉A∞ .
�
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The following results follow from Lemma 2.9 and Theorem 2.8.

COROLLARY 2.10. Let A be a C∗-algebra and Z be a locally compact Hausdorff
space. Every Hilbert C0(Z) ⊗ A-module has a frame if, and only if, Z is discrete and
every Hilbert A-module has a frame.

COROLLARY 2.11. Let Z be a locally compact Hausdorff space and H be a Hilbert
space. The following statements are equivalent:

(i) every Hilbert C0(Z) ⊗ K(H)-module has a frame;
(ii) Z is discrete;

(iii) C0(Z) ⊗ K(H) is a C∗-algebra of compact operators.
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