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A cardinal number which is too large to be reached by some process is generally said to
be inaccessible by that process. Many kinds of inaccessible cardinals have been discussed
and for a general survey the book of H. Bachmann [1, Chapter 7] may be consulted. We
consider here two inaccessibility properties. We shall denote the cardinal of a set A by | A |.
The first inaccessibility property will be called regularity: the cardinal | X | will be said to be
regular if there does not exist a disjoint cover {X,: i e /} of X such that

(i) | A", | < | A" |, for each / in /, and

(ii) | / | < | X\.

The second property is that of power inaccessibility. The cardinal | X | is said to be power
inaccessible if for any sets Y and Z such that | Y| and \Z\ are less than | X| we have
| Yz | < | X |. Here Yz denotes the set of all mappings of Z into Y. A cardinal which is both
power inaccessible and regular will be said, simply, to be inaccessible. The paper of A. Tarski
[2] is devoted to the discussion of cardinals which are inaccessible in this sense. Tarski gives
several equivalent definitions of inaccessibility, the validity of some of the equivalences depend-
ing on the validity of the generalized continuum hypothesis.

In this note we find some further definitions or characterizations of the properties of
regularity, power accessibility and accessibility of the cardinal | X | in terms of the properties
of certain sets of mappings of A into itself and of associated mappings of Yx into Yx. Of finite
cardinals, 0, 1 and 2 are the only regular and 0, 2 are the only power inaccessible cardinals.
We leave these out of account and in what follows restrict ourselves to infinite cardinals. A
statement, without proof, of one of the present results (the equivalence of (1) and (4) in Theo-
rem 1, below) occurred in the final paragraph of the author's paper [3].

1. The sets of mappings. Let X be any infinite set and let 6: X-* X be a single-valued
mapping of A into A. We are interested in the following four possible properties of such a 0:

(1) | A 0 | = | A | ;
(2) U 0 - 1 | < | A|, for all x in A;
(3) | A \ A 0 | < | A | ;
(4) 9 is one-to-one.

We write operators on the right and here x9~l denotes the set, possibly empty, of all elements
of A mapped onto x by 9. For any Y, X\ Y denotes the set of elements in A but not in Y.

Denote by &~,(X) the set of all mappings 9: X-* X satisfying property (/) above, by
y , v ( A ) the set of all 9 satisfying both properties (i) and (j), etc. Observe that all these sets
are non-empty, for each contains all permutations of X. Finally, denote by y (X) the semi-
group of all mappings of X into X, the operation of the semigroup being composition or itera-
tion of mappings.
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We note first some obvious properties of the 3T'i(X). The axiom of choice will be used,
without comment, wherever necessary.

&~A(X) is clearly a subsemigroup of $~{X) and further is contained in ST\(X) and
3T2{X). Not quite so obvious is the fact that &~3(X) is a subsemigroup of 3~(X). To see
this consider 9, 0 in &~3(X). Then, since

s (X\X8)(I>

and | X\X6 \ < | X |, therefore | X9\X9(t> \ < \ X |. Hence, since

X\X9(j) = (X\X4>) u (X<p\X6(t>)

and | X\X<t> \<\X\,\X follows that | X\X6(j) \ < | X |. Thus 00 e^3(X), which proves that
f3{X) is a subsemigroup of F{X). $~3{X) is further a subset of V^X). For if | X\X0 \
< | AT |, it necessarily follows that | XO | = | X \. yy (X) is easily seen to be never a semigroup
and, as we shall see below, S?' 2 (^0 is not necessarily a semigroup, nor is there necessarily a
containment relation between 3T\{X) and ^7~2(X). There is never a containment relation
between 3~3(X) and &~4(X) nor between ST^X) and 3T3{X).

Now let Y be any set of cardinal greater than one. Any element 9 of$~(X) determines an
element 9* of-?"(7*) defined thus:

x(J9*) = (x9)f (xeX, feY*).

Denote the set of all such 9* determined by 9 m.Sr (X) by^*( r> . 3T*(X) depends, of course,
also on Y, and we shall write 3~*(X, Y) when we wish to make this dependence clear.

It is easy to verify that (0$)* = 0*0*, so that 0 -»0* is an antihomomorphism of &~(X)
onto $~*(X). Suppose that 0* = 0* and that 0 ^ 0 . Then there exists x in X such that
x9 = xu xcj) = x2 and xt # x2. Since | Y \ > 1, we can choose yu y2 (y^ ^ y2) in Y and an
element / of Yx such that xxf= y^ and x2f= y2. Thus x(Jd*) = {x9)f= x^f= yu while
x(/0*) = (x(p)f= x2f=y2. Thus fd* ¥=f4>*, and so 8*^<j)*, contrary to assumption.
Consequently the mapping 0 -»0* is one-to-one and so is an anti-isomorphism of

In general if Sf is any subset of ̂ {X) we shall denote by Sf* the set of 0* such that 8eSf.
It follows from the above remarks that, if | Y \ > 1, S?* is a subsemigroup of &~(YX) if and
only if S? is a subsemigroup of

2. Regular cardinals. We now use the sets described in the previous section to obtain
characterization of regular, power inaccessible and inaccessible cardinals.

THEOREM 1. The following assertions about an infinite set X are equivalent:

(1) | A' | is regular.

(3) y2 (X) is a subsemigroup ofST{X\
(4) J 1 2 ( I ) is a subsemigroup of^(X).
(5) y23ix) is a subsemigroup of$~(X).
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Proof. The equivalence of (1) and (2) follows directly from the definition of regularity. For
suppose that | X| is regular, and let 9e^2{X). Should \X6\*\X\, then \X9\<\ X\,
and {y9~l : yeXO} is a cover of A' by a set, of cardinal less than | X |, of sets each of cardinal
less than | X \. This conflicts with the regularity of | X\.- Consequently (1) implies (2).
Conversely, suppose that (2) holds and that | X | is not regular. Then there exists a disjoint
cover {X,: iel} of X such that | X, | < | X |, for each i in /, and | /1 < | X |. Let 6 be a
mapping which, for each /, maps Xt onto xt, where x.eAV Then we easily have that
9e&~2(X). However, clearly \X9\-\1\, which, is less than \X\, by assumption. Thus
6$&~X(X), which conflicts with the assumption that (2) holds. Thus | A'l must be regular.
Hence (2) implies (1). Thus (1) and (2) are equivalent.

Suppose again that | A'l is regular. Let 9, <j)e^~2(X). Let X0<t> = Y. Let ye Y and
consider the set y (0<£) - 1 = ( ^ 0 - 1 ) 0 - 1 . Le ty^ - 1 = Z ; so that, s ince^e^^A") , | Z | < | X\.
Then

Because 6eST2(X), each | zQ~' | < | X \. Hence, because | X | is regular, | y(9<f>)~l \<\X\.
Thus 9(t>e^~2(X). Consequently ST 2{X) is a semigroup, and we have shown that (1) implies
(3)-

That (1) also implies (4) and (5) now follows easily (recall that &~3(X) is a semigroup).
To prove conversely that each of (3), (4) and (5) imply (1) it will suffice to show that,

when | A" | is not regular, then we can choose 6 in ^"1 2 3 (X) such that 92 $ ^2{X). For then 9
belongs to each of the sets ^2{X), F^ (X) and^"2 3 (A'),y12(A') while 92 belongs to none
of them.

Suppose then that | X \ is not regular, so that

where | /1 < | X | and | Xt \ < | X \ for each / in /, for some disjoint cover {X,}. There will
be no loss of generality in supposing that / s i Let Y = A"\7. Since X is infinite,
| Y| = | A" | and we may further suppose that Y = BKJC, where B and C are disjoint,
that | .£ | = | C | = | y | = | A" | and that B and C have disjoint covers

B=U{B,:ieI},
C=U{C, : / e /} ,

with | B, | = | C, | = | Xi |, for each i in /. Now define 9 : X->Z, as follows:

9 :1-*j (for some fixed j in /) ;

if | A", | is infinite, define
9:Bi-> i
9 : C, -»J5j u C,-, one-to-one and onto;

if | Xt | is finite, define
9 : B, u C( -* Bj u C(, the identity mapping.

Then
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and consequently | XO | = | X |, so that Oe^^X). Further, X\X6 £ /; thus \X\XQ\<\ X\
and so 6 e ̂ ( X ) . Finally, | xd~' | is clearly always less than | X \. Hence 8 e T 2 (X). Thus
we have shown that 9e$~l23(X).

Consider now the set
D={J{B, : | X,| is finite, / e / } .

This set is either finite or of cardinal less than or equal to | / | . In either case, since
| / | < | X\, | X\ is infinite, and

\ \ J { B , : i e I } \ = \ B \ = \ X \ ,
it follows that

| E | = | X |, where E = B\D.
Now

j(e2)-13 ie-x 3 E.

Consequently, |y(02)-! | = | A'l, and so e2$T2(X). This completes the proof of the
theorem.

The results of Theorem 1 can be amplified in various ways. We need the extensions given
in the following lemma for our treatment of power inaccessible and inaccessible cardinals in
the next section.

Let 2(7) denote the condition on 0 (depending on a given set Y for which | Y \ S I X |),

2 ( Y ) : \ x O - l \ < \ y | ^ | X | ;

and let &~im(X) denote the set of all elements of ^(X) which satisfy condition 2(Y). For
the conjunction of conditions we use the same notation as before. An argument similar to
that used to prove Theorem 1 enables us to prove the

LEMMA. Let Y be an infinite set and X a set such that \ Y \ ^ | X \. Then the following
assertions about \ Y \ are equivalent:

(1) | Y\ is regular.

(2) ^HY)(X) is a subsemigroup ofS^(X).

(3) 3~2(y)i(X) is a subsemigroup of^(X).

3. Power inaccessible and inaccessible cardinals. In the next theorem we obtain charac-
terizations of power inaccessible cardinals.

THEOREM 2. The following assertions about an infinite set X are equivalent:

(1) | A* | is power inaccessible.
(2) ST*3(X, Y) ^ S T 2 m ( Y x ) J o r all Y such that 1<\Y\<\X\.

(3) ST*2i(X, Y) ^3T2(X){Yx),for all Ysuch that 1 < | Y\ < \ X\.

(4) ^ * 3 4 (X, Y) <=y2m(Yx),for all Y such that 1 < | Y | < | X\.

Proof. Let | X | be power inaccessible and consider 6* in 3r*3(X, Y), where de^3{X)
(see § 1). From the definition of &~3(X), it follows that Z = X\X6 is of cardinal less than
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| A"|. Let f,geYx. From the definition of 0* it follows that f9*=gO* if and only if
(x6)f = (x6)g for all x in X, i.e. if and only if/ and g agree on X6. Consequently, when/ is
given, a mapping g such that/0* = g6* may be defined arbitrarily on Z. It follows that, for
any/ in Yx,f8*~l is either empty or of cardinal | Yz |. Consequently, since | X\ is power
inaccessible, 0*ef1(X){ Yx) when | Y \ < | X \. Hence (1) implies (2).

Since 2T*^{X, Y) and ^*23{X, Y) are subsets of 3T*3{X, Y), we have immediately
that (1) also implies (3) and (4).

To prove the converse implications, suppose that | X \ is not power inaccessible, so that
there exist Y and Z, with 1 < | Y \ < \ X | and | Z | < | X |, such that | Yz | = | X |. We can
assume that Z £ X, when, since | Z | < | X\, we have | X\Z \ = \ X\. Now let 0 be any
(1, l)-mapping of X onto X\Z. Then we easily see that Oe^~234(X). However, for any/
in Yx0*, I/0*"1 | = | Yz | = | * | . Thus 9*$^2(X)(Y

X). That (2), (3) and (4) do not hold
for X now follows immediately.

As an immediate corollary to Theorem 2, the lemma, and the remark at the end of §1,
we have the following characterization of inaccessible cardinals.

THEOREM 3. Let X be an infinite set. Then \ X \ is inaccessible if and only if, for all Y such
that 1 < | Y | < | X \,ST*23(X, Y) is a subsemigroup ofS^(Yx) contained in ^UX)(Y

X).
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