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Summary

Wright proposed that there is a ‘shifting balance’ between selection within demes, random drift,
and selection between demes at different ‘adaptive peaks’. We investigate the establishment and
spread of new adaptive peaks, considering a chromosome rearrangement, and a polygenic
character under disruptive selection. When the number of migrants (Nm) is small, demes fluctuate
independently, with a bias towards the fitter peak. When Nm is large, the whole population can
move to one of two stable equilibria, and so can be trapped near the lower peak. These two
regimes are separated by a sharp transition at a critical Nm of order 1. Just below this critical
point, adaptation is most efficient, since the shifting balance greatly increases the proportion of
demes that reach the global optimum. This is so even if one peak is only slightly fitter than the
other (AW ~ 1/N), and for both strong and weak selection (Ns < 1 or Ns > 1). Provided that Nm
varies sufficiently gradually from place to place, the fitter peak can be established in regions where
Nm =~ 1, and can then spread through the rest of the range. Our analysis confirms Wright’s
argument that if selection, migration and drift are of the same order, the ‘shifting balance’ leads

to efficient evolution towards the global optimum.

1. Introduction

Wright’s (1931, 1932) theory of the ‘shifting balance’
has received considerable attention, both as a mech-
anism for establishing new adaptations, and as a
process of divergence. Wright illustrated his theory by
means of the ‘adaptive landscape’: a graph of mean
fitness against allele frequencies, or any other set of
characteristics which describe the state of the popu-
lation (see Provine, 1986, and Wright, 1988, for
differing interpretations). The complex relation be-
tween fitness and genotype makes it likely that this
surface has many peaks and valleys. Selection tends to
increase mean fitness, and so will push a population
uphill, towards some local optimum. Wright (1931,
1932) pointed out that stochastic fluctuations such as
random sampling drift can cause a shift between such
local peaks, allowing the population to evolve towards
the global optimum.

Wright saw the shifting balance primarily as leading
to efficient adaptation, despite the difficulty inherent
in optimization across a rugged surface. The question
on which we concentrate in this paper is whether the
shifting balance will indeed lead to a significant bias in
favour of ‘superior’ peaks. In a following paper, we
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will extend the treatment to find whether such a bias
may be caused by group, as well as individual,
selection. Before developing a general analysis of
selection, migration and drift in Wright’s island model,
we first comment on the kinds of selection and
population structure required for the ‘shifting bal-
ance’ to operate.

Evolution does not necessarily increase the mean
fitness. This is, for instance, the case where the effects
of mutation are included. When gene flow, frequency-
dependence, recombination and linkage disequi-
librium are taken into account, the dynamics of a
population cannot be described by any general
optimization principle (Akin, 1979; Hastings, 1981).
However, the population will be pushed towards one
or other of a set of simple equilibria, limit cycles, or
chaotic attractors. It may be that stochastic transitions
between these alternative states are important in
evolution towards a well adapted state, and in the
divergence of populations into reproductively isolated
species. For simplicity, we will use the term ‘adaptive
peak’, while recognizing that the process may gen-
erally involve the establishment and spread of alterna-
tive attractors.

Once a higher peak is reached by a single deme or
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a small group of demes, it must then spread to the rest
of the population. This may occur in three ways. First,
whole demes might go extinct, and be replaced by
colonists from demes in a different state. Second, gene
flow between demes can overcome selection, and
cause the certain spread of the new peak. Finally, the
influx of migrants from demes carrying a different
peak makes it more likely that the deme will shift to
that peak as a result of random fluctuations.

Lande (1979) showed that if the probabilities of
extinction and colonization are independent of the
state of the deme, then the rate at which new peaks are
established throughout the whole population is the
same as the rate of establishment in each deme. (This
result rests on the assumption that empty sites are
colonized by individuals from only a single deme.)
There is a precise analogy with the neutral theory, in
which the rate of establishment of neutral mutations
in a population equals the mutation rate. If one
adaptive peak causes a lower rate of extinction, or a
higher rate of colonization, then that peak will tend to
spread. Such interdemic selection can greatly increase
the chance of fixation of an underdominant chromo-
some mutation, and can greatly reduce its expected
time to fixation (Lande, 1985). Note that here,
interdemic selection is the only factor which introduces
a bias in favour of one or other peak: in contrast with
the case developed in this paper, the relative fitness of
genotypes within demes has no direct influence.

Wright (1931, 1932) suggested that interdemic
selection may allow the deterministic spread of a new
gene or combination of genes. If emigration from
those demes which have attained the higher adaptive
peak is sufficiently strong relative to selection, it can
pull neighbouring demes to the new state. This does
not require that demes at fitter peaks send out more
migrants, as Wright assumed. Crow et al. (1990) show
that very low rates of migration can overcome
selection, even when the new adaptive peak consists of
fixation for a specific gene combination that loses its
advantage when broken up by recombination. Barton
(1992) argued that this phenomenon reflects the power
of migration relative to selection, and is not due to the
higher fitness of the new peak: even deleterious gene
combinations can be established by a moderate rate of
immigration. Thus, a better-adapted peak can only
spread differentially by this mechanism if it causes a
substantial increase in the number of emigrants, or if
it has a relatively large domain of attraction. (The
domain of attraction is relevant here, because the
outcome depends on whether the mixed population
produced by migration will then move towards the
new peak.) Moreover, gene flow must initially be low
enough for the new peak to be established, but must
later be high enough for it to spread deterministically.
These conditions can be satisfied with a constant
population structure, if the new peak has a sufficient
advantage over the old. For example, drift can
establish a new peak in some region of an essentially
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continuous two-dimensional population; if this peak
has a sufficient advantage, and the region is sufficiently
large, then it can spread deterministically through the
whole population (Rouhani & Barton, 1987; Barton
& Rouhani, 1991).

A new adaptive peak can also spread through a
sequence of stochastic transitions, in which migration
from demes in the new state triggers shifts in
neighbouring demes. Lande (1985) compared this
process with random extinction and recolonization.
Lande took as his example the spread of an
underdominant chromosome rearrangement through
the island model, or through a one-dimensional circle
of demes. In Lande’s model, the new arrangement
gains an advantage in two ways. First, its increased
fitness as a homozygote reduces the threshold fre-
quency above which it will be fixed, and so makes it
more likely that neighbouring demes will shift to the
new state by chance. Second, demes fixed for the new
homozygote are fitter, and so may send out more
migrants. This is a form of group selection; it makes
demes fixed for the new arrangement more likely to
trigger a stochastic shift, and also more likely to
colonize empty sites. Lande concluded that the new
karyotype is more likely to gain an advantage through
individual than through group effects; however, his
conclusion will only hold when spread by stochastic
transitions is frequent relative to extinction/
recolonization.

We concentrate here on spread by a series of
stochastic transitions, and examine two simple cases:
fixation of an underdominant chromosome rearrange-
ment, and the shift of a polygenic character under
disruptive selection. Both can be described by move-
ment up a landscape, though this is not simply one of
mean fitness. We begin by describing a general method
for deriving the distribution of allele frequencies, or of
a quantitative character, in the island model, and
derive approximations which hold either when most
demes are near one or other adaptive peak, or when
selection is weak relative to drift within demes. We
show how, with moderate numbers of migrants, a
slight asymmetry between the peaks can be greatly
amplified : however, if the number of migrants (Nm)
rises above a critical value, then the new peak cannot
become common.

2. The method

We consider the island model, in which each of many
demes exchanges migrants with a common pool. For
a given state of the migrant pool, the diffusion
approximation can be used to follow the evolution of
the distribution of allele frequencies across demes. At
any instant, the allele frequency in the migrant pool,
P, must equal the mean of this distribution, {p). In
general, p is weighted by the contribution of each
deme, which may in turn be a function of its genetic
composition. For simplicity, we assume here that the
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number of migrants contributed by each deme is
independent of genotype frequencies (i.e. selection is
soft, and acts entirely within rather than between
demes).

One can write down the multivariate distribution of
states of the whole collection of demes. However, we
show in Appendix 1 that as the number of demes
becomes large, the mean across demes, which deter-
mines the migrant pool, converges to a definite
equilibrium value. Thus, the solution in the limit of an
infinite number of demes can be found by solving a
pair of equations: a diffusion equation for the
distribution of allele frequencies (given the state of the
migrant pool) and a (trivial) equation relating the
state of the migrant pool to this distribution. Although
the state of each deme fluctuates randomly, the
distribution across a large ensemble of demes changes
deterministically, and converges to a fixed equilibrium.

In general, such equations are intractable. However,
the equilibrium can be found from Wright’s (1937)
distribution. This requires the assumption that
frequency-dependence and linkage disequilibria are
negligible, so that the effects of migration, mutation,
selection and drift can be described by a potential
function, proportional to the mean fitness. The same
method gives the distribution of the mean of a
quantitative character, provided that the genetic
variance is constant (Lande, 1976). In a single
population, this is a good approximation if large
numbers of loci are involved, and if selection is weak
enough relative to recombination that linkage disequi-
librium can be neglected. A more troublesome re-
quirement is that migration must not increase the
genetic variance. We return to this question in the
discussion.

The dynamics of the island model can also be solved
if demes spend most of their time near one or other
adaptive peak. The system then evolves on two time-
scales. The distribution rapidly settles into one which
is clustered around the adaptive peaks; the system can
then be described by the proportion of demes at the
various peaks, which will change slowly as a result of
occasional shifts between peaks. The increase in the
frequency of the different adaptive peaks can then be
followed in the same way as the change in frequency
of different alleles within a deme. This approximation
was used by Lande (1985) to model the spread of a
new chromosome arrangement through a set of
islands, or through a one-dimensional chain.

3. A polygenic character under disruptive selection

Consider a continuous trait, with mean z; the additive
genetic variance, v, and the phenotypic variance, V,
are assumed to be constant. Disruptive selection acts
such that the log mean fitness is:

s
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This quartic polynomial has peaks at z = —Q and
+Q, separated by a valley at —a. The left-hand peak
has log mean fitness (2sa/3) lower than the right-hand
peak. The drop from the inferior peak down to the
valley is s(1 —a)*(1 +a/3)/8; this is the barrier that
must be overcome by random drift if the population is
to shift from the lower to the higher peak. The mean
fitness as a function of the population mean derives
from the relation between individual fitness and
phenotype, x. When selection is weak (as we will
assume throughout), and the character follows a
Gaussian distribution with phenotypic variance V, the
individual fitness is:

N

W(x) = BETeY

(((22—x2)2—6V(Q—x)2+3V2

+i0;—Q((x—2Q) (x+9Q)*-3 Vx)). (2)

[One can easily see that eqn (2) leads to eqn (1), with
the approximation that In(E[exp(—sf(x))]) =
—sE[f(x)], where E[] is the expectation; see
Rouhani & Barton, 1987. It is convenient to choose a
simple form for W, rather than for W.] Equation (1)
is the same fitness function as was used by Barton &
Rouhani (1991), except that the location of the peaks
(+Q) has been introduced explicitly, rather than
being scaled to + 1. The coefficient s differs by a factor
4 from the model used by Rouhani & Barton (1987),
in order to allow direct comparison with under-
dominance.

We assume that the size of each deme is fixed, and
independent of its genetic composition; a constant
fraction m is exchanged with the migrant pool in every
generation. Since we assume that selection is weak, the
mean can be approximated by a continuous function
of time, z(¢). The expected rate of change of the mean
under selection and gene flow is:

%=v%/)——m(z—2). (Ga)

These deterministic dynamics can be described by a
single potential function, which combines the effects
of selection and gene flow (Rouhani & Barton, 1987):

dz oU _ O 2
= =5 where U = In(W)—3(z—-2)" (3b)

Sampling drift causes random fluctuations in z,
with variance v/ N, where N is the effective population
size. Adding these gives a stochastic differential
equation for z. The equilibrium distribution of z
across demes, conditional on the mean among
migrants, Z, is (Gardiner, 1983):

Y(z]2) = Cexp(2NU)
=CIT”“'exp(—NTm(z—2)2). €)]
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(C is a normalization constant, chosen so that the
distribution integrates to 1.) In the absence of
migration, ¥(z|Z) would follow Wright’s stationary
distribution, and would be clustered around the
adaptive peaks. Migration introduces a Gaussian
factor, which pulls the distribution towards the mean
of the migrant pool, Z.

The mean of z across the whole ensemble, which we
denote by <z}, can be found by integrating zy(z|2),
using eqn (4). The crucial step is to note that in our
model, {z) must equal the mean in the migrant pool,
giving the equation {z)> = z. This can be solved to find
the joint mean at equilibrium, and hence the whole
distribution. In Appendix 1, we show how this solution
is approached as the number of demes becomes large.

(i) Multiple stable states above a critical rate of gene
flow

The population evolves in two qualitatively different
ways, depending on the number of migrants exchanged
per generation. When Nm is small, the mean of the
distribution, {z>, depends only weakly on the mean of
the migrant pool, zZ. The slope of the graph of {z)>
against z is shallow, and so there is only one
equilibrium (Fig. 1a; Nm = 0-5(v/Q?), « = 0-01). The
demes fluctuate independently of each other, and
approach one or other peak. The frequency of the
alternative peaks approaches an equilibrium ratio,
with an intermediate value which somewhat favours
the fitter peak. The graph becomes steeper as Nm
increases, and so two other equilibria appear (Fig. 15;
Nm = (v/Q?%), a =001). The set of demes will be
predominantly near either one or the other adaptive
peak; this is because migration is now strong enough
that the system behaves as one. Note that when the
population is in either state, individual demes can still
shift stochastically from one peak to the other, and
the equilibrium distribution still has two peaks (Fig.
2¢). However, when most demes are at one of the two
peaks, migration is common enough to make shifts
away from that peak unlikely.

When they exist, the two outer equilibria are stable,
whilst the intermediate equilibrium is unstable. This is
shown in Appendix 1, by finding the distribution with
n demes, and taking the limit of large n. We will also
confirm our intuition below, by using the approxi-
mation that the demes are almost always close to one
or other peak. This will hold when selection is strong
relative to drift (Ns > 1).

As the advantage of the superior peak increases,
demes are more likely to be found in its vicinity;
above some threshold, the lower two equilibria
disappear, leaving a single equilibrium in which the
higher peak predominates. This threshold is shown in
Fig. 1¢ (Nm = (v/Q?), a = 0-:022 for Ns = 30). Thus,
there are two qualitatively different, and sharply
separated, regimes: with high asymmetry and low
gene flow, there is a single equilibrium, whilst with low
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Fig. 1. (@) Graph of the mean across demes ({z>) as a
function of the mean in the migrant pool (2), for
disruptive selection on a polygenic character. Here, the
number of migrants is Nm = 0-5(v/Q?), and the
asymmetry is & = 0-01; Ns = 30. There is a single
equilibrium, given by the intersection with the diagonal,
{z) =Z7. (b) When the number of migrants increases to
Nm = (v/Q%), two new equilibria appear. (c) When
asymmetry is increased above a = 0-02, there is again
only a single equilibrium, biased towards the fitter peak.
In each graph, the heavy curve gives the exact {z),
calculated by numerical integration, and the light curve
gives the Gaussian approximation, neglecting terms of
order m/s. This is the approximation which gives eqn
(8a); the more accurate approximation of eqn (854) is
indistinguishable from the exact curve.

asymmetry and high gene flow, there are two stable
equilibria. Before developing approximations that will
give us a better analytic understanding of the process,
we briefly discuss the efficiency of adaptation in these
two regimes.
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Fig. 2. (a) The equilibrium distributions with no gene
flow, and asymmetry a = 0-01; there is a slight bias to the
higher peak. () When the number of migrants is just
below the critical point (Nm = 0-7 (v/Q?), Nm,crit =

0-74 (v/€2?)), there is a much stronger bias. (¢) Above the
critical point (Nm = 0-8 (v/Q?)), there are two alternative
stable equilibria: one is given by the heavy curve, the
other by the light curve. The distribution is given by eqn
(4), with Z given by the solution to eqn (8a).

(ii) Adaptation is most efficient at intermediate levels
of gene flow

In the absence of gene flow, the demes will fluctuate
independently between the two peaks, and will
approach an equilibrium distribution in which the
fitter peak is more common; the ratio between the
frequencies of the peaks is approximately (IW,/ W,)*
= exp(4Nsa/3) [eqn (4); Fig. 2a]. Because the fitter
peak is commoner, the mean in the migrant pool will
be biascd towards it; thus, as the number of migrants
increases, it becomes still more common, further
enhancing the bias produced by migration.
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Fig. 3. The mean at equilibrium ({z) = 7), as a function
of the (scaled) number of migrants (NmQ2?/v), for
disruptive selection on a quantitative character. (a) The
limit of weak selection [Ns < 1; eqn (10)]. The light curve
gives the symmetric case, where the critical number of
migrants is Nm_,, = 1-50 (v/Q?). The heavy curve is for
asymmetry a = 0-1; the critical number of migrants is
then Nm_,, = 2-17 (v/Q?). (b) Strong selection (Ns = 30),
calculated using the approximation of eqn (85). The light
curve is the symmetric case [Nm,,, = 0-539 (v/Q2?) exactly,
and 0-536 (v/Q%) from eqn (85)], whilst the heavy curve is
for asymmetry a = 0-01 [Nm_,, = 0-804 (v/Q?) exactly,
and 0-801 (v/Q?) from eqn. (85))].

Consider, for example, the bias caused by a slight
asymmetry, a = 0-01. This corresponds to a fitness
difference between the peaks which is only
16a/((1 —)*(3 +a)) = 5:3 % of the depth of the valley
separating them. Fig. 2 shows the distributions across
the demes for increasing migration, for selection
strong relative to drift (Vs = 30). Fig. 35 is a graph of
the population mean at equilibrium, as a function of
the scaled number of migrants (Nm Q?/v), for the same
strong selection. The light line shows the symmetric
case o = 0, whilst the heavy line shows the effect of a
slight asymmetry, a = 0-01. With no gene flow, this
asymmetry would give a mean over the whole
population of 0-20Q2 (Fig. 24, and left side of Fig. 35).
This bias increases with the number of migrants, to
0-90Q when NmQ?/v = 0-7 (Fig. 2b). However, when
gene flow rises above a threshold at Nm = 0-74 (v/Q?),
another stable equilibrium appears (Fig. 2¢). Now, if
the majority of demes are near the inferior peak,
migration makes it unlikely that the superior peak can


https://doi.org/10.1017/S0016672300031098

N. H. Barton and S. Rouhani

5
(@)
Nm Q?
14 .
—— o
14 (o]
N !
0 T T
o1 1 10 100
Ns
5
(O]
NmQ? {
v i
— o
" O_M’
0 v r
01 1 10 100
Ns
T ® b
i
Nm Q?
v 4
I Do o
O
y
0 —— v
01 1 10 100
Ns

Fig. 4. The critical number of migrants, scaled as

Nm_, Q*%/v, as a function of the strength of selection Ns.
(a), (b), (¢) are for a =0, 001, 0-1 respectively. The circles
give exact calculations, derived by numerical integration
of eqn (5). The horizontal line on the left is derived from
the approximation for small Ns [eqn (10)], whilst the light
line on the right is from the Gaussian approximation for
large Ns [eqn (84a)]. The heavy curve on the right is from
the more accurate approximation which includes terms of
order 1/Ns [eqn (8b)]. This breaks down at Ns less than
around 10.

be established. Adaptation is therefore most efficient
when Nm is just below the critical point.

Fig. 4 shows this critical number of migrants as a
function of selection (Ns); the circles give exact results,
whilst the solid lines give various approximations
(discussed below). As asymmetry increases (Fig. 4 a—c),
the critical number of migrants also increases. How-
ever, it is remarkable that this number is of the same
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Fig. 5. The mean over all demes (z = {z)) at the critical
point Nm_,,, as a function of the strength of selection,
Ns, for asymmetry; (a) « = 0-01, (b) « = 0-1. This is the
greatest bias towards the fitter peak which can be
achieved by a population which starts at the lower peak.
Symbols are as for Fig. 4. The light curve (lower right) is
the mean which would be achieved with no gene flow.

order over the whole range of selection and asym-
metry; it becomes large only for moderate asymmetry
and very strong selection (Fig. 4 ¢), in which case peak
shifts are extremely rare (Fig. 6).

The overall mean at this critical migration rate is
shown in Fig. 5; this is the largest possible bias
towards the fitter peak which can be achieved by a
population which starts at the lower peak. This is
compared with the overall mean in the absence of gene
flow. The bias increases with selection, and approaches
Q even for slight asymmetry (« = 0-01, Fig. 54) when
Ns becomes greater than 30. However, this bias will be
approached very slowly when selection is strong, since
peak shifts are rare. The improvement caused by the
‘shifting balance’ is more impressive for weak
selection: even in the limit of small Ns, when selection
within demes is ineffective, gene flow allows selection
to act on the whole ensemble, and can produce a
strong bias to the fitter genotype without the
population being trapped on a suboptimal peak (left
of Fig. 5a, b).
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(iif) A general expression for the critical migration
rate

When gene flow is lower than the critical value, a
change in the mean of the migrant pool, z, has little
effect on the mean of the distribution, {z): the slope
of the graph of {z) against z is less than 1, so that it
intersects the diagonal, {z) = z, once, and there is
only one equilibrium (Fig. 1a). The critical rate of
gene flow, above which there are two stable states,
occurs when d{z)/37 = 1 at {z) = 7 (Fig. 1¢). Now,
from eqn (4), the mean is:

jz wey exp(—N—Um(z—Z)Z) dz
JW”exp(——]YUﬂ(z—Zf)dz

Differentiating eqn (5) with respect to z shows that
0{z>/07 is proportional to the variance of z across
demes, var(z):

(z) = fﬂﬁ(Z) dz = -9

aéz_ 2 N 2. (6)
zZ v

(It is important to distinguish the between-deme
variance, var(z), from the additive genetic variance
within demes, v.) Setting d<{z>/0z = 1, we find that the
critical number of migrants is Nm,,, = v/(2var(z)).
This is half the ratio between the genetic variance
within populations (v), and that between populations
(var (z)). When selection is strong and symmetric, the
two peaks are concentrated with equal probability
around —Q and Q, var(z) = Q?, and so Nm,,, =
v/(2Q%). With weaker selection, or asymmetry, the
variance between demes will be smaller, and the
critical number of migrants higher. (Counter-examples
exist, but seem contrived.) Note that this result is
independent of the model of selection. Quite generally,
the critical number of migrants above which the whole
population shifts as one is somewhat greater than
twice the genetic variance (2v), divided by the square
of the distance between the peaks (2Q)%.

(iv) The two-state approximation for large Ns

Exact calculation of the equilibrium distribution
requires numerical integration of eqn (4). This is slow:
in the following sections we develop approximations
which give insight into the key parameters, and which
allow rapid calculations. When selection is strong
enough that demes are usually near one or other
adaptive peak, the distribution can be approximated
by the sum of two Gaussians, which can be integrated
explicitly. This gives an analytic expression for the
relation between the mean of the migrant pool, and
the mean of the consequent distribution. Our aim will
be to show that this relation applies to any distribution
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of polygenic traits or allele frequencies which clusters
around alternative adaptive peaks, and does not
depend on details of the model of disruptive selection.

The Gaussian approximation can be made in several
ways. The most precise would be to find the maxima
of the distribution [eqn (4)]; the variance of the
distribution is approximated by —1/(6%log(¥)/0z%)
at these maxima. Migration will pull the maxima
away from the peaks of mean fitness, at +Q; their
exact position must be found by numerical solution of
the cubic equation obtained by setting the derivative
of eqn (4) to zero. A simpler approximation is to find
the location of the maxima to first order in m/s:

m(1+2)

z_ = Q(—l + )+ O((m/s)?). (7a)
s(1—a)
N m(1—2) 2

Finally, the maxima can be taken to be at —Q, +Q,
and terms of order (m/s) can be neglected. This is
accurate to leading order in (1/Ns). Then, migration
only influences the outcome through its appearance in
the exponent, through the factor exp(—(Nm/v)
(z—2)?)in eqn (5). This approximation will be accurate
when selection is strong, relative to both drift and
migration (Ns > 1, Ns > Nmy), as is necessary if the
demes are to cluster around distinct adaptive peaks.

On the simplest assumption, that the distribution is
tightly clustered around peaks at + £, we can use eqn
(5) to obtain a simple expression for the relation
between the mean across demes, and the mean in the
migrant pool:

Ba)

2y = Qtanh(NAln(W)+2N”;QZ).

Here, Aln (W) is the difference in log mean fitness
between the peaks: for the present model, Aln () =
2sa/3. This relation applies in the limit of large N,
and is independent of the precise form of selection,
W(z).

In Appendix 2, we generalize to cover the evolution
of many characters, and to allow for changes in
genetic variance with changes in the mean: this is
necessary, for example, where we are following allele
frequencies rather than polygenic characters, since
then, v = pq. The general expressions [eqns (A 2.2),
(A 2.3)] have the same form as eqn (8a), implying a
similar critical value of Nm.

The three kinds of Gaussian approximation perform
comparably, and become more accurate as Ns increa-
ses. Fig. 1 compares the exact results [heavy curve;
eqn (5)] with those from the simplest Gaussian
approximation [light curve; eqn (84)], for Ns = 30.
However, though the error in {z) is small, the
consequent error in the position of the equilibrium is
larger, especially near the critical point (see Figs 4, 5).
To get an adequate approximation near the critical
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point, we must include terms of order (1/Ns). This
requires both that we approximate the positions of the
peaks at z, using eqn (7), and that we allow for skew
and kurtosis in the shape of the peaks by expanding
around z, as

Y(2) = (1+al’ + b8+ O exp (—c{*/2),
where z = z, + . This gives:

me?

SU v

8b)

(2> = 'yQ[E +tanh(NA1n(W)—%+2meQi)],

where

1

The factor y reduces the dependence of {z) on %,
and so reduces the mean at the critical point: it is
caused by the skew of the adaptive landscape towards
the centre. This approximation works very well for Ns
> 10, but fails to give a solution for weaker selection.
In the next section, we develop an approximation for
this opposite limit.

Equation 85 cannot be solved for the general case.
However, an approximation can be found when
selection is almost symmetric. In the limit of small
Nsa, and including terms of order 1/Ns:

4NmQZ)].

1 3 2
Ny =3 (14 g3+ (o), ©a)
= 5 N

This dependence on the cube root of the controlling
parameter is typical of this kind of bifurcation (a cusp
catastrophe; Poston & Stewart, 1978). As a conse-
quence, a very small asymmetry can give a large bias.
For example, with Ns = 30, and a = 0-001, eqn (9)
gives 7= 065 at Nm_,, = 0-56; this compares with
z = 0-55 at Nm,,,, = 0-59, from eqn (8b).

erit

(v) Interpretation in terms of a modified adaptive
landscape for small Ns

When Ns is small, selection within demes is ineffective:
the distribution W?" is almost flat. However, if
migration is high enough (m > s), the system will
behave as one panmictic population, and disruptive
selection will push it towards either —Q or + Q. Here,
we show analytically that, as with strong selection,
selection can produce a strong bias towards the higher
peak, even when all the demes start at the lower peak.
As before, this process is most effective just below a
critical number of migrants.

We approximate W*¥ by exp(2Nlog(W)) ~ 142N
log (W). Then, from eqn (5):
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(2H-ZT=~
j(z—z‘)(l+2N10g(14_/))exp<—1%(z—2)2)dz
J(l+2N10g(W))exp(—¥(z—Z)2)dz
__ Nm Nm
zZNJ(Z—Z)log(W)exp(——(z—Z)Z)/(—)dz
v v
v OW*
S u oz (10)
where

W(@)* = jW(z)exp(—#(z—z‘)ﬂ/(%) dz,

and log () has been approximated by (W —1).
Since the equilibria are where z = (z), we see that
these correspond to the stationary points of the graph
of W* against z, where §W*/9z = 0. This function is
just the adaptive landscape that would be produced by
adding (v/2Nm) to the phenotypic variance. When the
number of migrants is large, this addition is small, and
so the modified adaptive landscape still has two
peaks: there are thus two stable equilibria. However,
once the number of migrants falls below a critical
value, the increased variance smooths the two peaks
into one, so that the ensemble of demes has a single
equilibrium. This qualitative change is similar to that
described by Kirkpatrick (1982), who analysed the

“effects of changes in phenotypic variance on the

evolution of a quantitative character under disruptive
selection. This modification of the adaptive landscape
has a simple interpretation: if selection is ignored
altogether, the variance between demes is just (v/2Nm)
(Lande, cited in Lofsvold, 1988). Hence, W* is the
adaptive landscape for the whole population, allowing
for the extra variance introduced in a balance between
drift and gene flow.
For the model defined by eqn (1), eqn (10) gives:
Nsv

v
—|=13z 11
(Nm) (3z+ocQ)] a1
(The approximation can be made in another way.
The distribution

W”exp(—%rf(z——f)z)

has a single peak when Nm > Ns; approximating this
peak by a Gaussian, and retaining terms of order
[(Ns/Nm), gives the first term of eqn (11)].

The form of eqn (11) is independent of the strength
of selection. Thus, a large bias can be produced even
when selection is weak relative to drift within
individual demes (see Fig. 3a). However, when
selection becomes very weak (Ns < Nm, 1), the
difference between population mean and migrant pool
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Fig. 6. The transition rate, I', as a function of Ns. This is
scaled relative to the effective population size, N, and
plotted on a log scale; thus, TNQ?/v = 0-01 corresponds
to a timescale of 100NQ?/v generations. Asymmetry is

a =001, and Nm = 0-5(v/Q?), as in Fig. 1a). The upper
set of lines gives the transition rates from lower peak to
higher (z = —1 to +1), and the lower set of lines gives
the rate of transitions in the opposite direction. Each
cluster consists of three lines, corresponding to exact
numerical integration, and two approximations: first, that
the equilibrium distribution is Gaussian, and second, that
the peaks are at +1 and —1 (see text). In all cases, the
overall mean 7 is approximated by the solution to eqn
(8a). The approximations converge for large Ns.

({z) ~2) becomes small, suggesting that approach to
equilibrium may be slow.

In the symmetric case (« = 0), the critical rate of
gene flow is Nm,,, = 1-5(v/€Q?), which is higher than
when selection is strong (Nm,,,, = 0:5 (v/Q?) for large
Ns). Some insight can be gained by considering very
slight asymmetry:

3 H
Nm,, = 5(1 +3(§) )
z"=2(%)5.

As with strong selection, the bias at the critical point
is proportional to the cube root of the asymmetry, and
so can be large. For example, if « = 0-001, 7 = 0-14 at
Nm,,, = 1-52, which is within 1 % of values calculated
directly from eqn (11).

The critical rates of gene flow, and the corre-
sponding bias to the higher peak, are shown for the
limit of small Ns on the left of Figs 4, 5. The bias
becomes much larger when Ns is large. However, the
bias would also be much larger in the absence of gene
flow when selection is strong (lower curve in Fig. 5):
it is more impressive that gene flow can amplify even
weak selection. As we show in the next section, the
rate of approach to equilibrium is very slow when Ns
is large, since peak shifts are then unlikely: the
‘shifting balance’ may therefore be a more effective
mechanism of adaptation when selection is moderate
(in the range 0-01 < Ns < 10, say).

5

(12a)

(12b)
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(vi) The dynamics

When demes are usually near one or other peak, the
state of the whole population can be described by a
single variable — for example, the overall mean, {z) =
7. If the population starts in some arbitrary dis-
tribution ¥(z), it will rapidly move to cluster around
the adaptive peaks. The mean will then change slowly
as demes make occasional shifts between the peaks. In
the limit of strong selection (Ns > 1), the rates of
transition, I', can be found by numerical integration
over the equilibrium distribution [eqn (54) of Barton
& Rouhani, 1987]. This integral can be further
approximated by supposing that the distribution ¥ is
Gaussian [eqn (5¢) of Barton & Rouhani, 1987], and
by neglecting the slight change in the position of the
peaks of the distribution caused by gene flow (see
Appendix 2). For the model of disruptive selection [eqn
(1)], this gives:

I(—-->+)= (g) VA +a)(1—a)

xexp[——lN-zs(l —oc)3(3+a)+M:—Q(1 —a)

©Q +a)+2z_)]. (13a)

T'(+->—)= (?)V(Xl —a)(1+a)

i
N, NmQ
X exp[—é(l +a)3(3-a)+—’—:—(1 +a)

Q1 -—a)—ZZ)]. (13b)

Various Gaussian approximations are compared in
Fig. 6. This shows that the simplest approximation,
given above, performs well. Our previous work has
shown that the Gaussian approximation gives a close
fit to simulations (Barton & Rouhani, 19874, b;
Barton, 1989). Figure 6 shows that peak shifts occur
at an appreciable rate, provided that Ns is less than
about 50. The rates depend very strongly on the
asymmetry, especially when Ns is large.
The rate of change of the mean is:
oz

= ={Q+DI(—>+)—(Q-DT(+->-)}.

7 (14a)

This can be simplified by defining I'* as the geometric
mean transition rate (v/[[(——+)I(+——)]), and
noting that the ratio I'(——+)/T(+——) equals the
ratio of abundances of the peaks at equilibrium,
Q+z,,)/(Q—z,). Then Z, is given by eqn (8a).
Thus:

0z AZ,,—DI'*
o V1-7,/Q
The condition that the intermediate equilibrium be

stable is that the differential of eqn (14 4) with respect
to Z be negative; note that z,, depends on z. This

(14b)
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Fig. 7. The change in overall mean through time, on the
assumption that demes are usually near one or other
adaptive peak, Initially, all demes are at the lower peak;
Nm = (v/Q2), Ns = 30. For these parameters, the critical
asymmetry is a = 0-022; below this value, most demes
stay near the original peak (lower curves: @ = 0, 0-01,
0-02), whilst above, most demes shift to the higher peak
within &~ 100NQ?/v generations (upper curves: a = 0-03,
0-04, 0-05).

shows that the stability of equilibria depends on
whether 0z,,/07 = 0<z)/0Z is greater than or less than
1, at least where the two-state approximation applies.
This supports eqn (6), and the derivation in Appendix
1. Fig. 7 shows the spread of the superior peak though
time, for various asymmetries. When asymmetry is
below the threshold, the superior peak cannot spread
to high frequency; when it is above the threshold, it
spreads to almost all the demes. Spread occurs
moderately rapidly when Ns =30, taking about
100NQ?/v generations (Fig. 7). In general, the
timescale increases exponentially with Ns.

4. Selection against heterozygotes

We now consider selection against heterozygotes at a
single locus; variation is maintained by recurrent
mutation. The method is essentially the same as for
the polygenic case. However, if rates of mutation and
migrationarelow (Nu, Nm = 1 orless), the distribution
of allele frequencies will follow a Gamma distribution
rather than a Gaussian; the calculations must be
maodified accordingly (cf. Barton & Rouhani, 1987). If
mutations are unique, the population never reaches an
equilibrium. However, the probability of establish-
ment and spread of a unique underdominant allele
can be derived from the equilibrium formula for two
alleles by taking the limit of low mutation rate.

For an island model receiving migrants at a rate m,
from a migrant pool with allele frequency p, Wright
(1937) showed that the allele frequency distribution
is:

w(p) — Cp41\'/¢+44\'mi§—1 q4i\’v+41\'m(7-1 W?N (15)

Mutation occurs at a rate x from Q to P, and v from
P to Q. We define the fitnesses of genotypes (QQ, PQ,
PP)as1,1—s+as, 1 +2as; selection is assumed to be
weak (s <€ 1). The parameter o causes an asymmetry
in fitness of the homozygotes, and can vary between
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Fig. 8. The overall mean allele frequency ({p> = p), as a
function of the number of migrants (Nm), for selection
against heterozygotes; Nu = 0-01. (a) Weak selection (Ns
= 1), using the approximation of eqn (234). The light
curve gives the symmetric case, where the critical number
of migrants is Nm_,, = 0-:0876 (exactly), compared with
0-0828 from eqn (234), and 0-0707 from eqn (255). The
heavy curve is for asymmetry a = 0-1; the critical number
of migrants is then Nm,,, = 0-237 (exactly), compared
with 0-206 from eqn (234), and 0-051 from eqn (254)
(that approximation breaks down because Ny is not small
compared with Nm). (b) Strong selection (Ns = 30),
calculated using the approximation of eqn (185). The
light curve is the symmetric case (Nm,,,, = 0-0351 exactly,
0-0350 from eqn (184), and 0-0305 from eqn (215), whilst
the heavy curve is for asymmetry « = 0-001 (Nm_,, =

erit

0-0461 exactly, 0-0427 from eqn (1854), and 0-00559 from
eqn (214): again this approximation breaks down because
Ny is not small compared with Nm).

a = 0 and a = 1; this is the same scale as in our model
of disruptive selection. The selection coefficient is also
comparable: the deterministic dynamics of (p— gq) are
the same as those of z if s here is identified with
(sv/Q?) for disruptive selection.

The mean of this distribution, {p>, can be found by
numerical integration. It depends on the mean of the
migrant pool, g, in essentially the same way as for the
polygenic case (cf. Fig. 1). There are again two
qualitatively different regimes. Below a certain critical
number of migrants, the demes scatter towards
different adaptive peaks, and the allele frequency
amongst migrants evolves towards a single inter-
mediate value. Above the critical number, all the
demes tend to shift together to one or other adaptive
peak. Fig. 8 shows the transition between the regimes
(cf. Fig. 3). Note that as before, the behaviour is
qualitatively similar for weak and strong selection
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Fig. 9. The critical number of migrants, Nm, as a function
of the strength of selection, Ns, for selection against
heterozygotes; Ny = 0-01. (a), (b) Asymmetry « = 0, 0-1
respectively. The circles give exact calculations, derived by
numerical integration of eqn (13). (a) The heavy curve
gives the small Ns approximation [eqn (23a)] for Ns < 1,
and the large Ns approximation [eqn (18a)] for Ns > 1;
the more accurate approximation of eqn (185) is
indistinguishable in this range. (b) The heavy curve on the
left gives the approximation for small Ns [eqn (234a)],
whilst the heavy curve on the right gives the leading-order
approximation for large Ns [eqn (184)]. The light curve
on the right is from the more accurate approximation
which includes terms of order 1/Ns [eqn (185)]. Both the
strong selection approximations break down for Ns less
than around 1.

(Fig. 84, b), but that when selection is strong (Ns =
30, Fig. 8b), a very slight asymmetry (¢ = 0-001) can
cause a strong bias.

Fig. 9 shows the way the critical number of migrants
depends on the strength of selection; exact results
from numerical integration are shown as circles,
whilst the curves are approximations, developed
below. These curves are for low mutation rates (Nu =
0-01), which seems most likely in nature. In the
symmetric case, Nm,,,, is around 1 when selection is
weak, and declines as selection becomes stronger (Fig.
9a). With asymmetry « = 0-1 (Fig. 9b), Nm_,, has a
minimum at = 0-2. The corresponding bias towards
the fitter peak is shown in Fig. 104, and on a log scale
in Fig. 10b. Note that p is close to 1 for strong
selection, and is much higher than in the absence of
gene flow (lower light curve) even with weak selection.
Comparison of Figs 5 and 10 suggests that adaptation
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Fig. 10. (@) The mean allele frequency over all demes

(7 = {p)) at the critical point Nm_,, as a function of the
strength of selection, Ns, for asymmetry « = 0-1, and
mutation rate Nx = 0-01. This is the greatest bias towards
the fitter peak which can be achieved by a population
which starts at the lower peak. Symbols are as for Fig. 9.
The light curve on the lower right is the mean which
would be achieved with no gene flow. (b) The same graph
plotted on a log scale to expand the region near fixation.

via the °‘shifting balance’ is more effective with
disruptive selection on discrete alleles than with
disruptive selection on a quantitative trait. However,
note that when mutation between the alleles is rare,
equilibrium will be approached slowly (r = 1/p).

(i) A general expression for the critical migration
rate

Proceeding as for eqn (6), we find that the critical
value occurs when:

f’_% =1=4Nm,, {(p—P)In(p/9)>.

(16a)
The critical number of migrants is inversely pro-
portional to the expectation of (p—p)In(p/q), taken
across the whole population. This does not have as
simple an interpretation as in the polygenic case.
However, when the demes cluster around peaks which
are close to fixation, at ¢, 1—¢,, say, eqn (164)
reduces to:

Nm_ . =~ 1
T 4¢pIn(1/e ) +gIn(1/e,)>

(16b)

5-2
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This suggests that the critical number of migrants may
be small (0-1, say), but depends only logarithmically
on the location of the adaptive peaks. We confirm
below that this is so in the limit of strong selection.

(ii) Approximation for large Ns

When selection is strong (Ns=1 or more) the
distribution is peaked near the boundaries. It can be
approximated by a gamma distribution, which is
obtained by taking the deterministic dynamics to be
linear near the boundary. This gamma approximation
accurately predicts the transition rates when selection
is strong (Vs > 1), and reduces to the simpler Gaussian
form when migration and mutation are common
(Barton & Rouhani, 1987). To leading order in u/s
and m/s, the present model gives the location of the
peaks of the distribution as:

v+mq

=1 (17a)

_utmp _
s(1+a)

D_ —m, P+

Integrating over the gamma distribution gives the
probabilities of being near one or other peak as
{a_/(a_+a,), a, /(a_+ a,)}, where:

a_=T(@Np+4Nmp)(4Ns(1— @)~ NN mD)

exp(—2Nsa), (17b)
a, = 1"(4NV +4Nm 67) (4Ns(1 + a))—(4Nu+4qu)
exp(+2Nsa). (17¢)

Since small asymmetries have a large effect on the
occupancy of the two peaks, we need only consider o
< 1; then, the factors (1 —«), (1 +«) can be dropped.
Since we assume that the peaks are near fixation, we
take p_ =0, p, = 1. this is correct to leading order in
u/s, mfs. With these approximations, the average
across the whole population is:

{p—¢q> = tanh [NA In(W) 4+ 2Nm(p—g)log (4Ns)

. (T@Nu+4Nmp)
—a! g(r(4Nu+4qu)>]‘ (184)

This expression is similar to eqn (84). The effect of
gene flow depends primarily on 2Nmlog(4Ns), rather
than on 2NmQ?/v. This suggests that for given Nsa,
the critical migration rate may be low (= 1/log (4Ns))
when selection is strong, as suggested by eqn (16b)
above, and by Fig. 9a. There is also a third term,
which includes the effects of mutation. If mutation
rates are higher than migration rates (4Nu, 4Nv >
4Nmp, 4Nm §g), this is approximately constant, and
merely introduces a bias towards the allele with lowest
mutation rate. If, as is more likely, mutation rates are
low, the third term can dominate: it is this term which
ensures that with no mutation, there are always stable
equilibria at p = 0 and 1, corresponding to fixation or
loss through the whole population.

Eqn 18a is of order 1 in (1/Ns), if we take the
asymmetry a to be of order (1/Ns). It predicts the
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critical number of migrants accurately down to Ns =~
1 (Fig. 9), but overestimates the bias towards the fitter
peak (upper light curve in Fig. 10). The same pattern
was seen for the analogous approximation of eqn
(84a). A better approximation is obtained by keeping
terms of order (1/Ns), as in the derivation of eqn (8 b):

_m o (=) _m+u+v)

G- =2+ L5040
(18b)

tanh [NA In(W)+2N(m(p—3) + (u—v)) log (4Ns)

1 (r(4N# +4Nmp)

g m)"”"“mﬂ””]

Since this is not much more complicated than eqn
(184), and since it is accurate even for Ns =~ 1 (Fig.
106), we will use it throughout.

(iii) The fate of individual mutations

When there are many mutations per generation (4Nu
> 1), Stirling’s approximation can be applied; this
gives the formula that would be obtained using the
general Gaussian procedure described in Appendix 2.
It is more likely that mutations are rare. The two
regimes of high and low migration can then be
understood in terms of the fate of individual muta-
tions.

Consider a population fixed for the less fit homo-
zygote, QQ. If a single P allele is introduced into a
deme by mutation, it has some small probability I, of
being fixed in that deme, despite its continual dilution
by immigrants from the rest of the population. After
local fixation, its fate depends on whether it is more
likely to infect another deme, or to be lost. Let the
probabilities of spread and loss be A,, A_ per
generation; these define a Markov process, in which
the number of demes fixed for the new arrangement
increases or decreases at these rates (see Slatkin, 1980;
Lande, 1985). The new allele is certain to be lost if A_
> A,, and has probability (1 —A_/A,) of spreading to
high frequency if A_ < A,. The rates A_, A, are related
to the probabilities of fixation of a P allele in a deme
fixed for QQ (I',), and of a Q allele in a deme near
fixation for PP (I'_). For simplicity, assume that
migration is rare (4Nm < 1). This ensures that the
chance per generation that a PP deme will fix for Q is
proportional to the number of immigrants carrying
the Q allele, 2Nm: A_= 2NmT _. The chance that a PP
deme will trigger fixation of another deme can be
found as follows. The frequency of the P allele in the
migrant pool is (1/k), where k is the (very large)
number of demes. The average number of P alleles
entering any one deme is 2Nm/k, and so the chance of
fixation of that deme is 2¥mT , /k. Summing over all
demes gives A, = 2NmT, (see Slatkin, 1980). If the
number of migrants is high (4¥Nm = 1), A will be lower
than 2NmT (see Barton & Rouhani, 1987).
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This argument shows that when a deme at the new
adaptive peak is more likely to shift back than to
infect another deme (I'_ > I',), the new peak cannot
spread to high frequency. If the number of migrants
were small, then the fixation probabilities (I') would
be independent of the state of the whole population,
and would reflect the relative fitnesses of the two
adaptive peaks. Only the fitter peak could then increase
from low frequency, and there would be a single
equilibrium. However, when the number of migrants
is high, the common peak is likely to swamp the rare
invader: the fixation probabilities reflect the current
state of the population, and there will be two
alternative stable equilibria, each close to fixation.
The critical migration rate separating these two
regimes is that which gives I'_=T,.

The low-mutation limit could be obtained explicitly
from the fixation probabilities. However, one can get
the same result more simply by taking the limit of eqn
(18b) as 4Nu tends to zero. Consider first the
equilibrium where the P allele is rare (F=p < 1).
Then:

ool o

where

5 = NI @Nm) exeressm
-7 (4Ns)™m

;- =a,/(pa.)

in the limit of low mutation and small p [eqn (17)], and
so is proportional to the relative chances that a deme
will be at one or other peak.

Eqn (19) has the equilibrium solution:

_u 1 ¢
”'m—¢)L—m+E} (20)

This lower equilibrium only exists when ¢_ < 1; then,
an allele introduced at low frequency will stay rare, at
a frequency proportional to the mutation rate. Above
the threshold ¢ = 1, it can increase from low frequency
to spread through the whole set of demes. The critical
migration rate cannot be calculated explicitly from
¢_=1; however, when Ns> 1, we have approxi-
mately:

_ Nsa
et ™ (log (4Ns) +a +7)
Euler’s constant.

Nm

where y = 0-577...is
(21a)

This was derived on the assumption that p is small,
which will only be the case with moderate asymmetry.
In the symmetric case, eqn (185) leads directly to:

~ Ny _
chrit ~ /(2(10g(4Ns)+y)) (a = 0)‘

As expected from eqn (165), the critical number of
migrants decreases with log(4Ns) in both cases, for

(21b)
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fixed Nsa. These approximations also correctly predict
the monotonic decrease of Nm,, with Ns in the
symmetric case [eqn (21 b), Fig. 9a), and the minimum
for intermediate Ns [eqn (214a), Fig. 94). For the
mutation rate Ny = 0-01 used in Figs 8-10;eqn 21 b is
accuratedown to Ns = 5, but eqn (21 a) only converges
for Nsa < log(4Ns).

The highest frequency of P which can be reached by
a population initially at the lower peak is when Nm is
just below the critical point. The upper equilibrium is
given by the analogue of eqn (20):

U N I ST DU T

p=1 u—¢oL—m m]Nl mi—g,)
fors>m (22a)
where

__ANmT'(4Nm) e =@Neavm
+ = (4Ns)4Nm

Now,
¢+ — e—2a(4Ns-4Nm)¢_ ~ e—saNs¢_= (W_/ W+)4N¢__

At the critical point, ¢_ = 1, and so the maximum bias
to the fitter peak can be written as:

p’zl— 572 i 4N
ml{(W, /W) —1]

(22b)

This compares with the bias that would be achieved
with no gene flow:

= M
rEr A (22¢)
Gene flow produces a strong bias, for two reasons.
First, the ratio of mean fitnesses is raised to the power
(4N), rather than (2N), which amplifies the asymmetry.
Second, eqn (22 b) has the form (1 — vC), which is close
to 1 for low mutation rates: the fitter peak spreads
through the whole ensemble with the aid of migration,
and approaches fixation. In the absence of gene flow,
the peaks approach intermediate frequencies, in a
balance between mutation in the two directions.
Because low mutation rates ensure that demes
approach fixation, the bias towards the fitter peak is
much stronger than was the case for disruptive
selection (cf. Figs 3 and 8, or Figs 5 and 10).

(iv) Approximations for small Ns

When selection within demes is weak relative to
sampling drift (Ns < 1), we can proceed as for eqn

(10), and approximate WV by (1—4Nspq+
2Nsa(p—q)). This leads to:
s £~ ~\ SNsﬁq.C [ -
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where
- DB+ p/m) . .
C=4N(m+p+v), = =1-p.
R e o M
For p~ u < 1, this reduces to:
@ = (p+L]a-o), (23t)

where

o= ANs4Nm —al1+
" (ANm+1)(4Nm+2) 2Nm/ |’

The solution is:

= ﬁ(l—1). (24)

This solution exists provided that 0 <w < 1; the
former condition gives a critical number of migrants:

a

Nm, = 0 =a)

25a)
As for eqn (21a), this was derived on the assumption
that the lower equilibrium is close to zero, which
requires that there be sufficient asymmetry. In the
symmetric case, eqn (23 a) leads directly to:

2
o= /L 25b
chrlt 2S ( )
In the asymmetric case, the overall mean at the critical
migration rate [eqn (254)] is:

_ v(14+a)

I
r 2sa’

(26)
As with strong selection, these approximations fail for
the mutation rate Nu = 0-01 used in Figs 8-10: they
converge in the biologically reasonable limit where Ny
tends to zero. Equations (214) and (254a) confirm the
patterns found in the numerical results. Since asym-
metry acts through Nsa, a slight asymmetry can cause
a large bias when selection is strong. With moderate
asymmetry, the critical migration rate is around 1,
though it falls to &~ +/x in the symmetric case. The
main contrast with disruptive selection is that if Nm is
low enough that the fitter peak can spread from low
frequency, it will spread almost to fixation (5=

1—v0).

5. Discussion

Wright’s ‘shifting balance’ allows a set of demes to
escape from inferior adaptive peaks, and so evolve
towards the global optimum. Our analysis has shown
that the ‘shifting balance’ can ensure that the
population becomes concentrated around the highest
peak, even when that peak is only slightly above the
alternatives. This process is most effective just below
a critical number of migrants (Nm_,,, = 0-1 —1). If the
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number of migrants is slightly higher, then migration
from other demes prevents the spread of the new
adaptive peak, whilst if it is lower, there is less bias
towards the fitter peak. When selection is very weak,
or very strong, convergence to equilibrium will be
slow. However, there is a wide range of selection
strengths over which the process can operate within a
reasonable time (0-01 € Ns < 10, say). The similarity
between the results for quantitative traits and for
selection against heterozygotes suggests that these
patterns extend to any form of selection that sustains
alternative adaptive peaks.

This analysis is one application of a general
technique for understanding interactions between
genes or demes, and can be extended in several other
directions. In a future paper, we will deal with the
“third phase’ of the shifting balance, by allowing the
number of emigrants from a deme to increase with its
mean fitness. Our results show that unless the relation
between migration rate and mean fitness is very steep,
this form of interdemic selection has little effect.
Another possibility is to model joint fluctuations of
population size and allele frequencies, so that the
process of extinction and recolonization emerges
naturally from the model. This offers an analytic
approach to ‘metapopulation’ models (Gilpin &
Hanski, 1991) with explicit population dynamics. We
anticipate that the number of migrants will play a
similar key role in this ecological context.

The island model is unrealistic for most organisms.
Evolution in a one- or two-dimensional continuum
could be treated in two ways. First, the population
might be divided into regions, each consisting of large
numbers of demes. Within each region, migration
occurs at random, as in the island model. Migration
also occurs between neighbouring regions, and could
be approximated by diffusion if it is sufficiently
localised. This is essentially a stepping-stone model in
which the elements are sets of demes, and the variables
are distributions of allele frequencies. If there is clinal
variation across the whole population, this can be
seen as a model of a ‘mosaic’ hybrid zone (Rand &
Harrison, 1989).

This ‘gradient-island’ model might be a good
approximation to a two-dimensional grid of demes if
migration were very leptokurtic: immigrants would
then come from a large enough area that random
fluctuations in the migrant pool could be neglected,
and the equilibrium distribution within each region
derived as a function of the mean of that pool. It is
instructive to make the analogy with the Ising model,
which models a magnetic crystal in which atoms can
align their spins either up or down, and neighbouring
spins tend to align despite random thermal
fluctuations. A mean field approximation, equivalent
to our method used here, is successful even when
interactions are only between nearest neighbours
(Feynman, 1972). The analogy can be taken further
when selection is strong, since then, demes are in one
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of two states, just as spins can take two directions.
Results carry over directly for disruptive selection, but
require some modification with selection against
heterozygotes to allow for mutation.

The model of stabilizing selection on an additive
polygenic trait can be combined with the island
model. This case can be closely approximated by
assuming that the mean of the character is close to the
optimum. Stabilizing selection then acts to reduce the
variance, and is equivalent to selection against
heterozygotes at each locus (Wright, 1935). There are
then two regimes. If Nm is greater than the critical
value derived above, all demes will be close to fixation
for the same allele at each locus. Gene flow will then
have little effect on the genetic variance. However, if
Nm is just below the critical point, demes will be near
fixation for different alleles at any given locus. Gene
flow can then maintain very much more variation
than could mutation alone. If Nu €« Nm < Ns %, V, =
(2m/s) per locus, as compared with (4x/s) per locus
with no gene flow (here, stabilizing selection has
strength s, W =exp(—s(z—z,,)?/2), and g is the
effect of a single allele).

In the analysis of disruptive selection on a quan-
titative trait, we ignored the inflation of the variance
by migration. It seems likely that the worst case would
be where gene flow maintains all the variance, as
described above. However even then, the difference in
variance as the mean changes will be small, provided
that there are many loci. This is because when Nm is
below the critical point, roughly equal proportions of
loci will be near fixation for ‘ 4+’ and for * —’ alleles
(assuming that changes in the mean are small
compared with the possible range of the character,
from all ‘=’ to all ‘ 4+ ’). Hence, migration acts like
steady mutation. When Nm is above the critical point,
most demes are at the same state for each locus.
Therefore, there will only be an inflation of genetic
variance due to migration at a small fraction of loci.
This makes peak shifts more likely, but should be
small if large numbers of loci are involved.

It has long been realised that the number of
migrants, Nm, plays a crucial role in determining the
distribution of neutral allele frequencies (Wright,
1932; Slatkin, 1987). For example, the relation E, =
1/(1 + 4Nm) shows that if Nm is small, most variation
will be between rather than within demes. However,
the dependence on Nm in the ‘shifting balance’ is
much stronger, since there is a sharp transition
between two qualitatively different regimes. Moreover,
the similarity between our results for strong and weak
selection, and for discrete alleles and quantitative
traits, suggests that in a population with Nm in the
range 0-01 to 1, the ‘shifting balance’ will be effective
for all loci for which selection can maintain alternative
adaptive peaks.

Kauffman & Johnsen (1992) have shown that phase
transitions between ordered and disordered behaviour
occur in a polygenic model of coevolution, and argue
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that in general, adaptation is most efficient near such
transitions. This model, while very much simpler,
supports their argument. Kauffman & Johnsen suggest
that evolution may lead to fitness surfaces which bring
the population close to the phase transition, thus
maximising its rate of adaptation. In the present
model, it is hard to see that individual selection would
cause the appropriate number of migrants to evolve.
It seems much more plausible that Nm varies across
the species’ range with the environment, and that
conditions appropriate to the ‘shifting balance’ are
found only in a small fraction of marginal demes. The
large body of experimental work which infers Nm
from patterns of gene frequencies suggests that Nm is
much greater than 1 in most of the populations studied
(Slatkin, 1987).

This is not a serious problem for the ‘shifting
balance’. If Nm is close to the critical value in some
small region, then the fitter peak will be established
there. It will initially be able to spread rather easily,
because near the critical point, the lower equilibrium
is only marginally stable. It will spread to occupy the
whole range if its advantage is strong enough to
overcome the flux of genes out of regions where Nm is
larger. There is an analogy with optimisation by
‘simulated annealing’ (Kirkpatrick et al., 1983), where
a system is started at high temperature (or low Nm),
and gradually cooled (slowing near any phase tran-
sition) until it ‘freezes’ into the optimal state. Here,
Nm varies in space rather than in time.

This process can be described using the ‘gradient-
island’ model, by adding a diffusion term to the
expressions for ({z)—Zz): though this does not
necessarily give the correct dynamics, it does show
whether a balance between selection and a density
gradient is possible. For example, with weak disruptive
selection, adding diffusion between regions at a rate o®
to eqn (23a) shows that the fitter peak can spread if
the density gradient is less than

d(log (Nm)/dx = (/o) v/ [s0/(2Nm 2.

Even if this condition is not often satisfied, random
fluctuations in population structure may allow the
fitter peak to advance past local obstacles. This model
quantifies one explanation of the observation that
evolutionary novelties tend to arise in peripheral
isolates (Mayr, 1963).

Many open questions remain. Does the ‘shifting
balance’ tend to maximise mean fitness, or do adaptive
peaks spread for other reasons? Can fluctuations in
selection play the same role as sampling drift? Can
any intrinsic advantage of one peak over another
overcome random processes, such as the chance
extinction and recolonisation of large areas? Our
analysis provides a general analytic technique that we
hope will clarify these questions.
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Appendix 1
A finite number of demes

Here, we derive the distribution across a finite set of
demes coupled together by migration. The same
method is developed in more detail by Barton (1989),
who dealt with n genes, coupled together by stabilizing
selection. The mathematics for the two cases are
almost identical.

Suppose that there are n demes, with means z, (i =
1,...,n), and mean fitnesses W,. Generalizing eqn (3a),
the deterministic dynamics are:

% = v-(al—[;g/L)—m(z,—Z), where 7 = %(El z,).
(Al.la)

These can be described by a potential, U, which is
a function of the states of the whole set of demes [cf.

eqn (3b)]:

0z, oUu i —
81_06_4’ where U—E(ln(Wi)
mn .
“3 D z)). (A 1.1b)

The equilibrium distribution of the whole set z =
{24, 25,...,2,}, 1S given, as in eqn (4), by ¥ (z) = Cexp
(2NU), where N is the effective deme size. The mean
across demes fluctuates randomly, with a distribution
that can be derived from ¥(z). We now show that
(subject to a stability condition), the mean across
demes converges to the fixed value calculated above
using {z) = 7.

We use the substitution:

2 (-2 = X (z,~2*)P—n(z—z*)’, (A1.2)
{=1 i=1

where z* is for the moment an arbitrary reference
point. Then:

Y(2) = Cﬁ(@”exp(—N_z:n(zl_z*)z))

exp( 0= 1)(2 z*)2).

The product is over terms analogous to eqn (4): each
gives the distribution of z,, given that migrants have
mean z*, which we denote by ¥(z,|z*). Now, the
distribution of the mean across demes, (), can be
found by integrating eqn (A 1.3) across z, with the
constraint (1/n)X7,z, = Z. The last term remains
unchanged, whilst the first term reduces to the
distribution of the mean of »n independent variables,

(A 1.3)
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each with distribution y(z,|z*). By the Central Limit
Theorem, this converges to a Gaussian with mean
(zpp= Jzt ¥(z,|z*) dz,,

and variance

vara/n = [ e ez ) [

Now, set z* = (z); since all demes must follow the
same distribution in this model, we can drop sub-
scripts. Then, the distribution of Z reduces to the
form:

W(o)= exp( var @
n*Nm
+ I G- Y] (A1)
This is a Gaussian with mean {z)>, and variance:
var () = ] ! N (A 1.5)
! (var @) o(n— 1))

Provided that nNm/(n—1) <v/(2var(z)), this
converges to zero as the number of demes becomes
large: the distribution across demes then approaches
that where the mean is fixed at the solution to 7 = {(z),
as assumed above. The condition on Nm can be
understood from eqn (6); since 0{z)/0Z = 2(Nm/v)
var(z), it reduces to 9{z>/0zZ <1, confirming the
heuristic argument used above.

Appendix 2

Generalization to multivariate evolution, and
changing genetic variance

We now show that the relationship in eqn (84a) gives
a general description of the competition between
alternative adaptive peaks in the island model.
Suppose that selection acts on a vector of variables, z.
We first consider the simplest case, where the matrix
of genetic variances and covariances, v, remains
constant. This would be a good approximation if z
represents the means of a set of polygenic traits,
determined by large numbers of loci, and under weak
selection. As for the case of a single trait under
disruptive selection, we must make the restrictive
assumption that migration itself does not cause
significant changes in variance (see Discussion). With
these assumptions, the system can be described by a
potential,

=In(W)—m@z—2)"v¥(z—7)/2 [cf. eqn (35)].

The exact solution could be found by numerical
integration over the distribution exp (2NU). However,
a simple approximation can be applied, as above, by
approximating the distribution around each peak by a
Gaussian, and discarding terms of order (m/s).

We develop this approximation by first considering
the distribution in the absence of gene flow. The
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probability of being near an adaptive peak at +Q is
denoted by exp(2NF,), which is defined as the
integral of exp 2NU) over the domain of attraction of
the peak. Under the Gaussian approximation:

m

__ S X n
F= ln(W)+ﬁ, where S = gln((—)

) @)

(A 2.1)

Here, n is the number of variables — in other words,
the dimension of the adaptive landscape. D is the
matrix of second differentials of the log mean fitness
at the peak (D, = —*In(W)/0z,0z,). Equation (A 1)
is equivalent to eqn (144) in Barton & Rouhani
(1987); note that in eqn (11) in Barton (1989), the
probability of being near some peak labelled m is
denoted by Z,/Z, where Z =% Z, ,. Here, Z,, = exp
(2NF)).

F is approximately equal to the log mean fitness,
but includes a second term that takes account of
fluctuations away from the peak. The notation used
here is derived from an analogy with thermodynamics
(see Barton, 1989, p. 64). The log mean fitness is
analogous to (minus) the energy, £. Wright’s dis-
tribution exp (2NIn W) is analogous to Boltzmann’s
distribution, exp (— E/kT). Thus, the number of genes
in the population (2N) is analogous to an inverse
temperature (1/k7): small population size corre-
sponds to high temperature, since random fluctuations
are large, and low fitness (i.e. high energy) states
become more likely. The difference between the energy
(here, the log mean fitness) and the free energy (here,
F) is the product of entropy and temperature (here,
S/2N). The entropy, S, is a measure of the number of
available states which surround the adaptive peak: if
the peak is flat, the curvature D will be small, the
entropy will be large, and the peak is more likely to be
occupied.

If the effects of gene flow are now included, by
including the term [m(z—2)" v"'(z—7)/2] in the po-
tential, the probability of occupying the peak will now
be proportional to

exp 2QNF*) = exp (2N In(W)*
—m(z—2)"vi(z—Z)/2 + S*).

Now, the peak of the distribution will be perturbed
slightly, from +Q to z*; migration will also perturb
the mean fitness at the peak (#*), and the size of the
surrounding region [exp ($*)]. However, if migration
1s weak relative to selection, these effects can be
ignored: to leading order in Ns and (m/s), gene flow
only affects the exponent, through the term exp
[-m(z—Z)"v ' (z—7Z)/2]. So, approximating z_ by
—Q, and z, by Q, the mean of the distribution is:

z) =
[-Q e g-m(-2-nTv {-Q-2)/2 + QWY e—m(ﬂ—:)"'v"(n-z)/zl
- +
[y e~™-R-nTv —0-n/2 + RN e m-n” v"(n—mzl
- +

(A 2.2)

= Qtanh [NAIn(#)+2NmQT v'7).
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This is a multivariate generalization of eqn (8 a), but is
still restricted to constant genetic variance, v. The
difference between the entropies at either peak (AS)
has been ignored (as in the one-dimensional case
described above), as being negligible compared with
the leading term, NAIn ().

The next step is to allow the genetic variance to be
a function of the dynamic variables, z. The vector z
could now represent a set of allele frequencies. The
genetic variance is then v,, = p,q,/2; this determines
both the response to selection and the variance of
fluctuations due to sampling drift. (In order that the
population moves up gradients of mean fitness, with
metric v, selection must be weak enough that linkage
disequilibria are negligible.) z could also represent the
means of a set of quantitative characters, or even, the
means, variance and higher moments of the set of
characters. In the latter case, the Gaussian or rare-
allele approximation must be used to describe the
evolution of the system (Barton & Turelli, 1987).

If the variables z represent a set of allele frequencies
(p, q), the effects of gene flow can be described by a
potential m{Fln (p)+ gln(g)]; this case is elaborated
above. In general, however, gene flow cannot be
described by any potential if the genetic variance
changes. We can nevertheless extend eqn (A 2.2) by
considering gene flow as introducing a small per-
turbation away from a system which is described by
potential. As before, consider the case of no gene flow.
Then, the population is most likely to shift from one
peak to the other along a particular trajectory, which
is a ridge in the adaptive landscape. The problem can
be reduced to one in a single dimension by integrating
over the (n—1) dimensions orthogonal to this most
likely path (see Barton & Rouhani, 1987). When a
small amount of gene flow is included (m < s), the
most likely path between the two peaks will follow
almost the same trajectory: the dynamics therefore
need only be followed along this path. Label points
along the trajectory by ¢, the peaks being at { = +Q.
The expected rate of change due to migration is
—m(¢—9), and the variance in ¢ is v({); this is a
projection of the full matrix v onto the most likely
path. The probability of making a transition can be
found by integrating along the most likely path (see
Rouhani & Barton, 1987). Since the relative prob-
abilities of being near one or other adaptive peak at
equilibrium depend on the ratio between the transition
rates in either direction, this method gives the
equilibrium distribution. Hence, the mean value of ¢
over the whole set of demes is:

(&> = Qtanh [NA ln(W)—NmJﬁ %dg]. (A 2.3)

This expression applies to any system for which the
Gaussian approximation holds, provided that selec-
tion is strong relative to drift and gene flow (Ns > 1,
Nm). In general, the mean fitness # may be modified
to take account of other evolutionary forces, such as
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mutation. Above, where we consider selection against
heterozygotes, we must make a further generalization
to cover the case where the adaptive peaks are close to
fixation, so that the distribution is far from Gaussian.
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