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From the theorem, the following proof of the nine-point circle is
obtainable (Fig. 27).

Take any line CK, and draw rectangles as in the figure,
we have

L MPK = L PMC - L DKC = L ECM - L DCK = L. EFD,

therefore F, P, D, E are concyclic. If KD is perpendicular to AC,
PM is perpendicular to BC, and their intersection is the mid point
of CO, where 0 is the orthocentre. If CK and CB coincide, P is
the foot of the perpendicular from A on BC.

Seventh Meeting, May 12, 1803.

JOHN ALISON, Esq, M.A., F.R.S.E., President, in the Chair.

On the History of the Fourier Series.

By GEORGE A. GIBSON, M.A.

§ 1. The treatment of the Fourier Series, that is, of the series
which proceeds according to sines and cosines of multiples of the
variable, is in most English text-books very unsatisfactory ; in many
cases it shows almost no advance upon that of Poisson and, even
where a more or less accurate reproduction of Dirichlet's investiga-
tions is given, there is no attempt at indicating the advantages it
possesses over the so-called proof of Poisson. Nor is the uniformity
of the convergence of the series so much as mentioned, not to say
discussed. I have therefore thought it might be useful to give a
fairly complete outline of the historical development of the series
so far as the materials at my disposal allow. I do not think that
any important contribution to the theory is omitted, but, as I
indicate at one or two places, there are some memoirs to which I
have not had access and which I only know at second hand.

Again it is to be understood that only series of the form

Ao + i] (A,,cos»a; + B,,sin«a;),

n being an inleijer, are dealt with, those cases in which n is not
integral being omitted in the meantime.
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In many of the memoirs referred to in what follows historical
notes of the work of predecessors will be found, but there are two
writers to whose work I am deeply indebted. In fact these two
have done their work so thoroughly as to leave practically nothing
for later investigation. The first of these is Riemann, who devotes
the introductory pages of his Habilitationsschrift, Tiber die Darstell-
barke.it einer Function durch eine trigonometrische Eeihe (Werke,
pp. 213-253) to a summary of the views of preceding mathema-
ticians, that is, those prior to 1854. This summary is masterly
though it is very curious when we consider the influence Poisson has
had in this connection on English writers to note that nowhere
does Riemann allude to his proof. The other writer referred to
is Arnold Sachse who, in his Versuch einer Geschichte der Darstellung
tvillkilrlicher Functionen einer Variabele durch trigonometrische
Reilien (Gottingen, 1879), has in a manner completed the summary
of Riemann; this dissertation is also of very great value and
contains some important additions to the theory due to Schwarz
and derived from his lectures. Unfortunately the German text is
out of print, but a translation appears in Darboux's Bulletin for
1880. It is this translation which I quote when referring to
Sachse's Essay. I may also refer to ReifFs Geschichte der unend^
lichen Reihen (Tubingen, 1889) where the connection of the trigono-
metric series with the theory of infinite series in general is carefully
discussed.

It may be useful to remark at the outset:—

That up till the appearance of Fourier's memoir on the
" Analytical Theory of Heat" the possibility of the expansion
of an arbitrary function in a trigonometric series was not
admitted by any mathematician.

That Fourier had a thorough grasp of the nature of such ex-
pansions and gave in broad outline, though not in such detail
as its importance demanded, a sound proof of the expansion,
so that from the time his memoir became known the validity
of the expansion has never been questioned.

That Dirichlet was the first to give a proof in which the restric-
tions on the function to be expanded, in other words the limits
of its arbitrariness, are carefully stated.

That the work of subsequent writers has consisted largely in
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extending the limits given by Dirichlet, while following in the
main his methods, though new ground was broken by Riemann.

And finally, that in comparatively recent times the series has
been shown to be in general uniformly convergent. We have
thus to keep before us these three points: first, the possibility
of the expansion of an arbitrary function; second, the limits
to the arbitrariness of the function in order that the series
which represents it may converge to the value of the func-
tion; and third, the nature of the convergence, whether uniform
or not.

§ 2. The controversy as to the possibility of expanding an
arbitrary function of one variable in a series of sines and cosines
of multiples of the variable arose about the middle of last century
in connection with the problem of vibrating chords. To appreciate
properly the difficulty which the expansion presented to the mathe-
maticians of that day -we must bear in mind that their conception
of a function was much more limited than ours. In the Introductio
in Analysin Infinitorum, vol. II., cap. I., § 9, Euler says that
curves may be divided into continuous and discontinuous or mixed -}

a curve is continuous when its nature can be expressed by one
definite function (i.e., analytical expression) of the variable; if on
the other hand different portions of the curve require different
functions to express them the curves are called discontinuous or
mixed or irregular as not following the same law through their
whole course but being composed of portions of continuous curves.
Curves which are discontinuous in this sense seem to have been
considered to be beyond the scope of analysis; on this point
reference may be made to Lagrange, Oeuvres, I., p. 68, and to
D'Alembert, Opuscules, I., p. 7. As a consequence or accompani-
ment of this view it was supposed that if two functions of a variable
were equal for any definite range of values of the variable they
must be so for all values so that if the curves which represent them
coincide for any interval they must do so entirely. Thus the
objection was constantly urged that an algebraic function could
not be represented by a trigonometric series for the latter gives a
periodic curve while the former does not. Fomier was the first to
see and state that when a function is defined for a given range of
values of the argument its course outside that range is in no way
determined. One obvious consequence of these views is that no one
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before Fourier could have properly understood the representation of
an arbitrary function by a trigonometric series.

§ 3. D'Alembert in the Memoires de VAcademie de Berlin for
1747, vol. III., page 214, discusses the problem of the vibrating
chord. The origin of co-ordinates being at one end of the chord
whose length is I, the axis of x in the direction of the chord
and y the displacement at time t, he shows that y must satisfy the

equation _Ĵ  = as —\ (In the memoir a = l , but I keep the usual
ot ox

form). He obtains the solution y —/{at + x) + 4>{at - x), and since
y = 0 for x = 0 and x = I he finds y =J\at + x) -/(at - x) and shows
tha t / represents such a function that f[z) =/(z + 21). In a memoir
immediately following this one in the same volume (p. 220) he seeks
to find functions which satisfy this relation of periodicity.

In the Memoires for the following year (1748) vol. IV., p. 69,
Euler discusses the same problem. He observes that the motion of
the string will be completely determined if its form and the velocity
of each point of it be known for any one position. He deduces
the equation y = cf>(x + at) + if>(x — at) where <£ is such that 4>(at)
+ <£( - at) = 0 and <f>(l + at) + <j>{l - at) = 0 for every t; and from

these equations which <j> must satisfy he concludes that every curve
wlietlier regular or irregular which consists of repetitions alternately
below and above the axis of any given curve which the string may
be supposed to take (each point where the curve crosses the axis
being a centre of the curve) is suitable for representing <f>. He then
shows how the ordinate of any point at any given time may be
determined by a simple geometrical construction. He gives on
p. 84 as a particular solution for 4>(x) the equation

, / > . TTX n • 2irx • 3irx .
<l>(x) = asm— + /Jsin + y sin + etc.

I l l
Euler's solution is clearly more general than that of D'Alembert

who always supposes the curve taken by the chord to be regular;
but in the Memoires for 1750, vol. VI., p. 355, the latter objects
that Euler's solution is not more general than his own because the
extension to irregular curves is illegitimate. He does not attack
any special point in Euler's investigation, but seems rather to rest
his objection on the illegitimacy of concluding from regular to
irregular curves since the latter, not being expressible by one
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definite function through their whole course, cannot form the
subject of analysis. Euler replies in the Memoires for 1753,
vol. IX., p. 156, by presenting his solution in great detail and
asking where in his proof the law of continuity is assumed.
D'Alembert does not seem to have answered Euler's challenge
directly although repeating his previous objection (Opuscules, vol. I.).
Lagrange while agreeing that Euler's solution is more general than
that of D'Alembert still holds his proof to be unsatisfactory on what
I suppose to be the same general grounds as D'Alembert. (Lagrange,
Oeuvres, I., p. 68). If, as Lagrange seems to hold, and as Euler him-
self in the Introd. in Anal. Inf. leads us to think, an irregular curve
cannot form the subject of mathematical investigation, there can be
no question, I think, of the soundness of the objection to Euler's
proof, and it was precisely because of his doubts that Lagrange
undertook his investigation of the problem. Euler, however, seems
always to have held to the accuracy of his solution and the other
two to their objections, the one of these two to the generalisation
and the mode of reaching it, the other not to the generalisation but
only to the mode of reaching i t ; the difficulty was only explained
by a better insight into the nature of functions and their mathe-
matical treatment.

§ 4. The bearing of these memoirs and of the discussions as to
the generality of the solution on the subject of this paper is fully
seen when we consider an article by Daniel Bernoulli on the same
subject which appeared in the Berlin Memoires for 1753, vol. IX.,
p. 173. In that article Bernoulli approaches the consideration of
the problem of the vibrating chord from the physical rather than
from the mathematical side and proposes a synthetical solution of
it. Basing his arguments on the expression given by Brook Taylor
in his treatise De Methodo Incrementorum for a particular integral

of the differential equation, namely, y = Asin -IfcosW7ra , and on
I t

the principle of the Coexistence of Small Motions, he maintains that
any position of the string may be given by the equation

. wx o . 2-irx . STTX , ,y = asm— + psm + y sin + etc.
i l l

His arguments are not mathematical and he nowhere attempts to
find the values of the coefficients a, /?, y, etc. A proof of the same

10 Vol. 11
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nature as Bernoulli's in the mode of approaching the question but
much more efficiently developed may be found in Lord Rayleigh's
Theory of Sound, vol I., cap. VI. Bernoulli observes in § XIII.
that Euler had given the same equation as he does (in the memoir
of 1748 referred to above), but he holds against Euler that this gives
a perfectly general solution.

Euler combats Bernoulli's position in the memoir of 1753
already noticed in connection with D'Alembert. The earlier part
of it deals with Bernoulli's solution. Euler admits that if it be
general it is much better than his own; but he does not admit its
generality, for that would be equivalent to admitting that every
curve could be represented by a trigonometric series and this pro-
position he considers to be certainly false, seeing that a curve
given by a trigonometric series is periodic—a property not possessed
by all curves. In seeking to establish his position he remarks
(p. 200) that it might be argued that since there is an infinite
number of disposable constants, a, fi, y, etc., at disposal, it must be
possible to make the proposed curve coincide with any given curve,
but he states explicitly that Bernoulli himself has not used this
argument. Bernoulli indeed does not seem in his memoir of 1753
to have quite grasped the mathematical consequences of his solution;
his results seemed so satisfactory in their explanation of the facts of
observation that he was prepared to maintain the generality of his
solution on that ground alone. In a letter addressed to Clairaut
and published in the Journal des Scavans for March 1759, pp. 59-80,
he states very clearly the substance of his memoirs of 1753 and the
line of reasoning that had led him to his treatment of the problem.
In criticising Euler's views of his memoirs he (p. 77) explicitly
accepts the argument from the infinite number of disposable con-
stants, thoagh in so doing he really detracts from the merit of his
work. On p. 78 he indicates a proceeding that would appear to be
that subsequently developed by Lagrange. He takes seven points
on a curve and says he succeeded in determining a, /3, y, etc., so as
to make the trigonometric curve pass through these points, and he
adds that the process might be continued. He gives, however, no
proof of his statements.

§ 5. "When the controversy was at this stage a memoir by
Lagrange on the Nature and Propagation of Sound appeared in
the first volume (1759) of the Miscellanea Taurinensia (Lagrange;
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Oeuv., vol. I.). In the introduction he gives a lucid statement of
the methods of the three writers we have named, accepts Euler's
solution as the most general, but objects to his mode of demonstra-
tion, and proposes to obtain a satisfactory solution by first considering
the case of a finite number of vibrating particles and then seeking
the limit for an infinite number—that is for a chord. The theory
deduced in his fourth chapter for a finite number of particles is the
same as that of Bernoulli on whose synthetical solution he bestows
high praise (§ 32); but for our purposes the thirty-seventh article is
the most important, in which he seeks the limit for an infinite
number of particles. The length of the string being a and the
initial co-ordinates of a point on it being (X, Y) the first part of
the equation for the ordinate of the point (as, y) at time t is given by

„ 2*H,
_cos 12 f , -xrl • irX . irx 7rH . 2TTX . 2wxy*= I dx. Yl sin sin—cos—— t + sin sin c

a} \ a a T a a
. 3TTX . fax 35I-H, , \

+ sin sin cos t + etc. I
a a T /

"where the integral sign I is used to express the sum of all

these series and the integrations are to be made on the supposi-
tion that X, Y are the variables and t, x constants." This seems
undoubtedly to be a Fourier series in the proper sense of the term;
yet it appears to me doubtful if Lagrange actually supposed it to
be such. I t could hardly have escaped his notice that for a definite
value of t this is simply Bernoulli's solution. I t was doubtless no
part of Lagrange's purpose, as Reiff remarks (p. 134), to determine
the co-efficients in Bernoulli's series, but rather to obtain the
functional solution given by D'Alembert as he actually does by
summing the series by trigonometric methods. At the same time
if Lagrange had really meant the summation to be what we now
call an integration his subsequent evaluation of the series would
not have possessed that generality he contended for, as it starts
from a result that implies the continuity of Y. Exactly the same
objections he urges (§ 15) against Euler could have been brought
against himself. Many parts of the investigation of § 38, where he
sums the series, are according to modern notions very loose; yet
leaving this aside the investigation shows great analytical skill, and
in some respects anticipates the procedure of Fourier as will be
pointed out later. All the same I do not think that Lagrange
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himself nor any of his contemporaries can have understood the
above series as anything else than a finite series, and I believe that
the m used by Lagrange is not made really infinite until he has
sdmmed the series and passes to the functional solution. Further
Lagrange was quite alive to the merits of Bernoulli's solution and
even proposes a proof (Oeuvres, I., pp. 514-516) of the proposition
that the initial figure of the chord, when it has one, is contained in
the equation

. ITX n • 2TTX • SKX

i/ = asm— +/3sin + ysin + etc.
a a a

With this result before him it is almost beyond belief that Lagrange
would fail to see its identity with his own formula quoted above,
had he supposed m to be really infinite. With m infinite his
solution would have been complete and the subsequent investiga-
tions mere transformations of it without adding anything to it.

Another investigation by Lagrange belonging to the same
series of memoirs on Sound and printed on pages 552-554 of the
first volume of his collected works is that repeatedly quoted by
Poisson and others as the first investigation of the representation
of a function by a trigonometric series. I think, however, that
this investigation stands on the same footing as that just discussed
and I hold that Riemann's view of it is correct. It is no doubt
hard for us to understand how near Lagrange came to the con-
ception of expanding an arbitrary function in an infinite series
without ever actually attaining to it, especially when we see him
in this memoir adopting the method of passing a trigonometric
curve through a finite number of points on a given curve and
succeeding in solving the necessary equations in the manner used
later by Dirichlet (Dove's Repertorium). That he did not really
solve the problem of expansion in trigonometric series is I think
best understood from the circumstance that neither he nor any of
his contemporaries (unless perhaps Bernoulli) believed such expan-
sion to be possible. I t would be interesting to have documentary
evidence of the truth of Riemann's statement (Werke, p. 219) that
Lagrange strongly objected to Fourier's conclusions in regard to
such expansions.

§ 6. For the next forty years there seems to have been almost
no progress made towards a solution of the difficulties raised in these
discussions; but before passing to Fourier mention must be made
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of certain results given by Euler. In his memoir Subsidium Calculi
Sinuum {Novi. Comm. Petrop., torn V., ad annos 1754-55) he
obtains (p. 204) the following equations :—

n3<£ — etc. = ^<f>
2 (2

s3</> - etc. = — - —.

Reiff remarks (p. 128) that these series are the first in which
rational functions are expressed by series of sines and cosines of
multiples of the variable. I t is somewhat remarkable that Euler
should have accepted these results, but his views on the validity
of results derived from the use of the series were extremely loose.

A more important result for the general theory is contained in
a memoir presented by him to the St Petersburg Academy in 1777
but not published till 1798, long after his death. In the Nova Ada,
vol. XI., p. 114, this memoir appears, and in it he says that if #
can be expanded in a series of the form A + Bcos<£ + Ccos2<£ + etc.
then

A = — \$d<f>, B = — \ $d<f>cos<f>, etc., where the limits of the in-
TTJ IT J

tegrals are 0 and it. Fourier's method of determining the coefficients
is thus explicitly given by Euler as Jacobi remarked (Crelle's
Journal, vol. II., p. 2); but the use that Euler makes of the
series and the words in which he introduces his memoir seem to
me to render it doubtful if Euler, as Sachse appears to think (p. 47),
drew the hint that led to his method from Lagrange's memoirs.
Except for the mode of determining the coefficients the memoir
goes but a very little way towards settling the possibility of
representing an arbitrary function by a trigonometric series.

§ 7. Glancing for a moment over the work of Euler, Bernoulli,
and Lagreinge, it is easy for us to see where the difficulties of the
subject lay ; they lay in the inadequacy of the notion of a function.
Both Euler and Lagrange seem at times as if they had in part
transcended the limits of their original conception, Euler in giving
his geometrical constructions for the solution of the equation for the
vibrating chord and Lagrange in his method of constructing the
equation to a curve by first finding the equation of a curve passing
through the vertices of an inscribed polygon. Yet I do not think
either of them got beyond the old notion of continuity and its con-

https://doi.org/10.1017/S001309150003131X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003131X


146

sequences in any of their writings on the subject of trigonometric
series. But great part of their work could be and was of immense
service to Fourier, as he himself indicates {Thiorie Anal, de la
Chaleur, § 428), when he approached the consideration of the
subject with his conception of a function as given graphically.

§ 8. Fourier's first investigations on the Theory of Heat were
communicated to the Academy of Sciences on the 21st December
1807. The memoir of 1807 has never been printed though it has
now been recovered, and it is to the memoir sent to the Academy
in 1811 and crowned on the 6th January of the following year
that we must look for Fourier's exposition of the representation
of arbitrary functions by trigonometric series. In all essential
points the treatise Thiorie Analytique de la Chaleur, published in
1822, is a reproduction of the memoir of 1811, and I shall therefore
refer always to the treatise, in the recent edition of it by Darboux.

The third and the ninth chapters of the treatise are those in
which the trigonometric expansions are most fully considered, and
even a casual reading of these is sufficient to show how thoroughly
Fourier cleared away the difficulties which had puzzled his pre-
decessors. Even before the publication of Dirichlet's proof in
1829, which has generally been considered to be the first satisfactory
exposition from the mathematical standpoint, Fourier's results had
been universally accepted; no doubt some of Fourier's series were
criticised but in many cases the errors were those of the printer and
not of Fourier himself. At the same time there can be no question
of the general acceptance of his main theorem on the subject of the
expansion of an arbitrary function.

The treatise is so well known that I need not spend much time
in analysing it; but I may call attention to one or two points. In
article 428, 12° and 13° Fourier sums up his views on the nature of
a function which admits of expansion; it is not necessarily continu-
ous in the old sense of that word but may be composed of separate
functions or parts of functions. By these phrases he means a
function f(x) which has values while x lies between given limits but
is zero for all other values of x. The function may even become
infinite between the limits (§ 417) and in general the function need
only be given graphically. Again, Fourier has accurate conceptions
of the convergency of series (§§ 177, 185, 228, 235, etc.) though he
occasionally makes slips (for example in § 218 where he puts
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1-1 + 1 - 1 + etc. = £, see also § 420, p. 506); in this respect both
Euler and Lagrange leave much to be desired. A more important
question remains, namely, how far did Fourier succeed in his mathe-
matical demonstration that the series which represents the function
actually converges to the value of the function 1 In special cases
which he gives the convergency of the series and its equivalence with
the function are, as he says, easily demonstrated; but it is usually
maintained {e.g., by Riemann, Werke, p. 220) that he gave no
mathematical proof of the general theorem. I think, however,
that in this respect Fourier has received less than justice. No
doubt, the investigations of chapter III. can hardly be accepted
as doing more than suggesting the truth of the general theorem,
but it is different with those of chapter IX. In these as in nearly
all the special series of chapter III. he adopts the method, followed
afterwards by Dirichlet, of taking n terms of the series and seeking
the limit for n infinite. This method indeed seems to me to be that
of Lagrange in § 38 of his first memoir referred to above, and it is
unquestionably the most satisfactory. Fourier's treatise being in
everybody's hands I need hardly do more than refer to § 423 and
suggest that it should be compared with Dirichlet's proof. At
bottom Fourier's reasoning is, I believe, quite sound and it seems
to me to contain the kernel of Dirichlet's proof. No doubt Fourier
did not develope his proof with the extreme precision that the
importance of the theorem demanded and that Dirichlet afterwards
gave to it; still the substantial accuracy of his reasoning is beyond
dispute. Darboux in a note pp. 511, 512 of his edition of the
treatise calls attention to the matter, and his contention on behalf
of Fourier seems to me quite justified by the facts. Before seeing
this note I had formed the opinion I have expressed and I was glad
to find it confirmed by so able an authority.

I content myself with this meagre reference to Fourier, because
his treatise is so universally read even yet by all beginners in
the study of mathematical physics that it would be waste of time
to delay over it. I cannot pass from it however without remarking
that it seems to me peculiarly unfortunate that instead of studying
Fourier's own mode of presenting the proof of his series-theorem,
or, what would have been even better, taking Dirichlet's memoirs
on the same subject as guide, English writers have usually drawn
their exposition from Poisson who studiously denied to Fourier his
just claims in this field. As a matter of fact Foisson's proof is

https://doi.org/10.1017/S001309150003131X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003131X


148

invalid and seems to have been recognised as such almost from the
first by the great continental writers. At any rate, Dirichlet does
not, I think, allude to it and Cauchy lays his finger on the weak
point, as I shall indicate shortly. Nor does Riemann in his
historical notice refer to Poisson except to call in question his
estimate of Lagrange's position. No doubt the integral that Poisson
makes use of is of great importance, and has played a fundamental
part in many modern developments; but its value appears after
the Fourier series has been established and not in the proof of the
series itself.

§ 9. Poisson has treated the trigonometric series now dealt with
in several places and always in practically the same way. I may
refer to the Journal de I'JZcole Polytechnique vol. XI. (1820), vol. XII.
(1823), and to the treatise Theorie de la Chaleur (1835). His process
is as follows :—

1 - » 2 "°"°When»<l , -J-—: - = 1 + 2 2 pncos,n(x - a)
1 2^cos(a; -a)+p2 ,,_i

Multiplying by_/"(a) and integrating between - 7r and TT, he gets

When p = l, the integral on the left has all its elements zero except
when a = x. Putting then p = 1 - g, where g is small, and x - a = z

he gets for the value of the integral $f(x) ?—i where e, e' are
J -e 9 "*" *

small; but no error will be introduced by making the limits infinite,
so that when p = 1, the integral is equal to 2ir/(x). Making/? = 1
on the right side he deduces

1 fTT
Ax) = 2i\ f(a){l+22cosn(x-a)}da

J -IT

The proof is usually extended so as to include the cases in which
f(x) presents discontinuities.

On this proof there are two remarks to be made. In the first

place, if the series / ( a ){ l + 2'2p"cosn(x - a)}da be denoted by
J -IT

2A,,/<", and if we write F(p) = 2A,,p", then we are only justified
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in assuming F(l) = 2An when the series 2An is convergent.
This theorem is generally quoted as Abel's Theorem (see
Chrystal's Algebra Pt. II. p. 133). But in the present case
this procedure amounts to assuming that the trigonometric
series is convergent, and the convergency of the series is not
proved by Poisson. In other words one of the greatest difficulties
of the subject is tacitly passed over. It may be added that unless
the function/(a;) be very greatly restricted it doe3 not seem possible
to prove the convergence of the series from a consideration of the
integrals which give the coefficients. In the second place, the
quantity p has no natural connection with the series and is a source
of ambiguity that is not inherent in the series itself. This is seen

when the integral . P )J W — j s m o r e carefully

studied, as in the writings of Schwarz (see his two memoirs on the

Integration of the Equation — + — = 0 in his Collected Works, vol.
Sx" 8y"

II). If we describe a circle with radius unity and take a point in
it having (p, x) for its polar co-ordinates, then the limit of the
integral 'for p = 1 depends, except when f(x) is continuous and
periodic, on the path by which the point approaches the circumfer-
ence. Thus if f(ir - 0) 4=/( - Tt + 0), the limit when x = TT is
*"{/(*" - °) +/( - *• + °)} + e{f{^ ~ °) - / ( - T + 0)} where 6 may have
any value between TT and - w. But the limit of the series when
x = TV is perfectly definite, namely the value of the above expression
when 0 — 0. However valuable, then, Poisson's integral may be in
other respects it does not seem to furnish a satisfactory starting
point for the investigation of the series in question.

§ 10. After Poisson, Oauchy attacked the problem in his M&moire
sur les de'velopements desfonctions en s&ies periodiques (Mem. de PInst.
vol. VI. j read 27th Feb. 1826). He starts with the series

Jo Jo"-1 a

To prove that this has for sum af(x) he replaces it by another series

Jo «=i J o «=i J o
where 0=1 -e and € is a small quantity. The series, when summed,
gives

https://doi.org/10.1017/S001309150003131X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003131X


150

(

and this integral being evaluated in Poisson's manner is equal to
aj[x). But Cauchy recognises one of the faults of Poisson's proof
and tries to prove the convergence of the series when 0=1 . To do
this he throws it into the form

Ax)=i r
a o a a *

This equation, as Cauchy remarks later, may be deduced by integra-

tion of the functions ,/{z)/|e—~T"te""*)''- l | round a properly selected

boundary. As to the function J\z) it must remain finite for all real
or imaginary values of z. He now, instead of examining the integral
in its closed form, throws it again into a series of which the general
term is, if z = 2nirv/a

-.e
i

' e \f\a + z|-/l z\\dz

so that when n is very large the general term approximates to

I . 2wrx

The series of which this is the general term is convergent, and he
therefore concludes the trigonometric series to be convergent.

Now in regard to this proof two points in particular require
notice. First, as Dirichlet noticed, there may be two series whose
terms differ infinitely little from each other when n = oo, and yet
the one series diverges while the other converges; for example

S' ~ ' converges while ^ ,' |1+——^-l diverges. Cauchy's

proof of the convergence thus fails. But, as Reiff remarks (p. 189),
it is easy to see that the integral in closed form is finite if 0<as<a,
so that this objection might be overcome. But, secondly, the con-
ditions imposed onj[z) reduce that function to a constant. Riemann,
who pointed this out, states that Cauohy's conditions are not really
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necessary for his proof; it is sufficient that the function f(x + iy) be
determinable such that for all values of y it remains finite and for
i/ = D becomes J\x). That such a function is determinable Riemann
holds to be established, and therefore apparently that Cauchy's
proof is valid. This remark of Riemann's is pretty fully considered
by Sachse, pp. 48-52, and I content myself with referring to him,
only adding that Riemann's proof of the possibility of determining
a function by means of its values along a boundary is not now
accepted, and that the necessity of using other methods of estab-
lishing the proposition in question carries with it the invalidity of
Cauchy's proof.

For another and more general investigation by Cauchy I would
refer to his Oeuvres complites, vol. VII. (2nd ser.), p. 393.

§ 11. I come now to the classical investigations of Dirichlet.
Of his two memoirs dealing with the subject of the Fourier Series
the first appeared in Crelle's Journal, 1829, vol. IV., pp. 157-169,
the second in Dove's Repertorium der Physik, vol. I., pp. 152-174.
This second memoir is so clear and simple that it has become a
model of nearly every discussion on the series in question contained
in continental text-books, and probably there is no memoir in the
whole range of mathematical journalism that has been so completely
and so literally transferred to the text-books. Dirichlet saw that
the convergence of the series does not depend solely on the decrease
of the terms, but is due also to the presence of negative terms.
(See the introduction to his paper on expansion in Spherical Har-
monics in Crelle's Journal, vol. XVII.). Hence he adopts the
method, which Fourier had employed, of summing to n terms and
finding the limit for n = oo. I t will be convenient to follow the
second rather than the first memoir.

The first 2» + 1 terms of the series for <f>(x) may be written

i r*
-
*• J-i

sin(2« •

a . a-X2sin-
2

and this integral may be divided into
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and the limit for n = co has to be found. The investigation hinges

upon the limit for /fc = oo of f* smkP /(ft),//? where k = 2n+l and
J o smp

0<A< or =JT/2. The function/(ft) is supposed in the first place to
be continuous, positive, and no.t increasing, while ft goes from 0 to
h. The integral is decomposed into a series of partial integrals with
limits 0, ir/k; ir/k, Iwjk; etc. ; rirjk, h where mrjk is the greatest
multiple of ir/k contained in h. Each of these integrals is less in
absolute value than its predecessor and the signs of them are alter-
nately positive and negative. The integral is thus found to lie
between limits which for n = oo coincide in the value |ir/(0). The
restrictions on /(ft) are then partly removed ; it may either be
constant or negative or a not decreasing function as ft goes from

0 to h. I t follows immediately that L [" ^E/(/3)dft = 0 if
*-» J g sin/3

0<g<h< or = — By this last result it is possible to extend the

first theorem to all continuous functions which have a finite number
of maxima and minima, while if J[/3) be discontinuous for ft = 0 the
limit is \-KJ\ + 0) if h be positive but - \irf{ - 0) if h be negative.
The limit for n = co of the sum of the first 2n +1 terms of the
trigonometric series is thus \{4>{x + 0) + <f>(x - 0)} if x 4= ± 7r
but £{0(7r-O) + </>(-ir + O)} if x= +7T.

The results may therefore be summed up as follows:—The limit
m=n

for n = oo of the series J»o+ 2 (amcosmoc-+bm&minx) where

1 (•»• If".
am = — <t>(a)cosmada, bm = — I <t>(a)sinmada

is £{</>(«:-0) + tf>(a: + 0)} if a * ±TT

but £{<£(?r-0) + <£(-ir + 0)} if x= ±w

provided that while - IT = or < x = or < TT, cj>(x) has a finite number
of maxima and minima, a finite number of discontinuities, and does
not become infinite. Of course if 4>(x) is continuous near x, the
value is simply 4>(x). These conditions (with another regarding
infinite values of <f>(x) to be given presently) are usually called
Dirichlet's conditions.

I t is perhaps worth observing that the mode of conducting the
investigation prescribes the order in which the terms are to be
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taken, and the order is of course essential when the series is
semi-convergent.

§ 12. The definite form which Dirichlet gives to the sum of the
trigonometric series suggests that the phrases "the function <f>{x)
can be expanded in a series " or " the series represents the function
<f>(x)" should be precisely defined, for where there is a breach of
continuity in the function the series has a definite value while the
function has not. The natural definition seems to be that adopted
by Sachse (p. 55), namely, a series represents a function in a given
interval if its values coincide with those of the function for all
points in the interval with the exception of a limited number of
known points. A Fourier series therefore represents a function
which satisfies Dirichlet's conditions.

There is one point in Dirichlet's demonstration which has been
subjected to criticism in some quarters. According to Dirichlet the
value of the series at a point of discontinuity in the function is the
arithmetic mean of the values of the function at that point. It has
been contended on the other hand by Schlafli and Du Bois-Reymond
that the value is really indeterminate (compare also Thomson and
Tait, Nat. Phil., vol. I., pt. I., p. 59) and that the sum may have all
values between the two values of the function at the point. Sachse
(pp. 56-58) discusses, the point and as I have not had access to
Schlafli's pamphlet (Einige Zweifel an der allg. Darst. . . . durch
trig. Reihe, Berne, 1874) nor to Du Bois-Reymond's memoir (Sprttng-
weise Werthveranderungen, Math. Ann., vol. VII.) I must simply
refer to Sachse for a fuller notice and also to Heine's Kugelfunc-
tionen, vol. II., p. 347. At the same time I may say that these
objections, so far as I understand them, do not seem to me to be
sound as they rest upon the evaluation of a double limit while in the
case of the series there is but one variable to be considered. I have
already referred to the ambiguity of a similar character introduced
by Poisson's proof.

§ 13. Had Dirichlet not written his first memoir, the paper which
follows his in the same volume of Crelle (vol. IV., p. 170) by
Dircksen would have been a notable contribution to the theory of
trigonometric series. It proceeds on the same general lines as
Dirichlet's though obviously it is quite independent; but neither
in elegance nor in generality is it comparable with his, and it has
practically fallen into oblivion.
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Bessel in Schumacher's Astronomische Nachrichten, vol. XVI.,
p. 229, sought to simplify Dirichlet's proof, but he can hardly be said
to have succeeded, and he certainly added nothing to the general
theory.

§ 14. The conditions given by Dirichlet in his first memoir, as
those which a function must satisfy if it is to be represented by a
trigonometric series, are certainly very general, and in an addition
to his memoir on the representation of an arbitrary function by a
series of Spherical Harmonics (Crelle's Journal, 1837, vol. XVII.,
p. 54) he shows that the function <£(/?) may become infinite at a

finite number of points provided that I <̂  (/})<?/} remain finite and

continuous. This condition will be included among Dirichlet's
conditions when these are referred to. But Dirichlet believed that
a function, with fewer restrictions than those implied in his condi-
tions, could be represented by a trigonometric series, and at the end
of his first memoir promises a paper on the subject. Nothing,
however, except the note in the seventeenth volume of Crelle, just
mentioned, has appeared from his pen in the way of carrying out
the promise. In particular it should be noticed that Dirichlet's
conditions do not include all continuous functions, since they exclude
every function with an infinite number of maxima and minima; but
if a function have an infinite number of oscillations in the neighbour-
hood of a point it may be continuous when the amplitude of the
oscillations is infinitely small. Thus the function a;cos(l/a;) is
continuous between — JT and ir on the understanding that it is
zero for x — 0, yet this would be excluded from Dirichlet's conditions.
One of the main objects of later investigations has been to extend
the limits of the arbitrariness allowable to a function which may
still be represented by a trigonometric series, but it is a somewhat
striking fact that the conditions do not yet include all continu-
ous functions, and Du Bois-Reymond has even proved that there
are continuous functions such that the trigonometric series which
represent them become infinite at certain points, that is, cease to
represent them at these points. The belief then that every con-
tinuous function can be represented by a trigonometric series is
unwarranted.

§ 15. The first published attempt to show that a function having
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an infinite number of maxima and minima may be represented by a
trigonometric series is that of Lipschitz in his memoir De explica-
tione per series trigonometrical, etc. (Orelle"s Journal, 1864,
vol. LXIIL, p. 296). His proof depends on the evaluation of
the two integrals noticed as fundamental in Dirichlet's method, and
he shows that these still maintain their validity if in the neighbour-
hood of those points /3 for which f(Ji) oscillates/(/? + S) -f(fi) is less
in absolute value than B8° where a is positive and B a constant.
As an extension of Dirichlet's conditions the result is important,
but it is to be observed that there may be continuous functions not
satisfying this condition. f(fi) will be continuous near /? if, given
an arbitrarily small quantity e, a value h can be found such that for
all values of S less numerically than h, mod.{J\fi + o) -JXfi)} is
less than e. Lipschitz's condition implies that e = or<BAa or
h = or>aJ((jB), a relation not necessary for continuity. Again,
Lipschitz's results would hold if L Iog8{/(/? +8) -J{/3)} = 0 and

«=0
this is a form which Dini uses in his treatise Sopra la Serie di
Fourier, and is less restrictive than the other.

§ 16. I now come to Riemann's investigations as contained in
his great memoir JJber die Darslellbarkeit einer Function durch eine
trigonometrische Beihe. Though prepared for his Habilitationschrift
in 1854, ft was not published till after his death, appearing in
vol. XIII, of the Gottingen Abluindlungen, 1867; it is reprinted
in his collected works, pp. 213-253, with notes by Weber.

The memoir is divided into three main sections. The first
section, arts. 1-3, is historical and has been several times referred
to in the earlier part of this paper. The second, arts. 4-6, contains
a thorough investigation of the fundamental principles of definite
integrals, and in particular determines in what cases a function
has an integral. We see here the great extension of meaning
which the word function has gained in modern times, chiefly under
the guidance of Fourier, Dirichlet, and Biemann himself, and which
is essential to the modern function theory. The third section
completes the memoir and is devoted to the representation of a
function by a trigonometric series without special suppositions as
to the nature of the function. The problem proposed, for solution
is the following:—If a function can be represented by a trigono-
metric series, what follows respecting the march of the function,
respecting the change in its value for a continuous change in the
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argument ? The preceding investigations argued from the function
to the series; here the series is supposed given and the conclusion
is to the nature of the function.

Riemann denotes the series Ao + Aj 4- A2 + etc. + An + etc. where
A0 = |60, An = ansinnx + bncosnx by 12, and when it is convergent its
value is denoted by Jlx), so that f[x) only exists for those values of
x for which the series is convergent. He first supposes $2 to be such
that for every value of x A, becomes infinitely small when n becomes
infinitely great. If the series fl be integrated twice and the series
thus formed be denoted by F(a;) so that

F(x) = C + G'x + | A ^ - A, - etc. - ~An - etc.

he shows that F(x) is convergent for every value of x, is continuous,
and is integrable. He then proves—

(I.) That when the series fl converges, the expression

{F(x + a + 0) - F(x + a - /?) - F(x - a + /?) + F(x - a - /3)}/4a/3

converges to the value f(x) when a and /? become infinitely small,
but such that their ratio remains finite ;

(II.) That {F(z+2a) + F(a;-2a)-2F(a:)}/2a becomes infinitely
small with a • and

(III.) That the integral fj?\ F(x)cosfi(x - a)\(x)dx becomes in-
J 6

finitely small with l/fi, where b, c denote two arbitrary constants
(c > b), X.(x) a function which with its first derivative is continuous
between b and c and vanishes at the limits and whose second deriva-
tive has not an infinite number of maxima and minima.

By means of these theorems he proves that if a periodic function
f(x), of period 2TT, can be represented by a trigonometric series whose
terms become ultimately indefinitely small there must exist a con-
tinuous function F(x) such that

converges to the value J\x) when a, /? converge to zero, their ratio
remaining finite. Further, the integral of (III), subject to the
conditions there given, must become infinitely small with 1//*.

Conversely, when these conditions are satisfied, there exists a
trigonometric series whose terms become infinitely small and which
is such that, where it converges, it represents the function. For,
determining C, Ao so that F(x) - C'x - JAoK* has the period 2TT, and
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then developing this function by the Fourier method the term
An where

An = - — P [F(t) - C'l - $A,f}co&n(x - t)dt

will become infinitely small with Ijn and therefore the series
Ao + Aj + A2 + etc. will, whenever it converges, converge to f(x).
In Weber's note (Riemann's Works, p. 252) the proof for this
assertion about An is fully given.

Riemann then shows that the convergence of the series for a
definite value of x depends only on the behaviour of the function
in the neighbourhood of that value. A proof of this important
theorem, independent of Riemann's general theorems and due to
Schwarz, is given by Sachse, pp. 89 et seq.

It will have been observed that as yet Riemann has given no
criterion for determining when the coefficients of the series £2 will
in fact become infinitely small. In art. 10 he comes to this point,
and he there states that in many cases this question can not be
settled by consideration of their expression as definite integrals, but
must be determined in other ways. For the very important case in
which f(x) is integrable, finite throughout the range of the variable,
and (he should have added) has only a finite number of maxima and
minima, he proves that the coefficients do become infinitely small
and therefore that the series represents J\x) whenever it is
convergent.

In art. 11 he takes up the case in which the terms of ft do not
become ultimately indefinitely small for every value of x, and shows
that the series can converge only for those values of x which are
symmetrically placed with respect to those for which the integral

J b
{x - a)X(x)dx

does not become infinitely small with 1/p.
In art. 12 he considers the possibility of the function becoming

infinite, and gives as necessary and sufficient conditions that when
J\x) is infinite for x = a, tf{a +1) and tj{a -1) become infinitely small
for t = 0 and /{a +1) +f(a -1) be integrable up to t = 0, it being
understood that f(x) has not an infinite number of maxima and
minima.

In the last article, art. 13, he deals with functions having an
infinite number of maxima and minima. In this connection he first

11 Vol. 11
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shows by an example that there may be integrable functions having
an infinite number of maxima and minima which are yet not
capable of representation by a Fourier series. He here takes

J\x)~ —lsc*cos—I where 0 < v < | . He shows in the second place
ctx \ x /

by examples that there may be functions having a finite number
of maxima and minima and not integrable which nevertheless may
be represented by a trigonometric series (on these examples, see a
paper by Genocchi, Atti della R. Ace. di Torino, vol. X., 1875,
Intorno ad alcune serve).

Riemann has thus given a very general solution of the problem
of representation of functions by trigonometric series and his
theorems (I), (II), (III), are of fundamental importance in the
subsequent investigations of Heine, Cantor, and Du Bois-Reymond.
But other methods than those he gives must in many cases be
resorted to to determine when the series is convergent, and as a
matter of fact, Dirichlet's integrals seem indispensable for this
purpose.

§ 17. Hitherto I have said nothing of the contributions of
English writers to the theory of expansion in trigonometric series,
and I am sorry to add that the main reason for this is that their
contributions are so few. It is, I think, very unfortunate that
Poisson's treatment of the Fourier series has become the basis of
nearly every investigation in our text-books, because, as has been
pointed out, that method is radically faulty. Dirichlet's proof
seems to have been long unknown, for except in a note to a paper
of Stokes's, to be mentioned presently, I do not remember to have
seen it even mentioned till the publication of Todhunter's treatise
on Laplace's Functions. In his Integral Calculits, Todhunter makes
no mention whatever of it, except in the reference to his treatise on
Laplace's Functions, and even there it is only given as an alterna-
tive to the other. The reference he makes to Abel's theorem on
p. 170 of the treatise is curious as it tacitly assumes the whole thing
to be proved, for it assumes that 2(2M + l)wB is convergent.

De Morgan's Calculus is often referred to for the demonstration
of the Fourier series, but while it is quite true that De Morgan gives
many helpful illustrations and examples like other English writers
(Donkin, in particular, in his Acoustics), it cannot be said that he has
advanced beyond Poisson. I do not understand how such a careful
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writer as De Morgan could have allowed some of the statements he
makes to pass. Thus (p, 607) he says 1 +cos# + cos20+ =\
in every case unless 0 = 2irm when it is infinite, and he thinks
(p. 640) there is no reason to doubt that the infinite series
1 - 1 + 1 — etc. (namely, the value of that series for 8 = ir) represents
half a unit. This example might have been sufficient to show the
uncertainty of reasoning from the convergence of 1,a"un to that
of 2wn.

§ 18. Hamilton in his great memoir On Fluctuating Functions
{Trans. R.I.A., vol. XIX., 1842) has much that bears on the subject
of periodic series but no set proof of the Fourier series itself. His
integrals, however, include the integrals of Dirichlet as particular
cases, and the paper deserves more careful study than it usually
receives. A good restatement of Hamilton's principal results in
regard to these integrals will be found in Neumann's treatise,
Tiber die nach Kreis-Kugel-und Cylinder-Functionen fortsch.
Entvnckelungen, which contains a good statement of the Fourier
series and integrals for the case of verniinftige Functionen.

Stokes's memoir On the Critical Values of the Sums of Periodic
Series (Cainb. Phil. Trans., 1847, vol. VIII., p. 533, reprinted in
Collected Works, vol. I., p. 236) is important in the history of series,
for he there (section III.) draws attention to what has since been
called the uniform convergence of series, though this honour is
usually attributed to Seidel, whose paper (evidently quite indepen-
dent of Stokes's) did not appear till 1848. In the first section
Stokes discusses the expansion of a function in a series of sines and
also in a series of cosines, and adopts the method of Poisson as that
which he employed when he first began the investigations and which
best harmonised with the rest of the paper. He points out, however,
in a note to page 251 {Coll. Works) that had he been aware of
Dirichlet's memoir in Crelle and of Hamilton's paper at an earlier
stage of his work he would probably have adopted the method of
summing the first n terms of the series and then considering the
limit of n infinite. The investigation as carried out is a little
tedious but it forms a great advance on the way in which Poisson's
mode of treating the subject is usually conducted. There are many
things in the paper which make it still valuable, but as it is so easily
accessible I need do no more than refer to it.

The investigation given by Thomson and Tait in their Treatise

https://doi.org/10.1017/S001309150003131X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003131X


160

on Natural Philosophy, vol. I., pt. I., pp. 55-60 has much in common
with Poisson's proof and also with Oauchy's. It will be noticed that
in passing from their equation (11) to equation (12) the continuity
of the series up to and including the value e = 1 is assumed. But
as has been repeatedly stated this assumption is only legitimate if
the convergence of the series for e = 1 is otherwise known, so that
the same objection applies here as in Poisson's own proof. In
general the convergence of the series is only comparable with that
whose general term is A/w, and this result does not carry us far in
determining the convergence. The remark on p. 59 that "if exactly
the critical value is assigned to the independent variable, the series
cannot converge to any definite value " is an ex cathedra statement
which Dirichlet's proof shows to be quite incorrect.

§ 19. The course of the history of the Fourier series now takes a
new departure. In the preceding work it has been seen that under
certain circumstances the series will converge to the value of the
function, but in more recent times it has been recognised that mere
convergence ia not sufficient for most of the applications for which
the series is needed ; the convergence must be uniform. Suppose,
for instance, that we have ior/(x) the series

f(x) = £a0 + 2 (ancosnx + bnsinnx)
n—1

rP
and we wish to evaluate I f(x)<f>(x)dx by means of the series; then

J a
we can only safely assert the equation

rP rP rP
/(x)<f}(x)dx = ^ao\ <l>(x)dx + '2,\ (ancosnx + bnsin.nx)cj>(x)dx

Jo Jo J a
if the series be uniformly convergent. Unless then the series is to
be shorn of much of its value its uniform convergence must be
established.

Another difficulty that this conception of uniform convergency
raises is that the old proof for the uniqueness of the expansion
becomes invalid, as resting upon an integration the legitimacy of
which is not proved.

§ 20. The first to call attention to the points just mentioned was
Heine in a paper contributed to Crelle's Journal vol. LXXI. (1870)
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p. 353, Uber Irigonometrische Beilien. In § 2 he gives the definition
of uniform convergence, and it is interesting to note as illustrative
of the immense influence of Weierstrass, in spite of his comparatively-
few published papers, that Heine's attention seems to have been first
directed to the matter of uniform convergence by Weierstrass or one
of his pupils rather than by the writings of Seidel or Stokes. (As
regards Stokes, Reiff in his Geschichte (p. 207) seems to have been
the first to give him due credit in this connection.) He shows that
the Fourier series can not converge uniformly in the neighbourhood
of a point at which the function is discontinuous, and establishes the
following theorems :—

(1) The Fourier series for a finite function f(x) with a finite
number of maxima and minima converges uniformly if f(x) be
continuous for -7r = or<a; = or<7r and f( - TT) =J\T) ; in all other
cases it is only uniformly convergent in genera/, that is, it converges
uniformly for every interval which does not include a point of
discontinuity, these points being snpposed finite in number.
The points +TT are to be considered points of discontinuity if

(2) If a trigonometric series is in general uniformly convergent,
and is in general equal to zero ( -7r = or<a; = or<7r) then will every
co-efficient be zero. For the proof of this theorem he falls back on
Riemann's proposition regarding L{F(.r + a) + F(cc - a) - 2¥(x)}/a = 0.

o = 0
The proof of theorem (1) follows the lines of Dirichlet's proof, and
is reproduced in greater detail in his Kugelfunctionen, vol. I.,
pp. 53 el seq.

§ 21. Heine's second theorem shows that there cannot be two
different expansions of a function if these are to be (in general)
uniformly convergent. Cantor has proved the more general theorem
that even if uniform convergence be not demanded there can be but
one convergent expansion in a trigonometric series and it is that of
Fourier. Cantor's memoirs appear in Crelle's Journal, vol. LXXII.,
p. 130, Uber einen . . . Lehrsatz and p. 139 Beweis dass eine fur
jeden reelen Werth, etc., vol. LXXIII, p. 294, Notiz zv, dem Auf&alze .•
Beuceis, etc. In the first of these he proves that if two infinite series,
%, oa, etc., blt 62, etc , are such that L (an&innx + bnco&nx) = 0 where

x is real and lies in a given interval a, b, then La,, = 0, L6,, = 0 for
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n = oo. In the second memoir he takes the function F(x) of
Riemann, the conditions imposed on it being shown, by the pro-
position just stated, to be satisfied and forms the quotient
{F(a; + o)-2F(a;) + F(a!-a)}/a2. This quotient is zero for a = 0
and F(#) is continuous; and it now follows by a theorem due to
Schwarz that F(x) must be a linear function of x. (Of course, if
F(x) be supposed to have continuous first and second derivatives,
this theorem is evident). Giving to F(a;) a linear value and adopting
the notation of Riemann, we have

The right hand member being periodic, it follows that Ao = 0 = G1

and then by multiplying by sinna; or cosnx and integrating between
— 7T and ir (a process now allowable) it is seen that alt = 0 = bn for
every value of n. Hence a convergent trigonometric series can
represent zero only if every coefficient is zero, from which the unique-
ness of the trigonometric expansion at once follows.

In the third memoir quoted above he gives a simplified form of
the proof, due to Kronecker, which dispenses with the necessity of
the investigation of the first memoir. In an article, Uber die
Ausdehnung eines Salzes, etc., Math. Ann., vol V., Cantor extended
his theorem to functions having an infinite number of discontinuities,
provided these be distributed in a particular way, but, unfortunately,
I have not had access to this article.

§ 22. Du Bois-Reymond's name has occurred more than once
incidentally in this paper, and one memoir of his has now to be
briefly noticed. His contributions to the theory of series in general
and of the Fourier series in particular have been both numerous and
important, but I can hardly do more than give a brief notice of one
memoir and a statement of some interesting results of a second.
These two memoirs are very important, and they contain notices of
the work of predecessors and full references to his own papers
bearing on the subject; but a detailed analysis would carry me far
beyond the limits of this paper.

The first of these two memoirs appears in the Abluindlungen
der Bayerischen Academie, vol. XII. (1875) p. 117, Betceis dass die
Coeff, der trig. Reihe, etc. He there proves that the coefficients of

2the series f{x) = 2 (a^co&px + b^sinpx) have the values
0
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If If if
«o = 5- daAa)> aj>^—\ daf(a)cospa, bp = — \ da/(a)smpa,

j7rJ -w T J -ir x J -ir
whenever these integrals are finite and determinate. This proposi-
tion includes of course the theorem that f(x) can be expanded in
only one way in a Fourier series. In the proof Riemann's theorems
(I.) and (II.) and Schwarz's theorem, quoted above, play an
important part Putting

f t - . 1

F(x) = Irt^r2 - 2 —;(a cospa; + bsinpx) (1),
n l P

and supposing, in the first place, f{x) to be continuous, he seeks to
express F(x) by f(x). For every value of x between — ir and TT

If «*>(*) = F(x) - P da\a dfif(P) it follows that L Aa*/«s = 0

where A24> = $(x + «) - 2$(.r) + "J>(a; - e), and therefore #(x) = c0 + c^

f* fa

and F(*) = da I dpf(P) + co + ctx = F^x) + c0 + c^, suppose, (2).
J -7T J - IT

Multiplying (1) by cosna;, sinna; respectively and integrating between
- TT and TT we get

j F(a)cosnada = (-l)n—ia0-^an; F(a)rfa = -„ a0;
J -7T « W J -7T °

F(a)sinwac^a = J},,.
J - T »•

Replacing F(,r) by its value given by (2), integrating by parts and

!"" f
noticing that «„, bm rfa/(a)cosna, rfa/(a)sin«a vanish with

J -a- J -ir
l/;i he finds

{ ^ ^ 1 J'a/(a)(T - a),

= — t/o/(a), ffln = — rfa/(a)cosraa, K = —\ daf(a)s

https://doi.org/10.1017/S001309150003131X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003131X


164

Du Bois-Reymond now, instead of supposing /(x) to have
discontinuities, proceeds to consider the case where f{x) is sup-
posed only to be integrable. In this case L A24>/e2 is not, or at

(=0
least is not provable to be, generally zero. He proves, however,
that it follows from the integrability of f(x) that $(x) is a linear
function of x, but the proof is too long and complicated to be
reproduced here. When once this point is established the
reasoning is as before. He then considers the possibility of fix)
having infinite values

In the same volume of the Bayerischen Abhandlungen, Zweile
Abtheilung, pp. 1—102, Du Bois-Reymond has a long article entitled
Untersuchungen uber die Convergent und Divergent der Fourierschen
Darstellun-gs-Formeln. The memoir forms rather laborious reading,
but is, nevertheless, a very important contribution to the theory of
the Fourier series. I t is specially valuable on account of the

thorough discussion of the Dirichlet integral L da/(a) .

By considering special forms of / ( a ) he succeeds in showing that
there do exist continuous functions of x such that for special values
of x the Fourier series does not converge. In the last chapter of his
essay Sachse gives an example, due to Schwarz, of such a function;
the example is included in Du Bois-Reymond's more general ones,
but is simpler both in definition and in proof. In the Comples
Rendus, vol. X O I I , p 915 and p. 962, will be found a short
statement by Du Bois-Reymond himself of his investigations on

integrals of the form L I /(x)<j>(x, h)dx.
*—» J a

§ 23. The memoirs of Du Bois-Reymond may be said in a sense
to include all the results of previous writers and to push the inquiry
as to the nature of the functions which can be represented by a
Fourier series when the co-eflicients are determined as definite
integrals very near its utmost limits. In what follows I will
therefore refer chiefly to certain investigations on the Dirichlet
integral, and.to some articles which bear on the integrals and which
tend to simplify proofs and to clear up one or two doubtful points.
But before doing so I would specially recommend to any one who
wishes to have in a compact form a thorough and rigorous treat-
ment of the Fourier series in all its bearings the treatise by Ulisse
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Dini, entitled Serie di Fourier e altre Rappresentazioni analiliche
delle Funzioni di una Variabile Reale (Pisa, 1880). As the title
indicates, the book contains much more than the Fourier series
proper, and the whole treatment is carried through on a uniform
plan and with scrupulous accuracy of statement. A careful reading
of it is quite an education in some of the most delicate points of the
integral calculus and of the theory of functions.

In the appendix to the second volume of his Kugdfunction'.n
(Berlin, 1881) Heine returns to the discussion of the Fourier series,
and shows how, by a certain procedure, great simplification may be
introduced into the mode of presenting Dirichlet's proof, which is
apt to become rather tedious from the great number of different
cases that have to be considered. In particular, the simplification
aflfects the consideration of the uniform convergence of the series,
and throws light on certain difficulties raised by Schlafli

In some respects Heine's treatment in this appendix resembles
that suggested by Jordan in a paper Sur la Se'rie de Fourier
(Comptes Rendus, 1881, vol. XCII., p. 228); for the decomposition
of the function, as proposed by Heine, into the sum of functions
which are either not increasing or not decreasing, secures the same
end as Jordan obtains by his conception of fonctions a oscillation
limitee. In his Cours d' Analyse, vol. II. (first edition) Jordan
systematically uses the fonction a oscillation (variation; limitee in
discussing the integrals of Dirichlet and Du Bois-Reymond, and
thus simplifies the treatment considerably. In the paper just
mentioned he gives a new condition for F(;r), such that

is still true.
Conditions including that of Jordan are developed in an article

by 0. Holder, uber eine neue Bedingung, etc. (Berliner Berichte,
1885, p. 419)

In the Berliner Berichte for the same year (p. 641) Kronecker

has a memoir Uber die Dirichletsche Integral, which is particularly
noteworthy because of the variety of forms to which he reduces the

conditions for the validity of the equation L I f(x) dx = -^-f(0).

These conditions include those of Dirichlet, Lipschitz, Jordan, and
Holder. Kronecker thinks the variety of the results is due to his
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method of putting f(x) —fo(x) +/(0) s o that fo(x) vanishes with x
and using fo{x) in the integral.

I cannot conclude without calling attention to a remarkable
memoir by Weierstrass, JJber die analytische Darstellbarkeit soge-
nannter wiUkiirlicher Functionen einer reellen Veranderlichen
(Berliner Ber., 1885, p. 633 and p. 789). He there proves the
remarkable theorem that if f(x) be a single-valued, continuous, and
periodic function (x real), then, given an arbitrarily small positive
magnitude g, a finite Fourier series can be formed in a variety of
ways which is such that the difference between it and the function
f{x) does not exceed g for any value of x. Further, every such
function f(x) (period = 2c) may be represented as a sum whose
terms are finite Fourier series with the period 2c. This series
converges absolutely for every Value of x and uniformly in each
finite interval.

In the Comptes Rendus for 1891, (vol. CXIL, p. 183) Picard
has proved the first theorem by using Poisson's integral. (Sur la
representation approche'e drsfonctions).

In the foregoing paper there are some points in connection with
the Fourier series which I have not touched upon, and in particular
the differentiability of the series. I have also avoided all reference
to series other than the Fourier series strictly so called. To have
taken up these points would have added considerably to the length
of the paper, already perhaps too long. I would fain hope that no
important contribution to the theory of the Fourier series has been
altogether passed over, and that the paper may prove useful in
directing attention to a most interesting side of mathematical
theory.
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