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PARTIAL x-GEOMETRIES AND GENERALIZED 
HADAMARD MATRICES OVER GROUPS 

DAVID A. DRAKE 

I n t r o d u c t i o n . Section 1 of this paper contains all the work which deals 
exclusively with generalizations of Hadamard matrices. The non-existence 
theorem proven here (Theorem 1.10) generalizes a theorem of Hall and Paige 
[15] on the non-existence of complete mappings in certain groups. 

In Sections 2 and 3, we consider the duals of (Hanani) transversal designs; 
these dual structures, which we call (s, r, /x)-nets, are a natural generalization of 
the much studied (Bruck) nets which in turn are equivalent to sets of mutual ly 
orthogonal Latin squares. An (s, r} fx)-net^/ is a set of s2ix points together with r 
parallel classes of blocks. Each class consists of 5 blocks of equal cardinality. 
Two non-parallel blocks meet in precisely JU points. I t has been proven t ha t r is 
always less than or equal to (s2n ~~ l ) / ( s ~" 1)- When /x = \,<f is just a net of 
order s; and r is only known to achieve the upper bound when s2n is a prime 
power. In fact, for ju = 1, only one non-prime-power value of 5 is known for 
which r may be made larger than half the bound stated above: two groups 
totaling six mathematic ians have constructed a set of 5 Lat in squares of order 
12 giving rise to a net of order 12 which has 7 parallel classes. (See [11, pp. 479-
481] for details.) Using a result of Butson [6] on generalized Hadamard 
matrices, however, we are able to construct many (s, r, jii)-nets where r is nearly 
as large as the preceding bound even though sV is not a prime power. (See, e.g., 
Remark 3.8 (iii) below.) Unfortunately, s itself is a prime power in all of our 
examples. 

Generalized Hadamard matrices are also useful not only for the construction 
of the "uniform Klingenberg s t ruc tures" studied by Jungnickel and the present 
au thor in [14]. These structures are treated briefly in Section 4. 

The author is grateful to the referee for a careful reading of the first version 
of this paper and for suggestions concerning the reorganization of tha t version. 
In addition, the referee deserves credit for informing the author tha t generalized 
Hadamard matrices had already been examined in the l i terature. This led to the 
interesting discovery tha t Butson's construction could be used to create nearly 
"comple te" (s, r, /x)-nets with point sets of non-prime power cardinality. 

A bet ter title for this article would be "Generalized Hadamard matrices and 
their associated geometries." The actual title was originally chosen, because the 
s tudy of partial X-geometries (a generalization of the partial geometries of 
Bose [1]) had led to the author ' s discovery of the matrices. Though we have 
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reorganized the paper (at the referee's suggestion) to feature the matrices, we 
have retained the original title to forestall possible confusion: this article has 
already been referenced [9], and a preprint of version one has been circulated. 
Partial X-geometries are examined in Section 5. 

Section 1. Hadamard matrices over groups. 

Definition 1.1. Let G be a group of finite order s, H = [h^] be a square matr ix 
of order r whose entries are elements of G. Then H is said to be a Hadamard 
matrix, briefly a GH-matrix , (of type r/s) (over G) provided: 

(i) whenever i j£ j , the sequence {hixhjx~
l\ with 1 ^ x ^ r contains every 

element of G equally often; 
(ii) HT, the transpose of H, has proper ty (i). 

Definition 1.2. Let Cs be the multiplicative group of all complex sth roots of 
unity. A square matr ix H = [h ij] of order r with elements from Cs is said to be a 
But son Hadamard matrix, briefly, a BH -matrix, (of type r/s) (over Cs) if 
HH* = rl. (Here H* denotes the conjugate transpose of H.) 

Remarks 1.3. (i) In the definition of a BH-matr ix , the condition HH* = rl is 
equivalent to the requirement t ha t H*H = rl. 

(ii) Every GH-matr ix over Cs is a BH-mat r ix over Cs. 
(iii) If ^ is a prime, every BH-matr ix over Cs (except for the matr ix [1] of 

order 1) is a GH-mat r ix over Cs. 
(iv) H s = pt where p is a prime and / > 1, then there exists a BH-mat r ix of 

order p over Cs, bu t certainly no GH-mat r ix of order p over Cs. 

Proof. The t ru th of assertions (i) and (ii) is clear. T o prove (iii), let 5 be a 
prime, H = [hif\ be a BH-mat r ix of order r over Cs. Then ^T

x=,ihixhjx~
l = 0 

when i ^ j . Now every term hixhjx~
l is <jok{x) where co denotes a primit ive sth root 

of uni ty and 0 ^ k(x) < 5. Combining terms, one obtains ^Co""1^*0* = 0, hence 
lLo~2(ak — as-i)œ

k = 0. Since the {œk: 0 ^ k è s — 2} is an independent set 
of vectors for Q(co) over Q, every ak = as-.i. Then every cok mus t occur equally 
often in the sequence of products hixhjX~l. 

The existence of a BH-mat r ix of prime order p over Cv has long been known. 
(See, e.g., [6, footnote on p. 894 or T h m . 3.3] or [18, T h m . 9.5] where the 
example H = [ooi+i] is given, co being a primitive pth root of uni ty . Clearly, H is 
also a BH-mat r ix over any Cs where s is any multiple of p. 

T H E O R E M 1.4. (Butson) (See [6, T h m . 3.5] or [21, Cor. 9.7]) If p is a prime 
and m and k are non-negative integers with m ^ k, then there exists a BH-matrix H 
of order 2mpk over Cp. In view of 1.3 (iii), H is also a GH-matrix over Cp unless 
k = 0. 

PROPOSITION 1.5. There is a symmetric GH-matrix of type 1 over every finite 
elementary abelian group. 

https://doi.org/10.4153/CJM-1979-062-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-062-1


PARTIAL X-GEOMETRIES 619 

Proof. If G is the elementary abelian group of order q, we may regard G as the 
additive group of the field F = GF(q). A multiplication table for F is a GH-
matrix of type 1 over G. 

PROPOSITION 1.6. If H and H' are GH-matrices of orders r and r', resp., defined 
over an abelian group G, then the Kronecker product H X H' is a GH-matrix of 
order rr' over G. 

LEMMA 1.7. Applying row and column permutations to a GH-matrix H over a 
group G always yields a GH-matrix over G. Multiplying the elements of any row or 
column of H by a fixed element from the center of G also yields a GH-matrix over G. 
In particular, if G is abelian, a sequence of such multiplications will always 
produce a GH-matrix over G in which every entry in the first row and column is the 
identity element of G. 

PROPOSITION 1.8. Let (/>: G —• G''be a group epimorphism, H = [hi3] be a GH-
matrix over G. Then H' = [hij

<t>] is a GH -matrix over G. 

Proposition 1.8 may be used both to construct GH-matrices and to obtain 
non-existence results. As an example of the former of these two uses, we now 
obtain 

COROLLARY 1.9. Let G be an elementary abelian group of order pi, p a prime, j 
be an arbitrary non-negative integer. Then there exists a GH-matrix H of type pj 

over G. 

Proof. By Proposition 1.5, there is a GH-matrix K of type 1 over the ele
mentary abelian group of order pi+j. By Proposition 1.8, K may be modified to 
yield the desired matrix H. 

We next apply Proposition 1.8 to obtain a non-existence theorem. The first 
paragraph of the proof is due to Hall and Paige [15, proof of Theorem 5]. The 
rest of the proof is adapted from an argument due to the present author 
[12, proof of Corollary 1.4]. 

THEOREM 1.10. Let G be a finite group of even order with a cyclic Sylow 2-sub-
group T. Let s = \G\, t be an odd integer. Then there is no (3 X st)-matrix H with 
entries from G which satisfies axiom (i) of Definition 1.1 ; a. fort., no GH-matrix of 
type t over G. 

Proof. The order of the automorphism group of T, hence also the order of 
every automorphism of T, is a power of 2. Then, in G, T is in the center of its 
normalizer. By a theorem of Burnside (See, e.g., [22, p. 169]), T is a homo-
morphic image of G. 

Let 4>: G —> T be an epimorphism. Assume the existence of a (3 X s t)-matrix 
H = [hfj] with entries from G which satisfies axiom (i). Then H' = [&*/] is a 
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(3 X ez;)-matrix over T which satisfies axiom (i): here e denotes \T\, and v is an 
odd integer. 

Let T = (b). For (i,j) G Z X Z, define f(i,j) to be the number of columns 
of 77' which begin (z, bh, bjz), z a rbi t rary . Then for a rb i t ra ry i, j , k, and 
x = 0, 1, . . . , e - 1, 

» = T,xf(x,j) = Hxj'd, x) = E J ( ^ » * + *)• 

I t follows tha t 

e—1 e—1 e—1 e—1 e e—1 

X) i Z) /(*»./) - Z * Z /& x) + X (* - *) 2 /(*»x + k) = 
j=0 x=0 i=0 x=0 k=l x=0 

(e- l)e»/2= £ £ «•/(<*.&)• 
a=0 ft=a+l 

Then e must divide (e — 1 ) ^ / 2 ; but , since e is a power of 2 and z; is odd, this is 
impossible. 

COROLLARY 1.11. (Hall, Paige [15, Theorem 5]) If G is a finite group of even 

order with a cyclic Sylow 2-subgroup, then G has no complete mapping. 

Proof. Assume tha t 6: G —» G is a complete mapping; i.e., a bijection such 
tha t </>: x —» xxe is also a bijection. Then , if G = {gi, . . . , gs}, 

r i . . . i I 
g i • • • g* 

Ltei*)-1 •. • (g,*)-1 J 
is a (3 X s)-matrix over G which satisfies axiom (i) of Definition 1.1. 

S e c t i o n 2. (s, r, /x)-nets. In this section, we shall consider incidence struc
tures whose duals have been studied under the names transversal designs and 
semi-regular group divisible designs. We shall see t ha t Gi l -mat r ices may be used 
to construct these u(s, r, /z)-nets." 

Mere and throughout this paper, all incidence s t ructures considered will be 
tacitly assumed to be finite. A la Dembowski [10], we shall write [pi, . . . , pn] to 
denote the number of blocks t ha t contain the point set {pi,... ,pn), [G\,... , Gn] 
for the dual notion. A parallelism on an incidence s t ructure is an equivalence 
relation on the set of blocks such tha t each equivalence class (called a parallel 
class) part i t ions the point set. 

Definition 2.1. L e t ^ / b e a n incidence s t ructure . Define J5|| G for blocks B, G of 
J? to mean tha t either B — G or [B, G] = 0. T h e n ^ / is called a net or an (s, r, n)-
net provided: 

(i) || is a parallelism; 
(ii) GtfH implies [G, H] = M; 
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(iii) there is a t least one point, some parallel class has s ^ 2 blocks, and 
there are r ^ 3 parallel classes. 

J? is called an affine resolvable partial plane (briefly, an A R P P or an (s, r, /x)-
A R P P ) if, in addition, there exists an integer X such tha t 

(iv) [p, q] = 0 or X whenever p T6- q. 
One calls 5 the order, r the degree, /x the type of f ; in the case of A R P P ' s , X is 
called the index of f . 

Remark 2.2. The term (s, r, /x)-net was introduced by Drake and Jungnickel 
in [14], since these structures are obviously generalizations of the well known 
nets of Bruck [5]: nets in the sense of Bruck are simply the (s, r, l ) -ne ts . The 
duals of (s, r, /x)-nets have been called transversal designs by Hanani [16]. These 
dual s tructures are also special cases of the semi-regular group divisible 
designs of Bose and Connor [3]. See also [7], [10]. 

PROPOSITION 2.3. (Drake, Jungnickel [14, Prop. 5.2, Cor. 5.4]) Let J be an 

(s, r, \x)-net. Then J^ has v = $V points, b = sr blocks, s blocks in every parallel 

class, and k — su points per block. If f is an A R P P , (X — l)(s/x — 1) = 
( r - 1 ) ( M - 1 ) . 

As a consequence of Proposition 2.3, the t ru th of each of the following condi
tions for an A R P P implies the t ru th of all: r = k, b = v, X = \x (except t ha t 
X = n = 1 yields no further equalities). Henceforth, call an A R P P quasi-
symmetric if X = /z; symmetric if r = k. Call an (s, r, /JL)-net ^f quasi-symmetric 
if it satisfies: [p, q] = 0 or /x whenever p ^ q. If the dual of ,/ is also an 
(s, r, /i)-net with the same invariants s, r, n as f , we shall say t ha t f is a 
symmetric (s, r, \i)-net. 

LEMMA 2.4. An incidence structure J? is a quasi-symmetric (s, r, /x)-ARPP if 
and only if it is a quasi-symmetric (s, r, n)-net.J? is a symmetric (s, r, /x)-ARPP 
if and only if it is a symmetric (s, r, n)-net. 

Proof. The first assertion is clearly true. Then l e t ^ be a symmetric (s, r, JJL)-
A R P P , Jd be the dual of J . Clearly, Jd satisfies axioms (ii) and (iv) of 
Definition 2.1 (with X = \x). Let [p, q] = 0 = [q, m] for points p, q, m of ^ . 
Assume p ^ m and [p, m] > 0. We take G to be a block containing both p and 
m. Counting flags (x, Y) with x G G and q G Y, one sees t ha t q is joined to 
exactly k — 1 points of G, hence to a t least one of p, m. From the contradiction, 
we conclude tha t || is an equivalence relation on the blocks oiJ^d. Now let G be 
any block of ^ , {pa\ be a complete parallel class of points of ^ . Each pa lies on 
a different one of the 5 blocks which are parallel to G. Fur ther , a given pa is 
joined to r(k — 1)/X = s(sn — I) = v — s points, so \{pa}\ = s. Then every 
block which is parallel to G (including G itself) contains exactly one point of 
{pa}- T h u s cf

d satisfies axioms (i) and (iii). The t ru th of the converse is 
obvious. 
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The construction which yields the following result was discovered by Bose 
and Bush [2, Theorem 3] in the setting of orthogonal arrays. 

PROPOSITION 2.5. (Bose, Bush) The existence of a GH-matrix H oj order r §: 3 
over an abelian group G of order s ^ 1 implies the existence of a symmetric 
(s, r, rIs)-net. 

Proof. Let the matrix A — [atj\ be a multiplication table for the abelian 
group G. For each x £ G, obtain a matrix Hx from H by replacing every x in H 
by 1 and all other entries by 0. One now defines M by setting 

M = [#<„,.,.)]. 

Then M is the incidence matrix of a symmetric (s, r, r/s)-net. 

PROPOSITION 2.6. For X > I, a symmetric (2, 2X, \)-net J? exists if and only if 
there is an ordinary Hadamard matrix H of order 2X. 

Proof. That the existence of H implies the existence of </ is a special case of 
Proposition 2.5. Assume then the existence of f . By Proposition 2.3, 
v = b = 4:\; r = k = 2\; and each parallel class of blocks of f consists of 
two blocks. The points are also partitioned into ''parallel classes" of two 
points each. Now let M be an incidence matrix f o r ^ , so arranged that the 
first 2X rows represent one point from each parallel pair of points and the first 
2X columns represent one block from each parallel pair of blocks. Form a Hada
mard matrix H oi order 2X from the upper left quarter of M by replacing each 0 
by - 1 . 

Section 3. Size of the replication numbers of (s, r, /x)-nets. In this 
section, we shall see that the existence of (s, r, ju)-nets is equivalent to the 
existence of orthogonal arrays. This connection will allow us to apply a 
theorem of Bose and Bush to obtain a bound on the size of r in terms of 5 and /z. 
We shall then apply the results of Section 1 on the existence of GH-matrices to 
obtain (s, r, jii)-nets for which r is equal or nearly equal to the Bose-Bush 
bound. 

Definition 3.1. An r X N matrix A with entries from a set of s symbols is 
called an orthogonal array of strength 2, size N, r constraints and s levels if each 
2 X N submatrix contains every possible 2 X 1 column vector with frequency 
ix. (Clearly, iV = s2n.) More briefly, A is called an (TV, r, s, 2)-array. 

PROPOSITION 3.2. The existence of an (S2IJL, r, s, 2)-array A with r ^ 3, s ^ 2 is 
equivalent to the existence of an (s, r, [x)-net ^ . 

Proof. One identifies the columns of A with the points of J?, the rows of A 
with the parallel classes of blocks of ^ . 

The following popular result has been proven independently by Plackett and 
Burman [18] and by Manani [16, Lemma 5]. See also Bose-Bush [2, pp. 508-512] 
and Drake-Jungnickel [14, Prop. 5.3] for additional comments and proofs. 
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PROPOSITION 3.3. In every (s, r, y)-net, 

r < ( 5 V - l)/(s~ 1) =f(s,n). 

In the setting of orthogonal arrays, Bose and Bush [2] have obtained an 
improvement of the preceding proposition. Applying Proposition 3.2, we may 
restate their result as follows: 

THEOREM 3.4. (Bose, Bush) Assume the existence of an (s, r, \x)-net such that 
s — 1 does not divide /x — 1. Define a, b by requiring that 

M _ 1 = a(s - 1) + b, 0 < b < s - 1. 

Writing [x] to denote the greatest integer not exceeding x, one has 

r gg ( s , / i ) = [ ( s V - D / ( s - 1)] - M - 1 

where 

26 = (1 + ±s(s - 1 - b))1'2 - (2s - 2b - 1). 

An incidence structure is said to be resolvable if it possesses a parallelism. The 
following result was proved by Hanani [16, proof of Lemma 6] and by Bose and 
Bush [2, second part of Theorem 3 and following comments]. 

PROPOSITION 3.5. (Bose, Bush, Hanani) Let J be an (s, r, n)-net for which Jd 

is resolvable. Then an additional parallel class of blocks can be adjoined to the 
block set of J? which will "extend" J? to an (s, r + 1, \x)-net. 

For r-nets of order s, it is well known that r can achieve the bound f(s, 1) = 
s -\- 1 whenever 5 is a prime power. The existence of (s + l)-nets of order 5 
where 5 is not a prime power is still an open question. To date, however, there 
is only one non-prime-power value of 5 for which, an r-net of order 5 with 
r ^ 5/2 is known to exist; namely, the 7-net of order 12 mentioned in the 
Introduction. In contrast to this situation for /x = 1, we now obtain infinitely 
many symmetric transversal designs with r > f(s, /x)/2, /x > 1 where s2/x is 
not a prime power. 

PROPOSITION 3.6. Let p be a prime number; m, k be non-negative integers with 
k ^ max(l ,m). Then there exists a symmetric (s,r, ix)-net with s = p, r = 2mpk, 
M = 2mpk~l (unless r = 2). 

Proof. Apply Theorem 1.4 and Proposition 2.5. 

PROPOSITION 3.7. Let p be a prime number; i,j be integers with i ^ 1, 7 ^ 0 . 
Then there exists a symmetric (s, r, \x)-net with s = p\ r = pi+j, ix = pj. 

Proof. Apply Corollary 1.9 and Proposition 2.5. 

Remarks 3.8. (i) The symmetric (s, r, ju)-nets of Proposition 3.6 have 
r > f(s, 11) (p - l)/p; those of Proposition 3.7 have r > f(s, ix)(pl — l)/pf-

(ii) The application of Proposition 3.5 enables one to increase the size of r 
by 1 in Propositions 3.6 and 3.7 when the adjective "symmetric" is omitted. 
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(iii) Applying Proposit ions 3.6 and 3.5 with m = k = l,p>2, one obtains 
the existence of (s, r, /x)-nets with s = p, r = 2p + 1, \x = 2. Here r 
coincides with the Bose-Bush bound g(s, /x) of Theorem 3.4. 

(iv) Proposition 3.7 improves a result of Hanan i [16, proof of Theorem 2] ; 
Hanani obtained the same conclusion under the addit ional assumption t h a t i is 
a multiple of j . 

S e c t i o n 4. U n i f o r m K l i n g e n b e r g o s t r u c t u r e s . In this brief section, we 
apply the preceding results to the construction of ' 'uniform o i£ - s t ruc tu res . " 
The uninterested reader may go directly to Section 5 with no loss of compre
hension. T h e s tudy of c-X-structures was init iated by Jungnickel and Drake in 
[13] and [14]. W e refer the reader to these papers for the appropr ia te definitions 
and to [14, Prop. 6.19], in part icular, for a proof of the following result. 

PROPOSITION 4 .1 . Let IT be a connected incidence structure with at least 3 
points per block and dually, c and t be integers with 1 9^ c 9^ t. Then there exists a 
c-K-structure IT "over" IT which has parameter t and is uniform of index X if and 
only if: TLf is a tactical configuration with k = r = [(X — 1) (t — \)/{c — 1)] + 1, 
and there exists a (t/c, r, c ) -ARPP of index X. 

By definition, a symmetr ic (s, r, /x)-net is an (s, r, /x)-ARPP of index /x. T o 
obtain existence results for c-i£-structures, one may thus combine Proposit ion 
4.1 either with 2.6 and the known existence results for H a d a m a r d matr ices 
(see, e.g., [21]) or with 2.5 in conjunction with 1.4 and 1.9. We make the first of 
these two connections in the following corollary which is an immedia te con
sequence of 4.1 and 2.6. 

COROLLARY 4.2. Let IT be a connected incidence structure with at least 3 points 
per block and dually. Then, for c ^ 1, there exists a c-K-structure II over IT with 
parameter t = 2c which is uniform of index c if and only if (i) IT is a tactical 
configuration with k = r = 2c and (ii) there exists a Hadamard matrix of order 2c. 

S e c t i o n 5. Part ia l X-geometr ies . Par t ia l X-geometries are a generalization 
of the partial geometries of Bose [1] and a subclass of the part ial geometric 
designs of Bose, Shr ikhande and Singhi [4]. W e shall see t h a t all part ial X-
geometries with X ^ 1 are " symmet r i c . " A symmetr ic part ial X-geometry 
whose index of parallelism is 0 is simply a symmetr ic block design. Cameron 
and Drake [9] have investigated par t ia l X-geometries of large index. In this 
final section, we shall prove t h a t symmetr ic part ial X-geometries of index 1 are 
jus t the symmetr ic (s, r, X)-nets. In addit ion, we shall obtain a character izat ion 
of the class of all symmetr ic partial X-geometries in terms of their incidence 
graphs. 

Definition 5.1. For X > 0, a partial \-geometry (with nexus e > 0) is an 
incidence s t ructure with v points and b blocks which satisfies: 

(0 [PJ q] = 0 or X for each point pair (p, q) with p ^ q; 
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(ii) [G, H] = 0 or X for each block pair (G, H) with G 7e H; 

(iii) for each non-incident point-block pair (p, G), there exist precisely e 
blocks X with p 6 X and [X, G] ^ 0; 

(iv) X < [£] < & for every p, and X < [G] < v for every G; if X = 1, we also 
assume the existence of integers k, r such tha t [G] = k and ["£>] = r for all C7, p. 

Part ial 1-geometries were first studied by Bose who called them simply 
"par t ia l geometries." He proved the following result in the special case t ha t 
X = 1 [ l , p . 398]: 

LEMMA 5.2. Let^f be a partial \-geometry. Then there are integers k, r such that 
[G] = k and [p] = r for all G, p. Further, 

v = [k(r - l)(k - X)/eX] + k, 

b = [r(r - l)(fe - X)/eX] + r. 

The t ru th of the preceding lemma for X ^ 1 follows immediately from the 
following result: 

LEMMA 5.3. Let </ be a partial X-geometry, X ^ 1. Then 
(i) b = v; 

(ii) [p] = [G] = k for some fixed positive integer k for all p and all G; 
(iii) v = [k(k - l)(fe - X)/eX] + k. 

Proof. First, observe t ha t the non-triviality assumptions assure t h a t f is 
connected; i.e., t ha t every point and block of J* is joined to every other point 
and block by a sequence of flags. Now, for a given flag (p, G), let k denote [G], r 
denote [p]. Count flags (x, Y) such tha t x £ G — {p} and p £ F ^ G to 
obtain (k — 1)(X — 1) = (r — 1)(X — 1), hence k = r. The desired general 
result follows from the connectivity of J?. To see tha t b = v, one counts all 
flags of f . To compute v, one fixes a block G and counts the double flags 
(x, y, Z) with x in G and y not in G. 

Call a partial X-geometry symmetric if r = k. Clearly, the incidence graph ^ 
of a symmetr ic partial X - g e o m e t r y ^ is bipart i te and regular with valence k. If 
e = k, & has diameter 3 ; if e < k, & has diameter 4. Cameron has proved 
[8, p. 90] t ha t a regular bipart i te graph is "metrically regular" (for a definition, 
see [8, p. 41]) if and only if the following condition is satisfied: for every 
vertex pair (x, y) a t distance i, 1 < i < diam &, the number hi of vertices a t 
distance 1 from x and distance i — 1 from y depends only upon i. Clearly, 
h2 = X and A3 = e for the incidence graph & of any partial X-geometry f . 
Given ^ , y and its dual can be easily recaptured. We have proved: 

PROPOSITION 5.4. Let J? be an incidence structure with incidence graph ^ . 
Then J? is a symmetric partial X-geometry on v points with block size k and nexus e 
if and only if & is a metrically regular graph on 2v vertices with diameter 3 or 4 
and valence k < v such that k > h2 = X > 0, hz = e > 0. 
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By axiom (when X = 1) or L e m m a 5.3 (when \ ^ 1), there is an integer r 
such t h a t \p] = r for every point p of a part ial X - g e o m e t r y ^ . Then , for each 
given non-flag (p, G), there are precisely I = r — e blocks X with p ^ X and 
[X, G] = 0. We call I the index (of parallelism) oi J?. In cont ras t to the in
vestigations of Cameron and Drake cited above, we are here concerned with 
part ial X-geometries which have small index; namely, 1=1. 

PROPOSITION 5.5. An incidence structure J is a partial X-geometry with index 1, 
replication number r ^ 3 and block size k if and only if J^ is a quasi-symmetric 
(k/X, r, X)-net. If J? is a partial \-geometry of index 1, then J? is symmetric as a 
partial X-geometry if and only if it is symmetric as an (s, r, id)-net. 

Proof. Assume first t h a t , / is a part ial X-geometry of index 1 with r ^ 3. By 
the comments of the preceding paragraph, the relation || of Definition 2.1 is a 
parallelism f o r ^ . Using Lemma 5.2 with e = r — 1, one obtains (v — k) (r — 1)X = 
k(r — l)(k — X), hence vX = k2. W e now define s by demanding t h a t k = sX, 
hence t ha t v = s2X. Clearly then, every parallel class consists of 5 = k/X 
blocks, a n d ^ is a quasi-symmetric (k/X, r, X)-net. Conversely, assume t h a t ^ 
is a quasi-symmetric (k/X, r, X)-net, and s e t s = k/X. T h e t ru th of axioms (i)-( i i i) 
of Definition 5.1 (with e = r — 1) is clear. T h e existence of integers b, v, k, r 
such t ha t [p] = r for all p, [G] = k for all G, r < b, X < k < v follows from 
Proposition 2.3. Since k ^ k/X = s ^ 2, there is a t least one pair of points 
joined by X blocks. Then r ^ X. If r = X, all blocks through a given point 
would be incident with the same set of k points . Then one would have X = k, 
a contradict ion. 

T h e t ru th of the second assertion follows from L e m m a 2.4. 

Added in proof. Since the submission of the present paper, three related 
articles have been wri t ten. In [17] D. Jungnickel simplifies the proof of the 
Butson theorem (Theorem 1.4 above) , in the process generalizing it to t rea t 
Gi^-matrices over e lementary abelian groups. He also proves t h a t the two 
axioms for Gi^-matrices are equivalent to each other . Using ideas due to D. 
Rajkundl ia [19], J. Seberry proves [20] the existence of GH-matnces of order 
q(q — 1) over the e lementary abelian group of order q whenever q — 1 is a 
prime power. 
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