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fields of positive characteristic

Fabien Trihan and Christian Wuthrich

Abstract

We prove the p-parity conjecture for elliptic curves over global fields of characteristic
p > 3. We also present partial results on the `-parity conjecture for primes ` 6= p.

1. Introduction

Let K be a global field and let E be an elliptic curve defined over K. The conjecture of Birch
and Swinnerton-Dyer asserts that the rank of the Mordell–Weil group E(K) is equal to the
order of vanishing of the Hasse–Weil L-function L(E/K, s) as s= 1. A weaker question is to
know whether these two integers have at least the same parity. This seems more approachable
because the parity of the order of vanishing on the analytic side can by expressed in more
algebraic terms through local root numbers; at least when the L-function is known to have an
analytic continuation. Let w(E/K) ∈ {±1} be the global root number of E over K which is
equal to the product of local root numbers

∏
v w(E/Kv) as v runs over all places in K. The local

terms w(E/Kv) were defined by Deligne without reference to the L-function, see [Roh94] for the
definition. Hence we can formulate the following conjecture.

Full parity conjecture. We have (−1)rank E(K) = w(E/K).

This conjecture is unproven except for specific cases. We will focus on the following easier
question. Let X(E/K) be the Tate–Shafarevich group defined as the kernel of the localisation
maps H1(K, E)→

∏
v H

1(Kv, E) in Galois cohomology. For a prime `, the `-primary Selmer
group Sel`∞(E/K) fits into an exact sequence

0→ E(K)⊗ Q`/Z`
→ Sel`∞(E/K)→X(E/K)[`∞]→ 0. (1)

If the characteristic of K is prime to `, we may define it as the preimage of X(E/K)[`∞] under
the map H1(K, E[`∞])→H1(K, E)[`∞]. If the characteristic is equal to `, then one should use
flat instead of Galois cohomology, see § 4 for definitions. The theorem of Mordell–Weil shows
that the dual of Sel`∞(E/K) is a finitely generated Z`-module, whose rank we will denote by r`.
In particular, (1) is a short exact sequence of finite cotype Zl-modules for any prime `. Since
it is conjectured that rank E(K) = r`, we can make the following conjecture, which seems more
approachable as it links two algebraically defined terms.

`-parity Conjecture. Let ` be a prime. We have (−1)r` = w(E/K).
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These conjectures have attracted much attention in recent years and the `-parity conjecture is
now known in many cases, in particular when the ground field is K = Q by work of the Dokchitser
brothers [Dok05, DD08, DD09a, DD09b, DD10], Kim [Kim07], Mazur and Rubin [MR07],
Nekovář [Nek01, Nek09, Nek10], Coates et al. [CFKS10] and others.

In this article, we restrict our attention to the case of positive characteristic. So, we suppose
from now on that K is a global field of characteristic p > 3 with constant field Fq. The main
result of this article is the following theorem.

Theorem 1. The p-parity conjecture holds for any elliptic curve E over a global field K of
characteristic p > 3.

The proof consists of two steps: first a local calculation linking the local root number to local
data on the Frobenius isogeny on E, carried out in § 3; followed by the use of global duality in § 5.
Luckily, we do not have to treat all individual cases of bad reduction for the local considerations,
since we are able to use a theorem of Ulmer [Ulm05] to reduce to the semistable case. This is
done in § 2.

The proof follows closely the arguments in [DD08] and Fisher’s appendix of [Dok05]. We
repeat it here in details, both for completeness and to make the reader aware of a few subtleties;
for instance, it is to note that the Frobenius isogeny F and its dual V do not play an
interchangeable role.

The hardest part concerns the global duality. The relevant dualities that we need for our
conclusion have never appeared in the literature and we are forced to prove them. We think that
it is worthwhile to include in § 8 a general formula for the parity of the corank of the p-primary
Selmer group and a local formula for the root number in § 9.

Originally, global dualities have appeared in Cassels’ work [Cas65] on the invariance under
isogenies of the conjecture of Birch and Swinnerton-Dyer. It should be noted that one could use
our duality statements to prove this in the case of characteristic p > 0, but there is no need for
this. In fact it is known by [KT03] that the conjecture of Birch and Swinnerton-Dyer is equivalent
to the finiteness of the Tate–Shafarevich group; and it is clear that the latter question is invariant
under isogeny.

The second main result of this paper is a proof of the `-parity conjecture when ` 6= p in some
cases. Write µ` for the `th roots of unity.

Theorem 2. Let E/K be an elliptic curve and let ` > 2 be a prime different from p. Furthermore
assume that both the following hold.

(i) The degree a= [K(µ`) :K] is even.

(ii) The analytic rank of E does not grow by more than one in the constant quadratic extension
K · Fq2/K.

Then the `-parity conjecture holds for E/K.

The proof will be presented in § 10. Its main ingredients are the non-vanishing results of Ulmer
in [Ulm05] and the techniques for proving the parity conjectures from representation theoretic
considerations as explained in [DD09c, DD10].

Although the conditions will be fulfilled for many curves, the methods in this paper fail to
give a complete proof of the `-parity conjecture. See the remarks at the beginning of § 10 and
the more detailed § 11 for an explanation of why we are not able to extend the proof any further.
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1.1 Notations
The constant field of the global field K of characteristic p > 3 is the finite field Fq for some power q
of p. Let C be a smooth, geometrically connected, projective curve over Fq with function field K.
Let E/K be an elliptic curve, which we will assume to be non-isotrivial (i.e. the j-invariant of
E is transcendental over Fq). We fix a Weierstrass equation

E : y2 = x3 +Ax+B (2)

with A and B in K and the corresponding invariant differential ω = dx/2y. By F : E→ E′ we
denote the Frobenius isogeny of degree p whose dual V : E′→ E is the Verschiebung.

If f :A→B is a homomorphism of abelian groups, we write

z(f) =
#coker(f)
#ker(f)

provided that the kernel and the cokernel of f are finite. For any abelian group (or group scheme)
A and integer m, we denote by A[m] the m-torsion part of it; and, for any prime `, the `-primary
part will be denoted by A[`∞].

The Pontryagin dual of an abelian group A is written A∨. If the Pontryagin dual of A is a
finitely generated Z`-module for some prime `, then we write div(A) for its maximal divisible
subgroup and let Adiv denote the quotient of A by div(A).

2. Reduction to the semistable case

Before, we start we should mention that the conjecture of Birch and Swinnerton-Dyer is known
for isotrivial curves E by the work of Milne [Mil68]. Hence for the rest of the paper we will
assume that E is not isotrivial as otherwise the parity conjectures are known. In particular, it
follows from this assumption that E/K is ordinary. The parity conjecture is also known in the
following cases.

Proposition 3. Let A/K be an abelian variety over a function field of characteristic p > 0 and
let ` be a prime (`= p is allowed). The analytic rank of A/K is always greater or equal to the
`-corank of the Selmer group. If the analytic rank of A/K is zero, then the conjecture of Birch
and Swinnerton-Dyer holds. If the analytic rank is one then it coincides with the Z`-corank of
the `-primary Selmer group.

Note that if we restrict ourselves to elliptic curves and to the case ` 6= p, then this result could
already be deduced from the work of Artin and Tate [Tat95].

Proof. By [KT03, 3.2], the Hasse–Weil L-function of A/K can be expressed as an alternating
product of characteristic polynomials of some operators φi` acting on a finite-dimensional
Q`-vector space H i

Q`
, with i= 0, 1, 2. Then by [KT03, 3.5.1], the order at s= 1 of the Hasse–Weil

L-function can be interpreted as the multiplicity of the eigenvalue 1 for the operator φ1
` on H1

Q`
.

Following the notations of 3.5 in [KT03], let I3,` denote the part of H1
Q`

on which the operator
id−φ1

` acts nilpotently and let I2,` denote the kernel of id−φ1
` , such that we have the inclusions,

I2,` ⊂ I3,` ⊂H1
Q`
.

Since by [KT03, 3.5.1] the operator id−φi` is an isomorphism for i= 0, 2, it follows that the
analytic rank of A/K is equal to the dimension of I3,`. On the other hand, it follows from [KT03,
3.5.5 and 3.5.6] that the `-corank of the Selmer group of A/K is the dimension of I2,` so that we
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deduce that the analytic rank of A/K is always greater or equal to the `-corank of the Selmer
group of A/K. If the analytic rank of A/K is trivial, so is the dimension of I3,`. It implies that
the dimension of I2,` is zero and by [KT03, 3.5.6], we conclude that the Mordell–Weil group is
also of rank zero. We then conclude the proof of the assertion thanks to the main result 1.8
of [KT03]. If the analytic rank of A/K is one, then φ1

` acts like the identity on I3,` and therefore
I2,` = I3,` and the second assertion immediately follows. 2

The following proposition will be used at several places to reduce the conjecture to easier
situations.

Proposition 4. Let E/K be a non-isotrivial curve and L/K a separable extension. Let ` be a
prime. Assume one of the following three conditions.

(i) The extension L/K is a Galois extension of odd degree and ` 6= p.

(ii) The analytic rank of E does not grow in L/K.

(iii) The analytic rank of E does not grow by more than one in L/K and ` 6= p.

Then the `-parity conjecture for E/K holds if and only if the `-parity conjecture for E/L is
known.

Proof. If condition (i) holds then the conclusion follows directly from [DD09c, Theorem 1.3].
Note already here that the complete paper [DD09c] and its proofs hold in our situation as long
as ` 6= p.

Suppose now as in condition (ii) that the analytic rank does not grow in L/K. Denote by
A/K the Weil restriction of E under L/K and by B/K the quotient of A by the natural image
of E in it. Since

L(E/L, s) = L(A/K, s) = L(E/K, s) · L(B/K, s)

we see that the analytic rank of B/K is zero and therefore by Proposition 3, the full Birch and
Swinnerton-Dyer conjecture holds. In particular, the Mordell–Weil rank of B/K is zero and its
Selmer group is a finite group. Moreover, we have an exact sequence

Sel`∞(E/K)→ Sel`∞(A/K)→ Sel`∞(B/K), (3)

and the kernel of the first map lies in B(K)[`∞], which is a finite group. Hence we conclude that
r` is equal to the corank of Sel`∞(A/K) and, by [MR07, Proposition 3.1], this is the same as the
corank of Sel`∞(E/L). Hence we are able to deduce the `-parity for E/K from the `-parity for
E/L.

Finally, suppose that ` 6= p and that the analytic rank grows exactly by one; so we are under
condition (iii). Then we know by Proposition 3 that the rank of Sel`∞(B/K) is less than or equal
to one. We wish to exclude the possibility that it is zero, so assume by now that Sel`∞(B/K)
is finite. However, this means that X(B/K)[`∞] is finite and hence the full conjecture of Birch
and Swinnerton-Dyer holds by [KT03] again; so we reach a contradiction, since we would have
0 = rankB(K) = ords=1 L(B/K, s) = 1. Hence we have shown that the corank of Sel`∞(B/K) is
one.

Note that the left-hand map in (3) still has finite kernel. We will show now that right-hand
map has finite cokernel, too. Let Σ be the finite set of places in K of bad reduction for E.
Write GΣ(K) for the Galois group of the maximal separable extension of K which is unramified
outside Σ. Note that from the definition of the Selmer group, we find the following diagram with
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exact rows and columns.

0

��

0

��
Sel`∞(A/K)

��

// Sel`∞(B/K)

��
H1(GΣ(L), A[`∞])

��

// H1(GΣ(K), B[`∞])

��

// H2(GΣ(K), E[`∞]) r // H2(GΣ(K), A[`∞])

⊕
v∈Σ H

1(Kv, A)[`∞] //
⊕

v∈Σ H
1(Kv, B)[`∞]

We know that the bottom groups are finite as they are dual to lim←−A(Kv)/`k and lim←−B(Kv)/`k

respectively. Hence we see from the snake lemma that we only have to prove that the kernel of r
is finite. Shapiro’s lemma shows that H2(GΣ(K), A[`∞]) is isomorphic to H2(GΣ(L), E[`∞]) and
hence the map r is simply the restriction map. As its kernel will only get larger when increasing L,
we may assume that L/K is Galois. Then the kernel of the restriction is contained in the part
of H2(GΣ(K), E[`∞]) that is killed by [L :K]. Hence it is finite, because H2(GΣ(K), E[`∞]) is
a discrete abelian group with finite Z`-corank.

Therefore, we conclude again that the corank of the `-primary Selmer group increased by
exactly one in L/K. 2

Corollary 5. If the `-parity conjecture holds for all semistable elliptic curves, then it holds
for all elliptic curves.

Proof. Theorem 11.1 in [Ulm05] proves that there is a separable extension L/K such that the
reductions of E becomes semistable and the analytic rank does not grow in L/K. 2

The same argument also reduces the full parity conjecture to the semistable case.

3. Local computations

The following computations are purely local and we change the notations for this section. Let
K be a local field of characteristic p > 3 with residue field Fq. The ring of integers is written
O, the maximal ideal m and the normalised valuation by v. The elliptic curve E/K is given by
the Weierstrass equation (2). By changing the equation, if necessary, we may suppose for this
section that A and B are in O.

Define L to be the minimal extension of K such that E′(L)[p] = Z/pZ, or equivalently that
E[F ] is isomorphic to µ[p] as a group scheme over L. There is a representation

ρ : Gal(L/K)→Aut(E′(L)[p])∼= (Z/pZ)×

which shows that [L :K] divides p− 1. Define (−1/(L/K)) ∈ {±1} to be the image of −1 under
the composition of the reciprocity map and ρ

K×→Gal(L/K)→ (Z/pZ)×.

Hence (−1/(L/K)) = +1 if and only if −1 is a norm from L× to K×.
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We will also consider zV = z(V : E′(K)→ E(K)), which is a certain power of p. Put

σ = σ(E/K) =

{
+1 if zV is a square and
−1 otherwise.

It is important to note that we cannot define z(F : E(K)→ E′(K)) since its cokernel will never
be finite.

Finally, as in the introduction, we let w = w(E/K) be the local root number of E over K, as
defined by Deligne and well explained in [Roh94]. The aim of this section is to show the following
theorem.

Theorem 6. Let K be a local field of characteristic p > 3. For any non-isotrivial elliptic curve
E/K whose reduction is not additive and potentially good, we have w(E/K) = (−1/(L/K)) ·
σ(E/K).

We will prove this theorem by treating each type of reduction separately. In the last section of
this paper, we will prove this local theorem without the assumption on the reduction using global
methods. See [DD09b, Conjecture 5.3] for the analogue in characteristic zero. In particular, the
following computations show that the analogy should take places above p in characteristic zero
to supersingular places in characteristic p.

Recall the definition of the Hasse invariant α=A(E, ω) associated to the given integral
equation (2). Write F for the formal group of E over O, and similarly F ′ for the formal group
for the isogenous curve E′ given by the integral equation

E′ : y′2 = x′3 +Apx′ +Bp.

Choose t=−x′/y′ as the parameter of the formal group F ′. Then the formal isogeny V1 of
the Verschiebung V is of the form

V1 : F ′(m) �F(m)

t
� �α ·G(t) +H(tp)

for some G(t) = t+ · · · ∈ O[[t]] and H(t) = u · t+ · · · ∈ O[[t]] with u in O×. See [KM85, § 12.4] for
other descriptions of the Hasse invariant α.

We begin now the proof of Theorem 6. For the computation of the local root number w, we
can simply refer to [Roh94, Proposition 19], where we find that w =−1 if the reduction is split
multiplicative and w = +1 if it is good or non-split multiplicative.

3.1 Good reduction
Proposition 7. Suppose E/K has good reduction. Then w = +1. The quantities σ and
(−1/(L/K)) are +1 if and only if qv(α) is a square. In particular, if the reduction is ordinary
then σ = (−1/(L/K)) = +1.

Proof. We may suppose that the Weierstrass equation (2) is minimal, i.e. that it has good
reduction. We then have the diagram

0 �F ′(m) �

V1

��

E′(K) �

V

��

Ẽ′(Fq) �

��

0

0 �F(m) �E(K) � Ẽ(Fq) � 0
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where Ẽ denotes the reduction of E. The isogenous curves Ẽ and Ẽ′ over Fq have the same
number of points, so the kernel and cokernel of this map have the same size. Hence zV = z(V1).

For any N > 1,

F(mN )
F(mN+1)

∼=
mN

mN+1
∼=
F ′(mN )
F ′(mN+1)

and so the same argument shows that zV = z(V1) = z(VN : F ′(mN )→F(mN )).

We claim that if N > υ(α) then VN maps F ′(mN ) bijectively onto F(mN+υ(α)). If t
has valuation at least N , then the valuation of αt is smaller than the valuation of u · tp.
Therefore υ(VN (t)) = υ(α) + υ(t). This shows that VN maps F ′(mN ) injectively to F(mN+υ(α)).
In particular, the kernel ker(VN ) is trivial.

Let s have valuation υ(s)>N + υ(α). Put t0 = s/α. Then t0 is close to a zero of g(t) =
VN (t)− s. Namely g(t0) = αat20 + · · ·+ utp0 + · · · has valuation at least 2υ(s)− υ(α)> 2N +
υ(α)> 2υ(α), if we write G(t) = t+ at2 + · · · for some a ∈ O. Since g′(t0) = α+ 2αat0 + · · ·
has valuation υ(α), Hensel’s lemma shows that there is a t close to t0 such that g(t) = 0, i.e. such
that VN (t) = s.

We conclude that the cokernel of VN is equal to the index of F(mN+υ(α)) in F(mN ). Hence
zV = z(VN ) = qυ(α). In particular zV = 1 if the reduction is ordinary, i.e. when α is a unit in O.

Let eL/K be the ramification index of L/K. If the reduction is good ordinary, then the inertia
group acts trivially on TpE

′, which is a Zp-module of rank one. Hence L/K is unramified and
we have immediately that (−1/(L/K)) = +1.

Lemma 8. The parity of v(α) is equal to the parity of (p− 1)/eL/K .

Proof. If E has good ordinary reduction, then v(α) = 0, eL/K = 1 and p− 1 is even so that
the assertion is true. If E has good supersingular reduction, then since E′(L)[p] contains a
non-trivial point P = (x′P , y

′
P ), but the reduction does not contain a point of order p, there

exist a tP =−x′P /y′P in the maximal ideal mL of L such that V1(tP ) = 0. From V1(tP ) =
αtP + · · ·+ utpP + · · · , we see that the valuations of αtP and utpP must cancel out. Hence
υL(α) = eL/K · υ(α) = (p− 1) · υL(tP ), where υL denotes the normalised valuation in L; so if
the valuation of tP is odd, we have proved the assertion.

Assume that υL(tP ) is even. Then υ(α) is also even and we have to show that (p− 1)/eL/K

is even. The extension L/K(x′P ) is generated by tP whose square belongs to K(x′P ); so this
extension is either unramified quadratic or trivial. If L=K(x′P ), then Gal(L/K) acts on the
set of {x′P |O 6= P ∈ E′(L)[p]} and hence [L :K] divides (p− 1)/2, so (p− 1)/[L :K] is even.
Otherwise, if L is an unramified quadratic extension of K(x′P ), then eL/K = eK(x′p)/K and p− 1
is divisible by [L :K] = 2eL/KfK(x′p)/K . Hence (p− 1)/eL/K is even. 2

Now we can conclude the proof of Proposition 7. Lemma 12 in [DD08], whose proof is valid
even if the characteristic of K is not zero, says that (−1/(L/K)) = +1 if and only if q is a square
or if (p− 1)/eL/K is even. The previous lemma suffices now to conclude. 2

In the good supersingular case, L/K may or may not be totally ramified. We illustrate this
with two examples.

We take p= 5, w > 0 any integer, and the curve E given by the minimal Weierstrass equation

y2 = x3 + Tw · x+ 1
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over O = F5[[T ]]. The Hasse invariant is α= 2 · Tw. The reduction is good, but supersingular.
The division polynomial fV associated to the isogeny V can be computed to be equal to

fV (x) = 2Twx2 + 4T 2wx+ (4 + 3T 3w + T 6w).

First we take the case w = 2m is even. Then we can make the substitution X = Tm · x to get

fV (x) = 2X2 + 4T 3mX + (4 + 3T 6m + T 12m).

We see that K(xP ) is a quadratic unramified extension of K. The quantity (p− 1)/eL/K will
certainly be even.

Now, take w = 2m− 1 to be odd with m> 1. This time the substitution X = Tm · x gets us to

T · fV (x) = 2X2 + 4T 3m−2X + T · (4 + 3T 6m−3 + T 12m−6).

Therefore K(xP )/K will be a ramified extension of degree two. The valuation of xP over K(xP )
is odd, so we have to make a further extension L/K(xP ), again ramified of degree two, to have
a p-torsion point in E′(L). Hence eL/K = 4 and (p− 1)/eL/K is odd.

3.2 Split multiplicative
Proposition 9. Suppose E/K has split multiplicative reduction. Then w(E/K) =−1,
(−1/(L/K)) = +1, and σ(E/K) =−1.

Proof. Let qE ∈K× be the parameter of the Tate curve which is isomorphic to E over K. Then
the isogenous curve E′ has parameter qE

p and the Frobenius map

V :
K×

(qE
p)Z � K×

(qE)Z

is induced by the identity on K×. Hence V has a kernel with p elements and is surjective, so
zV = 1/p and σ =−1.

Since E′ has already a p-torsion point over K, we have L=K and (−1/(L/K)) = +1. 2

3.3 Non-split multiplicative
Proposition 10. Suppose E/K has non-split multiplicative reduction. Then

w(E/K) =
(
−1
L/K

)
= σ(E/K) = +1.

Proof. There is a quadratic extension K ′ over which E has split multiplicative reduction. Hence
either L=K or L=K ′. Let E† be the quadratic twist of E over K ′. Up to 2-torsion groups,
we have E(L) = E(K)⊕ E†(K). Since E† has split multiplicative reduction over K there is a
p-torsion point in E†(K). Hence L=K ′.

From the previous section, we know that zV for E/L and E†/K both are equal to 1/p.
Therefore, by the above formula for E(L) up to 2-torsion, we get that zV for E/K is 1. Hence
σ = +1. Since L/K is unramified, (−1/(L/K)) = +1. 2

3.4 Additive potentially multiplicative
Proposition 11. Suppose E/K has additive, potentially multiplicative reduction. Let χ :
K×→{±1} be the character associated to the quadratic ramified extension over which E has
split multiplicative reduction. Then w(E/K) = (−1/(L/K)) = χ(−1) and σ(E/K) = +1.
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Proof. The root number is computed by Rohrlich [Roh94, 19.ii]. The proof that σ = +1 is the
same as in the non-split multiplicative case. The formula (−1/(L/K)) = χ(−1) is clear, too. 2

4. Selmer groups

We return to the global situation and we wish to define properly the Selmer groups involved in
p-descent in characteristic p using flat cohomology.

From now on, K is again a global field with field of constants Fq and E/K is a semistable,
non-isotrivial elliptic curve. We denote by E the Néron model of E/K over C and E0 its connected
component containing the identity. Let U be a dense open subset of C such that E has good
reduction on U . The group schemes E and E0 coincide over U and we define for any v 6∈ U the
group of connected components Φv in the fibre above v. Hence we have the following short exact
sequence:

0→E0→E →
⊕
v 6∈U

Φv→ 0.

Following [KT03, 2.2], the discrete p∞-Selmer group of E/K is defined as

Selp∞(E/K) := ker
[
H1

fl(K, E[p∞])→
∏
v

H1
fl(Kv, E)

]
where E[p∞] is the p-divisible group associated to E and Hfl stands for flat cohomology. It is
known that Selp∞(E/K) fits into the following exact sequence:

0→ E(K)⊗ Qp/Zp → Selp∞(E/K)→X(E/K)[p∞]→ 0. (4)

This follows from the fact that the Tate–Shafarevich group can also be computed using flat
cohomology as the kernel of H1

fl(K, E)→
∏
v H

1
fl(Kv, E) since for the elliptic curve E over K

or Kv, the étale and flat cohomology groups coincide (see [Mil80, Theorem 3.9]). Note also that
the dual of Selp∞(E/K) is a finitely generated Zp-module by the theorem of Mordell–Weil
and the finiteness of X(E/K)[p] (see e.g. [Ulm91]).

Let φ : E→ E′ be an isogeny of elliptic curves. The map φ induces a short exact sequence of
sheaves in the flat topology

0 //E[φ] //E
φ //E′ // 0. (5)

The Selmer group Selφ(E/K) is defined to be the set of elements in H1
fl(K, E[φ]) whose

restrictions to H1
fl(Kv, E[φ]) lie in the image of the connecting homomorphism E(Kv)→

H1
fl(Kv, E[φ]) for all v. If U is any open subset of C where E has good reduction, we can

also describe Selφ(E/K) as the kernel of the composed map

H1
fl(U, E [φ]) //

∏
v 6∈U H

1
fl(Kv, E[φ]) //

∏
v 6∈U H

1
fl(Kv, E)[φ].

Passing to cohomology, the short exact sequence (5) induces the short exact sequence of finite
groups

0 //E′(K)/φ(E(K)) // Selφ(E/K) // X(E/K)[φ] // 0, (6)

where X(E/K)[φ] is the kernel of the induced map φX : X(E/K)→X(E′/K).
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5. Global Euler characteristics

We prove in the next three sections a few results on global dualities for the p-primary part of
the Tate–Shafarevich group in characteristic p using flat cohomology. The main reference will
be [Mil06], but we wish to point the reader to related results in [Gon09, GT07].

Note that most results in these three sections do not need any condition on the reduction.
Also, except where mentioned, the characteristic p can be any prime.

We give a short review of the Oort–Tate classification of finite flat group schemes of order p
(see [TO70] for details). Let X be a scheme of characteristic p > 0. The data of a finite flat
group scheme N of order p over X is equivalent to the data of an invertible sheaf L, a section
a ∈H0(C, L⊗(p−1)) and a section b ∈H0(C, L⊗(1−p)) such that a⊗ b= 0. We use the notation
NL,a,b. If N is of height 1, then a= 0. The Cartier dual of NL,a,b is NL−1,b,a.

For a scheme S of characteristic p > 0 and a finite flat group scheme N/S we define the Euler
characteristic of N/S as

χ(S, N) :=
∏
i

(#H i
fl(S, N))(−1)i

whenever the groups H i
fl(S, N) are finite.

Lemma 12. Assume that the prime p is odd. Let N be a finite flat group scheme of order p over
C. Assume that the Cartier dual ND of N is of height 1. Then the groups H i

fl(C, N) are finite
and χ(C, N) is a square in Q×.

Proof. The cohomology is finite by [Mil06, Lemma III.8.9] since N is finite flat. If ND has
height 1 then N corresponds to a group scheme NL,a,b with b= 0. Now we follow the explanation
after [Mil06, Problem III.8.10]. Since N is the dual of a group scheme of height 1, we have that
there is a sequence

0 // N // L // L⊗p // 0,

z � // z⊗p − a⊗ z
which is exact by the definition of NL,a,b. See also [Mil06, Example III.5.4]. Hence we have that
χ(C, N) = qχ(L)−χ(L⊗p). Using Riemann–Roch, we get

χ(L) = deg(L) + 1− g,
χ(L⊗p) = p · deg(L) + 1− g

and therefore we find the formula

χ(C, N) = q(p−1) deg L.

Hence the lemma follows from the fact that p is odd. 2

For any place v in K, we denote by | · |v the normalised absolute value of the completion Kv.
In particular the absolute value of a uniformiser is q−1

v where qv denotes the number of elements
in the residue field.

Lemma 13. Let N =NL,a,b be a finite flat group scheme of order p > 2 over the ring Ov of
integers in Kv. Assume that NKv is étale. Then the Euler characteristic of N is well defined and
we have

χ(Ov, N)≡ |a|−1
v

modulo squares in Q×.
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Proof. The invertible sheaf L is c−1 ·Ov for some c ∈K×v . Then by [Mil06, III.0.9.(c)], we
have NL,a,b ∼=NOv ,acp−1,bc1−p . Using Remark III.7.6 and the Example after Theorem III.1.19
on page 244 of [Mil06], we have χ(Ov, N) = |a · cp−1|−1

v ≡ |a|−1
v modulo squares in Q×. 2

For a scheme S of characteristic p > 0 and a scheme X/S, we denote by X ′ the fibre product
X ×S S where the map S→ S in this product is the absolute Frobenius of S. By the universal
property of the fibre product, we have a map F :X →X ′ called the relative Frobenius. If
moreover X/S is a flat group scheme, then there exists a map V :X ′→X called the Verschiebung
such that V ◦ F and F ◦ V induce [p], the multiplication by p (see [GD70, VII]). In particular,
F : E→ E′ is a p-isogeny of elliptic curves which extends to the Néron models of E and E′ by
its universal property. Since the Néron model of E′ is E ′, this map is just the relative Frobenius
F : E → E ′.

Over the field K, or more generally over any open subset U in C where E has good reduction,
[Ulm91, Proposition 2.1] shows that E[F ] =Nω−1,0,α and E[V ] =Nω,α,0, where α is the Hasse
invariant of E and where ω is the invertible sheaf π∗Ω1

E/K with π : E→ Spec(K) being the
structure morphism.

Proposition 14. Let E/K be a non-isotrivial elliptic curve. There exists a dense open subset
U of C such that E has everywhere good ordinary reduction and χ(U, E [F ]) is a well-defined
square in Q×.

Proof. By the Oort–Tate classification, E[F ]/K is isomorphic to Nω−1,0,α. By [Mil06,
Proposition B.4] and its proof, it extends to a finite flat group scheme N/C of order p of the
form NOC(W ),0,α for some Weil divisor W 6 0 such that (α)>W . Let U1 be a dense open subset
of C over which E has good reduction. As in [Mil06, proof of Theorem III.8.2] on page 291, we
replace U1 by a smaller open set U2, over which N|U2 ' E [F ]|U2 . Finally, we set U equal to the
open subset of U2 where we have removed all places v for which E/K has good supersingular
reduction.

Write ND for the Cartier dual of N . By [Mil06, Proposition III.0.4(c) and Remark III.0.6(b)],
we have a long exact sequence

· · · //H i
fl,c(U,ND) //H i

fl(C,ND) //
∏
v 6∈U H

i
fl(Ov,ND) // · · · .

Global duality [Mil06, Theorem III.8.2] shows that

H i
fl,c(U,ND) =H i

fl,c(U, E ′[V ]) is dual to H i
fl(U, E [F ]).

By the multiplicative property of the Euler characteristic, we get

χ(U, E [F ]) =
χ(C,ND)∏

v 6∈U χ(Ov,ND)
.

Since ND =NOC(−W ),α,0 is finite flat of order p over C, Lemma 12 shows that χ(C,ND) is a
square. Furthermore, Lemma 13 yields

χ(U, E [F ])≡
∏
v 6∈U

χ(Ov,ND)−1 ≡
∏
v 6∈U
|α|v (mod �).

Since the places of U are places of good ordinary reduction where |α|v is a square by Proposition 7,
we have, using the product formula,

χ(U, E [F ])≡
∏
v 6∈U
|α|−1

v ≡
∏
v

|α|−1
v = 1 (mod �). 2
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6. The Cassels–Tate pairing

Recall that there exist a pairing [Mil06, proof of Theorem II.5.6] called the Cassels–Tate pairing

〈〈·, ·〉〉 : X(E/K)×X(E/K)→ Q/Z.

As claimed in [Mil06, Proposition III.9.5] its left and right kernels are the divisible part
div(X(E/K)) of the Tate–Shafarevich group. We are calling the attention of the reader to
the fact that the initial proof in [Mil06] is wrong, as noticed by Harari and Szamuely in [HS09].
The first correct published proofs that the Cassels–Tate pairing of [Mil06, Theorem II.5.6(a)],
annihilates only maximal divisible subgroups appear in [HS09] (for prime-to-p primary
components) and in [Gon09] (for p-primary components) when the 1-motive considered in these
references is taken to be (0→ E). This pairing is alternating and hence the order of X(E/K)div

is a square. This last fact is not always true if we consider general abelian varieties.

Lemma 15. Let φ : E→ E′ be an isogeny of elliptic curves and φ̂ the dual isogeny. Then
the induced map φX : X(E/K)→X(E′/K) and φ̂X : X(E′/K)→X(E/K) are adjoints with
respect to the Cassels–Tate pairings, i.e.

〈〈φX(η), ξ〉〉E′ = 〈〈η, φ̂X(ξ)〉〉E
for every η ∈X(E/K) and ξ ∈X(E′/K).

Proof. The proof is analogous to the proof in the number field case (see [Mil06, Remark I.6.10]
or [Cas65, § 2]) and is deduced from the functoriality of the local pairings in flat cohomology. 2

Proposition 16. The orthogonal complement of X(E′/K)[V ] in X(E′/K)[p∞] under the
Cassels–Tate pairing

X(E′/K)[p∞]×X(E′/K)[p∞]→ Q/Z

is the image of F : X(E/K)[p∞]→X(E′/K)[p∞].

Proof. Note that the proposition follows immediately from the previous lemma if the pairing is
perfect. Else, by the previous Lemma 15, it is immediate that F (X(E/K)[p∞]) is contained in
the orthogonal of X(E′/K)[V ]. Let ξ be an element in X(E′/K)[p∞] orthogonal to the kernel
of V . LetD′ denote the maximal divisible subgroup of X(E′/K)[p∞] andD the maximal divisible
subgroup of X(E/K)[p∞]. Then there is a perfect paring on the quotients X(E′/K)[p∞]/D′

and X(E/K)[p∞]/D. Since V and F map divisible elements to divisible elements, they induce
maps between these quotients, as follows.

0 // D′ //

V

��

X(E′/K)[p∞] //

V
��

X(E′/K)[p∞]/D′ //

V
��

0

0 // D //

F

OO

X(E/K)[p∞] //

F

OO

X(E/K)[p∞]/D //

F

OO

0

The element ξ +D′ in the quotient X(E′/K)[p∞]/D′ is orthogonal to the kernel of V . Since the
pairing is perfect there, we have an element η in X(E/K)[p∞] such that F maps η +D to ξ +D′

in the quotients. Hence F (η) = ξ + δ for some δ ∈D′. However, since the map F ◦ V = [p] is
surjective on D′, the map F maps D onto D′. Hence δ is in the image of F and so is ξ. 2

The short exact sequence of finite flat group schemes

0→ E[F ]→ E[p]→ E′[V ]→ 0, (7)
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induces, when passing to flat cohomology, the top row of the following exact commutative
diagram.

. . . // E′(K)[V ] // H1
fl(K, E[F ]) //

��

H1
fl(K, E[p]) F //

��

H1
fl(K, E

′[V ])

��
0 // ∏

v H
1
fl(Kv, E)[F ] // ∏

v H
1
fl(Kv, E)[p] F // ∏

v H
1
fl(Kv, E

′)[V ]

From the above diagram, we obtain an exact sequence

0 // E(K)[F ] // E(K)[p] F // E′(K)[V ] //

// SelF (E/K) // Selp(E/K) F // SelV (E′/K) // T // 0,
(8)

where T is the cokernel of the map induced by F on the Selmer groups. Parallel to this, we have
a long exact (kernel-cokernel) sequence

0 // E(K)[F ] // E(K)[p] F // E′(K)[V ] //

// E′(K)/F (E(K)) V // E(K)/pE(K) // E(K)/V (E′(K)) // 0.
(9)

We may quotient the exact sequence (8) by the exact sequence (9), using Kummer maps in the
short exact sequence (6). We get an alternative description of T by an exact sequence:

0 // X(E/K)[F ] // X(E/K)[p] F // X(E′/K)[V ] //T // 0. (10)

Corollary 17. Let E/K be an elliptic curve. The order of T is a square. In other words,

#X(E/K)[F ] ·#X(E′/K)[V ]≡X(E/K)[p] (mod �).

Proof. By restriction the Cassels–Tate pairing induces a pairing on X(E′/K)[V ] with values
in Z/pZ. By the previous proposition the right and left kernels of this pairing are equal to the
intersection of F (X(E/K)[p∞]) and X(E′/K)[V ], which is equal to F (X(E/K)[p]). Therefore
the pairing induces a non-degenerate alternating pairing on T ; hence the order of T is a square. 2

Lemma 18. We have

prp ≡ #E(K)[F ] ·#SelV (E′/K)
#E′(K)[V ] ·#SelF (E/K)

(mod �).

Of course, we have #E(K)[F ] = 1, but we include it here so as to make the formula resemble
the symmetric formula in the classical case, like that in Fisher’s appendix to [Dok05].

Proof. By the short exact sequence (4), rp = r + corankZp X(E/K)[p∞], where r = rankZ(E(K))
and rp is the Zp-rank of the dual of Selp∞(E/K). Now, since X(E/K)[p∞] is cofinitely generated
as a Zp-module, we have

dimFp X(E/K)[p] = corankZp(div X(E/K)[p∞]) + dimFp(X(E/K)div[p]).

As noticed at the beginning of § 6, #X(E/K)div (and therefore #X(E/K)div[p]) is a square.
We deduce that

rp ≡ r + dimFp X(E/K)[p] (mod 2).
On the other hand, the short exact sequence (6) applied to [p] implies that

dimFp Selp(E/K) = r + dimFp E(K)[p] + dimFp X(E/K)[p],
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since E(K)/pE(K)' E(K)[p]⊕ (Z/pZ)r. Hence we get the formula

rp ≡ dimFp E(K)[p] + dimFp Selp(E/K) (mod 2).

The assertion results then from the exact sequence (8) and Corollary 17. 2

7. Global duality

Proposition 19. Let E/K be a non-isotrivial elliptic curve and let U be an open subset of C
over which E has good reduction. Then we have

#E(K)[F ] ·#SelV (E′/K)
#E′(K)[V ] ·#SelF (E/K)

=
1

χ(U, E [F ])
·
∏
v 6∈U

z(VE′(Kv)).

We insist once more that the roles of F and V here are not interchangeable, e.g. the terms
z(FE(Kv)) in the product would not be finite.

Proof. The long exact sequence for flat cohomology deduced from the definition of H i
fl,c in [Mil06,

Proposition III.0.4(a)] reads

· · · //H i
fl,c(U, ·) //H i

fl(U, ·) //
⊕

v 6∈U H
i
fl(Kv, ·) //H i+1

fl,c (U, ·) // · · · .

The global duality in [Mil06, Theorem III.8.2] implies that the group H i
fl,c(U, E [F ]) is dual to

H3−i
fl (U, E ′[V ]) since E [F ] is finite and flat over U . We find the following long exact sequence:

H1
fl(U, E [F ]) //

⊕
v 6∈U H

1
fl(Kv, E[F ]) // H1

fl(U, E ′[V ])∨ //

// H2
fl(U, E [F ]) //

⊕
v 6∈U H

2
fl(Kv, E[F ]) // H0

fl(U, E ′[V ])∨ // 0.

Local duality as in [Mil06, Theorem III.6.10] shows that H2
fl(Kv, E[F ]) is dual to E′(Kv)[V ]. Our

aim is to replace the local termH1
fl(Kv, E[F ]) by the cokernel of the map from E′(Kv)/F (E(Kv)).

By local duality ([Mil06, Theorem III.7.8] and the functoriality of biextensions), this term is dual
to H1

fl(Kv, E
′)[V ]. Hence we will quotient the term H1

fl(U, E ′[V ])∨ by the image of the map on
the right-hand side in the following commutative diagram.⊕

v 6∈U
E′(Kv)/F (E(Kv))

∼= //

��

⊕
v 6∈U (H1

fl(Kv, E
′)[V ])∨

��
H1

fl(U, E [F ]) //
⊕

v 6∈U H
1
fl(Kv, E[F ]) // H1

fl(U, E ′[V ])∨ // . . .

(11)

Because of the exact Kummer sequence

0 //E′(Kv)/F (E(Kv))
//H1

fl(Kv, E[F ]) //H1
fl(Kv, E)[F ] // 0

the cokernel of the map on the left in (11) is
⊕

v 6∈U H
1
fl(Kv, E)[F ], which, again by local duality,

is dual to
⊕

v 6∈U E(Kv)/V (E′(Kv)). By definition the cokernel of the map on the right in (11) is
the dual of the Selmer group SelV (E′/K).
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Putting all these results together, we obtain the long exact sequence

0 // SelF (E/K) // H1
fl(U, E [F ]) //

⊕
v 6∈U (E(Kv)/V (E′(Kv)))∨ //

// SelV (E′/K)∨ // H2
fl(U, E [F ]) //

⊕
v 6∈U (E′(Kv)[V ])∨ //

// (E(K)[V ])∨ // 0.

Since all other terms in the sequence are finite, the groups H i
fl(U, E [F ]) are finite, too. The

alternating product of its orders gives the result. 2

If E/Kv is a non-isotrivial, semistable elliptic curve then one can show that the group scheme
E [F ] is finite and flat. Hence the result of Proposition 19 can be extended to any open subset U
such that E has semistable reduction over all places in U . In particular U can be taken to be
equal to C, if E/K is semistable.

8. The proof of the p-parity

We now pass to the proof of Theorem 1. We return now to our running assumptions. K has
characteristic p > 3 and E/K is not isotrivial. We present first the main results coming from
global duality and the local computations and then we just have to put them together. However,
both these statements are interesting in their own right.

Theorem 20. Let E/K be a non-isotrivial elliptic curve. We have

prp ≡
∏
v

z(VE′(Kv) : E′(Kv)→ E(Kv)) (mod �)

where the product runs over all places v in K.

Proof. Proposition 14 provides us with an open subset U in C such that E has good ordinary
reduction at all places in U . It follows from Lemma 18, Propositions 19 and 14 that

prp ≡ #E(K)[F ] ·#SelV (E′/K)
#E′(K)[V ] ·#SelF (E/K)

(mod �)

=
1

χ(U, E [F ])
·
∏
v 6∈U

z(VE′(Kv) : E′(Kv)→ E(Kv))

≡
∏
v 6∈U

z(VE′(Kv) : E′(Kv)→ E(Kv)) (mod �).

Finally from Proposition 7, we know that z(VE′(Kv)) is a square for all places v ∈ U as E has
good ordinary reduction there. 2

Next, we collect from § 3 the following result.

Proposition 21. Let E/K be a semistable elliptic curve. Then the root number is w(E/K) =
(−1)s where s is the number of split multiplicative primes for E/K. Furthermore s has the same
parity as the p-adic valuation of ∏

v

cv(E/K)
cv(E′/K)

where cv are Tamagawa numbers.
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Proof. From Theorem 6 we deduce that

w(E/K) =
∏
v

w(E/Kv) =
∏
v

σ(E/Kv) ·
(
−1

Lw/Kv

)
=
∏
v

σ(E/Kv)

by the product formula for the norm symbols
∏
v(−1/(Lw/Kv)) with L being the extension of

K over which E[F ] = µp and w is any place above v. Using the Propositions 7, 9 and 10, we see
that σ(E/Kv) is −1 if and only if E has split multiplicative reduction at v.

If the reduction at v is split multiplicative, then we have cv(E′/K) = p · cv(E/K) since
the parameters in the Tate parametrisation satisfy qE′ = qE

p. If the reduction is non-split
multiplicative then the Tamagawa numbers can only be 1 or 2. 2

Note that we could have used the known modularity and the Atkin–Lehner operators to
prove this statement without the computations in § 3, at least if E has at least one place of split
multiplicative reduction.

Proof of Theorem 1. First, we use Corollary 5 which allows us to assume that E/K is semistable.
Then by the previous Proposition 21 we have w(E/K) =

∏
v σ(E/Kv) and Theorem 20 states

that (−1)rp =
∏
v σ(E/Kv). 2

9. Local root number formula

We now prove Theorem 6 without any hypothesis on the reduction. We use, without repeating
the definitions, the notations from § 3.

Theorem 22. Let K be a local field of characteristic p > 3. For any non-isotrivial elliptic curve
E/K, we have w(E/K) = (−1/(L/K)) · σ(E/K).

As mentioned in § 3 this answers positively a conjecture in [DD09b] for the isogeny V . This
theorem could certainly be shown by local computations only, but they would tend to be very
tedious for additive potentially supersingular reduction. We can avoid this here by using a global
argument. This is a similar idea as in [DD09b, proof of Theorem 5.7].

Proof. By Theorem 6, we may assume that E/K has additive, potentially good reduction. Let
n> 12. We can find a minimal integral equation y2 = x3 +Ax+B for E/K. Choose a global
field K of characteristic p with a place v0 such that Kv0 =K. Choose another place v1 6= v0 in
K and choose a large even integer N such that (N − 1) · deg(v1)> 2g − 1 + n deg(v0), where g
is the genus of K. For a divisor D on the projective smooth curve C corresponding to K, we
write L(D) for the Riemann–Roch space H0(C,OC(D)). The inequality on N guarantees that
the dimensions of the Riemann–Roch spaces in the exact sequence

0 //L(N(v1)− n(v0)) //L(N(v1)) //Ov0/mn
v0

// 0

are positive; e.g. equal to N deg(v1)− n deg(v0) + 1− g > g + deg(v1) for the smaller space.
Choose an element a in L(N(v1)) which maps to A+ mn

v0 on the right. We can even impose
that it does not lie in L((N − 1)(v1)), since this is a subspace of codimension deg(v1)> 0 in
L(N(v1)). Then a has a single pole of order N at v1 and it satisfies v0(A− a)> n. Next, we
use that N is even and we choose an element b in K such that v1(b) =−3

2N , and v0(B − b)> n.
We can also impose that v1(4a3 + 27b2)>−3N . Furthermore we impose that the zeroes of b are
distinct from the zeroes of a; this excludes, at worst, N deg(v1) subspaces of codimension one in
L((3N/2)(v1)).
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Let E/K be the elliptic curve given by y2 = x3 + ax+ b. By the congruences on a and b
at v0 and the continuity of Tate’s algorithm, the reduction of E at v0 is additive, potentially
good. At the place v1 the valuation of the j-invariant j(E) = 28 · 33 · a3/(4a3 + 27b2) will be
negative by our choices. Hence the reduction is either multiplicative or potentially multiplicative.
For any other place v with v(a)> 0, we have v(4a3 + 27b2) = 0 and hence the curve has
good reduction at v, and for any other place v with v(a) = 0, either the reduction is good
or v(j(E))< 0.

Therefore we have constructed an elliptic curve E/K with a single place v0 of additive,
potentially good reduction. Hence for all other places Theorem 6 applies. Let L be the extension
of K such that E[F ]∼= µp over L. Now we use the results of Theorem 20 and the proven p-parity
in Theorem 1 to compute

w(E/K) =
w(E/K)∏

v 6=v0 w(E/Kv)
=

(−1)rp∏
v 6=v0(−1/(Lw/Kv))σ(E/Kv)

=
(−1/(Lw0/K))∏

all v(−1/(Lw/Kv))
·
∏

all v σ(E/Kv)∏
v 6=v0 σ(E/Kv)

=
(
−1
Lw0/K

)
· σ(E/K).

Once again we used the product formula for the norm symbol. Now we argue that the three terms
are all continuous in the topology of K as a and b varies: for the local root number this is exactly
the statement of [Hel09, Proposition 4.2]. The field Lw0 and the order of the kernel E′(K)[V ]
of Verschiebung are locally constant because they are defined by continuously varying separable
polynomials. Finally, the order of the cokernel of V : E′(K)→ E(K) is locally constant, because
the group of connected components and the reduction and the induced map V on them will
not change and on the formal group the cokernel is determined by the valuation of the Hasse
invariant (which again is a polynomial in a and b) by the argument in the proof of Proposition 7.
Since all three terms take value ±1, they will eventually, for big enough n, be equal to the
corresponding values for E. 2

10. On the `-parity conjecture

We switch now to investigating the `-parity conjecture when ` 6= p. As mentioned in the
introduction, we have only a partial result in this case. Recall that p > 3 is a prime and that K
is a global field of characteristic p with constant field Fq.

For any n and any extension L of K, we denote by Ln the field L · Fqn . The aim of this
section is to show the following partial result (given as Theorem 2 in the introduction).

Theorem 23. Let E/K be an elliptic curve and let ` be an odd prime different from p.
Furthermore assume that both the following hold.

(i) The degree a= [K(µ`) :K] is even.

(ii) The analytic rank of E does not grow by more than one in the extension K2/K.

Then the `-parity conjecture holds for E/K.

Note first that we believe that condition (i) holds for roughly two thirds of the ` as a is
also the order of q in the group (Z/̀Z)×. The second condition should hold quite often as it says
that the analytic rank of the twist of E by the unramified quadratic character is less or equal to
1. Hence, for instance, if b as in [Ulm05, Lemma 11.3.1] is odd, then condition (ii) holds.
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See the next section for a discussion about why we were not able to extend the proof here to
any situation without these hypotheses.

Proof. Corollary 5 allows us to assume that E is semistable and we may assume that E is not
isotrivial as for isotrivial curves even the conjecture of Birch and Swinnerton-Dyer is known.
First we use a non-vanishing result, to produce from the analytic information a useful extension
of K, which we want to link to the algebraic side later.

We write n for the conductor of E/K. The degree of n is linked to the degree of the polynomial
L(E/K, T ) in T = q−s by the formula of Grothendieck–Ogg–Shafarevich (as used in [Ulm04,
Formula (5.1)]):

deg(n) = deg(L(E/K, T ))− 2(2gK − 2).

We can factor the polynomial to

L(E/K, T ) = (1− qT )r · (1 + qT )r
′ ·
∏
i

(1− αiT )(1− ᾱiT )

where αi are non-real, complex numbers of absolute value q. By definition r is the analytic rank
of E/K and it is easy to see that r + r′ is the analytic rank of E/K2 since the analytic rank of
E/K2 is the number of inverse zeroes α of L(E/K, T ) such that α2 = q2. Hence we get∑

v bad

deg(v) = deg(n)≡ deg(L(E/K, T ))≡ r + r′ = ords=1 L(E/K2, s) (mod 2). (12)

We are now going to use [Ulm05, Theorem 5.2] to construct suitable extensions of K. The
argument is very similar to [Ulm05, proof of Step 2 in 11.4.2]. The following is a very special
case of this very general and powerful theorem.

Theorem 24 (Ulmer). Let K be a global field of characteristic p > 3, let S be a finite non-

empty set of places in K, let ` 6= p be an odd prime, and let E/K be a semistable elliptic curve.

Assume that a= [K(µ`) :K] is even and suppose that the sum of the degree of the bad places

not belonging to S is even. Then there exists an integer n coprime to a and a element z ∈K×n
such that the extension Kn(

√̀
z)/Kn is totally ramified at all places above S and unramified at

all bad places not in S and such that the analytic rank of E does not grow in it.

Proof. All notations and results in this proof refer to [Ulm05]. We use Theorem 5.2(1) with
F =K, αn = qn, d= `, Sr = S and ρ the symplectically self-dual representation of weight w = 1
attached to E on the Tate module V`(E) as in § 11. We can choose the sets Ss and Si arbitrarily
as long as we make sure that S, Ss, and Si are disjoint. The conditions (especially from his § 3.1)
are satisfied. Let o be an orbit in (Z/̀Z)× for the multiplication by q. Then do = ` and ao = a.
Hence we can conclude the existence of n and z such that L(ρ⊗ σo,z, Kn, T ) does not have
αn as an inverse root in 5.2(1) unless we are in the exceptional cases (i)–(iv) in 5.1.1.1. Now,
case (iv) cannot hold because ρ is not orthogonally self-dual and cases (i) and (ii) are impossible
because d= ` is odd. However, all the conditions in case (iii) are satisfied apart from maybe the
condition 4.2.3.1. (In particular, we know that −o= o because a is even.)

We now have to show that the hypothesis on S imposes that the condition 4.2.3.1 fails. Since
E is semistable, the local exponent of the conductor condv(ρ) is 1. Let v be a bad place in S

and χv be a totally ramified character of the decomposition group Dv which has exact order `.
Then the conductor condv(ρ⊗ χv) = 2 again because E has multiplicative reduction at v. Hence
the first condition in 4.2.3.1 saying that this has constant parity as χv varies is always fulfilled.
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In order to make the condition 4.2.3.1 fail, we must have that∑
bad v∈S

condv(ρ⊗ χv)deg(v) +
∑

bad v 6∈S
condv(ρ)deg(v)

is even. That is exactly what the hypothesis in the theorem imposes. 2

Lemma 25. To prove Theorem 23, we may assume that there exists a non-constant Kummer

extension L/K of degree ` in which the analytic rank does not grow and such that one of the

following holds.

– If the analytic rank of E/K2 is even then no place of bad reduction ramifies in L/K.

– If the analytic rank of E/K2 is odd then exactly one place of bad reduction ramifies.

Moreover, in the latter case, the degree of this place is odd.

Proof. If the analytic rank is even we choose the finite non-empty set of places S to be disjoint
from the set of bad places. If the analytic rank is odd, then the congruence (12) shows that
there is at least one bad place v of odd degree. Therefore we choose S to contain this as the
only bad place. Then (12) shows that the hypothesis in Theorem 24 with the above choice for
S holds. Hence we have an integer n and an element z ∈K×n . Now we use the first item in
Proposition 4 to replace K by its odd Galois extension Kn. Hence L=K(

√̀
z) is the requested

extension. 2

We now come to the algebraic part of the argument. Using the previous two lemmata, we
have now a Kummer extension L/K of degree ` in which the analytic rank does not grow.
The Galois closure of L/K is La containing L2. We have the following picture of extensions.

La

〈σ〉
`

������������������������� 〈τ2〉

a/2 IIIIIIII
a

〈τ〉

L2

`

2 HHHHHHHH

L

`

Ka

a/2 JJJJJJJJ

K2

2 JJJJJJJJ

K

The dotted lines are non-Galois extensions. We have written the degree under each inclusion. The
Galois group G= Gal(La/K) is a meta-cyclic group generated by elements σ and τ of order `
and a respectively, with L= (La)τ . We have

G= 〈σ, τ | τa = σ` = 1, τστ−1 = σq〉.

We list the irreducible Q`[G]-modules. By 1 we denote the trivial representation. Fix a
primitive character χ : 〈τ〉 ∼= Z/aZ · τ →Q×` that we can view as a character of G by setting
χ(σ) = 1. (Note that a divides `− 1, so χ is indeed realisable over Q`.) The non-trivial one-
dimensional representations of G are exactly the χi for 16 i6 a− 1. There is only one non-
trivial irreducible Q`[〈σ〉]-module. It is of degree `− 1. We can represent it as ρ= Q`[ξ] where ξ
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is a primitive `th root of unity and σ acts on ρ by multiplication with ξ. (Over Q̄` it would split
into the `− 1 non-trivial characters of 〈σ〉 ∼= Z/̀Z.) We make ρ into a G-module by defining the
Q`-linear action of τ by τ(ξj) = ξqj for all 06 j 6 `− 2. It is easy to see that ρ is an irreducible
Q`[G]-module of degree `− 1 and in fact it is the only higher dimensional irreducible Q`[G]-
module. (Note that ρ⊗Q` decomposes into (`− 1)/a irreducibles of degree a corresponding to
the orbits of the multiplication by q on (Z/̀Z)×.) We have

Q`[G] = 1⊕
a−1⊕
i=1

χi ⊕ ρa.

For convenience we will denote χa/2 by ε. The fixed field of the kernel of ε is K2.

To announce the next lemma, we need to introduce the corrected product of Tamagawa
numbers. Fix the invariant 1-form ω on E/K corresponding to the fixed Weierstrass equation.
For each place v, write cv(E/K) for the Tamagawa number and define

Cv(E/K, ω) = cv(E/K) ·
∣∣∣∣ ωωov

∣∣∣∣
v

where ωov is a Néron differential for E/Kv. The global product over all places v of K

C(E/K) =
∏
v

Cv(E/K, ω)

is no longer dependent on the choice of ω by the product formula.

For any irreducible Q`[G]-module ψ, write mψ for the multiplicity of the ψ-part of the `-
primary Selmer group Sel`∞(E/L2).

Lemma 26. We have

m1 +mε +mρ ≡ ord`

(
C(E/L2)
C(E/K2)

)
(mod 2).

Proof. We are interested in the following relation between permutations representations (in the
terminology of the Dokchitser brothers’ work, say [DD10, 2.3])

Θ = 2 ·G+ 〈τ2〉 − 2 · 〈τ〉 − 〈σ, τ2〉

corresponding to the equality of L-functions

L(E/K, s)2 · L(E/L2, s) = L(E, 1, s)3 · L(E, ε, s) · L(E, ρ, s)2 = L(E/K2, s) · L(E/L, s)2.

It can be seen that the regulator constants (as defined in [DD10, 2.11]) satisfy

CΘ(1)≡ CΘ(ε)≡ CΘ(ρ)≡ ` (mod �)

in Q× modulo squares. For 1 and ε this is straightforward; for ρ we best use [DD09a,
Theorem 4(4)] with D = 〈τ〉, implying that

CΘ(ρ) · CΘ(1) = CΘ(Q`[G/〈τ〉]) = 1.

Hence SΘ = {1, ε, ρ} in the notation of the Dokchitser brothers in [DD09c].

In short everything looks just like if L2/K were a dihedral extension (which it is not unless
a= 2). For a= 2 this is computed in [DD09a, Example 1] and [DD10, Example 4.5] and [DD09c,
Example 3.5]. For a= `− 1, this is [DD10, Example 2.20] and [DD09c, Example 3.6].
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Now, [DD09c, Theorem 1.6] shows that

m1 +mε +mρ ≡ ord`

(
C(E/K)2 · C(E/L2)
C(E/L)2 · C(E/K2)

)
(mod 2)

which proves the lemma. 2

Lemma 27. Suppose that no bad place ramifies in L/K, then the `-adic valuation of the integer
C(E/L2)/C(E/K2) is even. If there is only one bad place that ramifies in L/K and this place
is of odd degree, then the `-adic valuation of C(E/L2)/C(E/K2) is odd.

The more general statement for a= 2 can be found in [DD10, Remark 4.18].

Proof. Let v be a place of K2. Write y for ω/ωov. Then∏
w|v Cw(E/L2, ω)

Cv(E/K2, ω)
=

∏
w|v cw(E/L2)

cv(E/K2)
·
∏
w|v |y|w
|y|v

≡
∏
w|v cw(E/L2)

cv(E/K2)
(mod �)

because
∏
w|v |y|w/|y|v = |y|`−1

v is a square. If the place v is unramified, then the type of reduction
and the Tamagawa number do not change and we have∏

w|v cw(E/L2)

cv(E/K2)
=

{
cv(E/K2)`−1 if v decomposes in L2/K2 and
1 if v is inert.

In either case it is a square. If the reduction is good at v then cw(E/L2) = cv(E/K2) = 1. This
proves the first case.

Suppose now v is a place in K2 which lies above a place of odd degree in K and which
ramifies in L2/K2. Then the place is inert in K2/K and hence the reduction of E/K2 at v is
necessarily split multiplicative. Let q be the Tate parameter of E at v. Then cv(E/K2) = v(q)
and cw(E/L2) = w(q) = ` · v(q) for the place w above v. Hence the quotient is ` which has odd
`-adic valuation. This proves the second statement. 2

Finally we can finish the proof of Theorem 23. By construction, we have ords=1 L(E, ρ, s) = 0.
As in the proof of Proposition 4, this implies that mρ = 0; in fact L(E, ρ, s) is L(B/K, s) for the
extension L/K. Hence the last two lemmata show that m1 +mε, which is the corank of
the `-primary Selmer group Sel`∞(E/K2), has the same parity as the analytic rank of E/K2.
This proves the `-parity conjecture for E/K2. Assumption (ii) and Proposition 4 prove that the
`-parity holds over K, too. 2

11. Failure to extend

Although it is not usual to write in a mathematical article about unsuccessful attempts to prove
a result, we wish to include in this last section a short explanation of why we were unable to
extend the proof in the previous section. We hope this might be the starting point for a complete
proof of the `-parity conjecture. We try to outline here the missing non-vanishing result for L-
functions, which might be accessible using automorphic methods.

The main ingredient for proving Theorem 23 was the existence of a Kummer extension of
degree ` in which the analytic rank does not grow. Moreover this extension was linked in a ‘non-
commutative way’ to an even abelian extension. The machinery using representation theory set
up by Tim and Vladimir Dokchitser is then sufficient to prove the parity.
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First, if condition (ii) in Theorem 23 does not hold but condition (i) still holds, then there
is no hope that a Kummer extension will do. In order to obtain a Galois extension of K from a
Kummer extension, we need to make the extension K2/K. However, without any control about
the growth of the analytic rank in this quadratic extension, we do not know how to prove the
`-parity over K. With some extra work, one can conclude that the `-parity conjecture holds
for E/K2. In this case, we would need a non-vanishing result for an extension of K of degree
dividing ` which is not a Kummer extension.

Suppose now that the condition (i) does not hold. Then we would need to find the ‘dihedral’
extension somewhere else. The Proposition 28 below formulates this in a positive way.

Proposition 28. Suppose E/K is semistable and non-isotrivial. Let F/K be a quadratic
extension such that the analytic rank of E grows at most by one in F/K and the analytic
rank of E/F is even. Assume both the following.

(i) The degree a= [F (µ`) : F ] is odd.

(ii) There exists an odd n> 1 and a z ∈ F×n with the property that L= Fn(
√̀
z) is an extension

of degree ` of Fn such that La/Kan is a dihedral extension, no bad place of E/Fn ramifies
in L/Fn, and the analytic rank of E does not grow in L/Fn.

Then the `-parity conjecture holds for E/K.

Remark that there is a large supply of quadratic extensions F/K by [Ulm05, Theorem 11.2].
The main problem here seems to find the extension La/Fan. Theorem 5.2 in [Ulm05] provides
us with many extensions that satisfy all the properties except that we can not guarantee
that La/Kan is dihedral. We first had hopes that Ulmer’s proof could be adapted to
enforce that L/Kn is dihedral. In the notations of [Ulm05], we may sketch the problem. Let D be
a divisor of large degree as in § 6.2. Then the density (as n grows) of elements in the Riemann–
Roch space H1(C × Fqn ,O(D)) which give rise to a dihedral extension of Fn with respect to the
fixed quadratic extension F/K will be tending very fast to 0. So we would need to modify the
parameter space X and it is not clear how to find a nice variety parametrising such dihedral
extensions.

Proof. This is very similar to the proof of Theorem 23. By Proposition 4, we may assume that
a= 1 and n= 1. So L/K is a dihedral extension with group G. Let ρ be the irreducible Q`[G]-
module of degree `− 1 and let ε the character corresponding to the quadratic extension F/K.
The usual relation of induced representation Θ for G, as in [DD09c, Example 3.5], yields the
congruence

m1 +mε +mρ ≡ ord`

(
C(E/L)
C(E/F )

)
(mod 2).

We have mρ = 0 and, from Lemma 27, we know that the assumption that no bad place ramifies
in L/K implies that C(E/L)/C(E/F ) has even `-adic valuation. This implies that m1 +mε is
even, i.e. the `-parity is valid for E/F . By Proposition 4 this implies that the `-parity also holds
for E/K.
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