Restricted Khinchine Inequality

Susanna Spektor

Abstract. We prove a Khintchine type inequality under the assumption that the sum of Rademacher random variables equals zero. We also show a new tail-bound for a hypergeometric random variable.

1 Introduction

The Khinchine inequality plays a crucial role in many deep results of probability and analysis (see $[6,9,10,12,15,19]$ among others). It says that L_{p} and L_{2} norms of sums of weighted independent Rademacher random variables are comparable. More precisely, we say that ε_{0} is a Rademacher random variable if $\mathbb{P}\left(\varepsilon_{0}=1\right)=\mathbb{P}\left(\varepsilon_{0}=-1\right)=\frac{1}{2}$. Let $\varepsilon_{i}, i \leq N$, be independent copies of ε_{0} and $a \in \mathbb{R}^{N}$. The Khinchine inequality (see e.g., [10, Theorem 2.b.3] or [6, Theorem 12.3.1]) states that for any $p \geq 2$ one has

$$
\begin{equation*}
\left(\mathbb{E}\left|\sum_{i=1}^{N} a_{i} \varepsilon_{i}\right|^{p}\right)^{\frac{1}{p}} \leq \sqrt{p}\|a\|_{2}=\sqrt{p}\left(\mathbb{E}\left|\sum_{i=1}^{N} a_{i} \varepsilon_{i}\right|^{2}\right)^{\frac{1}{2}} . \tag{1.1}
\end{equation*}
$$

Note that the (Rademacher) random vector $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$ in the Khinchine inequality has independent coordinates. However, in many problems of analysis and probability it is important to consider random vectors with dependent coordinates, e.g., so-called log-concave random vectors, which in general have dependent coordinates, but whose behaviour is similar to that of the Rademacher random vector or some Gaussian random vector (see e.g., [7] and references therein). In [13] the author considered random matrices, whose rows are independent random vectors satisfying certain conditions (so the vectors may have dependent coordinates). He studied limiting empirical distribution of eigenvalues of such matrices. As an example of such a vector, showing that the conditions cover large class of natural distributions, not covered by previously known results, O'Rourke considered the vector $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$, whose coordinates are Rademacher random variables under the additional condition

$$
\begin{equation*}
S=\sum_{i=1}^{N} \varepsilon_{i}=0, \quad \text { where } N \text { is even, } \tag{1.2}
\end{equation*}
$$

(see [13, Examples 1.4 and 1.10]). For such vectors he proved a Khinchine type inequality with the factor $C \sqrt{N} p / \log N$ in front of $\|a\|_{2}$, which was enough for his

Received by the editors December 18, 2014; revised May 12, 2015.
Published electronically July 9, 2015.
AMS subject classification: 46B06, 60E15, 52A23, 46B09.
Keywords: Khintchine inequality, Kahane inequality, Rademacher random variables, hypergeometric distribution.
purposes. The goal of this paper is to show that such random variables satisfy a Khinchine type inequality with the same factor \sqrt{p} as in the standard Khinchine inequality. To shorten notation, we denote by \mathbb{E}_{S} the conditional expectation given the event (1.2). Note that the corresponding probability space is

$$
\begin{equation*}
\Omega=\left\{\varepsilon \in\{-1,1\}^{N} \mid \sum_{i=1}^{N} \varepsilon_{i}=0\right\}=\left\{\varepsilon \in\{-1,1\}^{N} \mid \operatorname{card}\left\{i: \varepsilon_{i}=1\right\}=n\right\} \tag{1.3}
\end{equation*}
$$

Our main result is the following theorem.
Theorem 1.1 Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$, be a vector whose coordinates are Rademacher random variables under the condition (1.2). Let $a=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$ and $b=\frac{1}{N} \sum_{i=1}^{N} a_{i}$. Then

$$
\begin{equation*}
\left(\mathbb{E}_{S}\left|\sum_{i=1}^{N} a_{i} \varepsilon_{i}\right|^{p}\right)^{1 / p} \leq \sqrt{2 p}\left(\|a\|_{2}^{2}-N b^{2}\right)^{1 / 2} \leq \sqrt{2 p}\left(\mathbb{E}_{S}\left|\sum_{i=1}^{N} a_{i} \varepsilon_{i}\right|^{2}\right)^{1 / 2} \tag{1.4}
\end{equation*}
$$

The first step in the proof is a reformulation in terms of random variables on the permutation group as follows. Let $N=2 n$. For the set Ω defined in (1.3), we put into correspondence the group Π_{N} of all permutations of the set $\{1, \ldots, N\}$ as

$$
\sigma \in \Pi_{N} \longleftrightarrow A_{\sigma}=\left\{\varepsilon \in \Omega \mid \varepsilon_{i}=1 \text { if } \sigma(i) \leq n ; \varepsilon_{i}=-1 \text { if } \sigma(i)>n\right\}
$$

Given $a \in \mathbb{R}^{N}$, define $f_{a}: \Pi_{N} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
f_{a}(\sigma):=\sum_{i=1}^{n} a_{\sigma(i)}-\sum_{i=n+1}^{2 n} a_{\sigma(i)} \tag{1.5}
\end{equation*}
$$

By \mathbb{E}_{Π} we denote the average over Π_{N}, i.e., the expectation with respect to the normalized counting measure on Π_{N}. Note that $\mathbb{E}_{S}\left|\sum_{i=1}^{N} a_{i} \varepsilon_{i}\right|^{p}=\mathbb{E}_{\Pi}\left|f_{a}\right|^{p}$. Therefore, Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 Let $N=2 n, a \in \mathbb{R}^{N}$. Let f_{a} be the function defined in (1.5). Let $b=\frac{1}{N} \sum_{i=1}^{N} a_{i}$. Then for $p \geq 2$,

$$
\left(\mathbb{E}_{\Pi}\left|f_{a}\right|^{p}\right)^{1 / p} \leq \sqrt{2 p}\left(\sum_{i=1}^{N} a_{i}^{2}-N b^{2}\right)^{1 / 2} \leq \sqrt{2 p}\left(\mathbb{E}_{\Pi}\left|f_{a}\right|^{2}\right)^{1 / 2}
$$

In Section 2 we prove Theorem 1.2. Then, in Section 3, we consider a special case of our problem, when the coordinates of the vector a are either ones or zeros. This particular case leads to the hypergeometric distribution. We obtain new bounds for the p-th central moments of such variables.

In the last section we discuss the behaviour of moments of the following function defined on the group of permutations endowed with normalized counting measure

$$
f(\sigma)=\left|\sum_{i=1}^{N} a_{\sigma(i)} b_{i}\right|
$$

Note that the case $b_{i}= \pm 1$, together with $\sum_{i=1}^{N} b_{i}=0$, corresponds to the settings of Theorem 1.2.

2 Proof of Theorem 1.2

We now compute

$$
\mathbb{E}_{\Pi}\left|f_{a}\right|^{2}=\mathbb{E}\left|\sum_{i=1}^{n} a_{\sigma(i)}-\sum_{i=n+1}^{2 n} a_{\sigma(i)}\right|^{2}
$$

Expanding the square and noticing that for every i, and every $k \neq i$, expectations over all permutations respectively are

$$
\mathbb{E}\left(a_{\sigma(i)}^{2}\right)=\frac{\|a\|_{2}^{2}}{2 n} \quad \text { and } \quad \mathbb{E}\left(a_{\sigma(i)} a_{\sigma(k)}\right)=\frac{\left(\sum_{i=1}^{2 n} a_{i}\right)^{2}-\|a\|_{2}^{2}}{2 n(2 n-1)}
$$

we get that

$$
\mathbb{E}_{\Pi}\left|f_{a}\right|^{2}=\frac{N\|a\|_{2}^{2}-\left(\sum_{i=1}^{N} a_{i}\right)^{2}}{(N-1)}
$$

Thus, without loss of generality we may assume that $\sum_{i=1}^{N} a_{i}=0$.
For $k \leq n$, let

$$
b_{k, \sigma}:=a_{\sigma(k)}-a_{\sigma(n+k)} \quad \text { and } \quad H_{k, \sigma}:=\sum_{i=k+1}^{n} a_{\sigma(i)}-\sum_{i=n+k+1}^{2 n} a_{\sigma(i)}
$$

(with $H_{n, \sigma}=0$). Clearly,

$$
\sum_{i=1}^{n} a_{\sigma(i)}-\sum_{i=n+1}^{2 n} a_{\sigma(i)}=b_{1, \sigma}+H_{1, \sigma}=b_{1, \sigma}+b_{2, \sigma}+H_{2, \sigma}=\cdots=\sum_{i=1}^{n} b_{i, \sigma}
$$

Note that $\mathbb{E}_{\Pi}\left|b_{1, \sigma}+H_{1, \sigma}\right|^{p}=\mathbb{E}_{\Pi}\left|-b_{1, \sigma}+H_{1, \sigma}\right|^{p}$. Hence,

$$
\mathbb{E}_{\Pi}\left|f_{a}(\sigma)\right|^{p}=\mathbb{E}_{\Pi}\left|\sum_{i=1}^{n} a_{\sigma(i)}-\sum_{i=n+1}^{2 n} a_{\sigma(i)}\right|^{p}=\frac{\mathbb{E}_{\Pi}\left|b_{1, \sigma}+H_{1, \sigma}\right|^{p}+\mathbb{E}_{\Pi}\left|-b_{1, \sigma}+H_{1, \sigma}\right|^{p}}{2}
$$

Denoting by $\delta_{i}, i \leq n$, i.i.d. Rademacher random variables independent of $\varepsilon_{1}, \ldots, \varepsilon_{N}$, and using the Khinchine inequality (1.1), we obtain

$$
\begin{aligned}
\mathbb{E}_{\Pi}\left|f_{a}(\sigma)\right|^{p} & =\mathbb{E}_{\Pi} \mathbb{E}_{\delta_{1}}\left|\delta_{1} b_{1, \sigma}+H_{1, \sigma}\right|^{p} \\
& =\mathbb{E}_{\Pi} \mathbb{E}_{\delta_{1}} \mathbb{E}_{\delta_{2}}\left|\delta_{1} b_{1, \sigma}+\delta_{2} b_{2, \sigma}+H_{2, \sigma}\right|^{p}=\cdots \\
& =\mathbb{E}_{\Pi} \mathbb{E}_{\delta_{1}} \mathbb{E}_{\delta_{2}} \cdots \mathbb{E}_{\delta_{n}}\left|\sum_{i=1}^{n} \delta_{i} b_{i, \sigma}\right|^{p} \\
& \leq \mathbb{E}_{\Pi}\left[\sqrt{p}\left(\sum_{i=1}^{n} b_{i, \sigma}^{2}\right)^{1 / 2}\right]^{p}=p^{p / 2} \mathbb{E}_{\Pi}\left(\sum_{i=1}^{n}\left|a_{\sigma(i)}-a_{\sigma(i+n)}\right|^{2}\right)^{p / 2} \\
& \leq p^{p / 2} \mathbb{E}_{\Pi}\left(2 \sum_{i=1}^{n}\left(a_{\sigma(i)}^{2}+a_{\sigma(i+n)}^{2}\right)\right)^{p / 2}=(2 p)^{p / 2}\|a\|_{2}^{p},
\end{aligned}
$$

which completes the proof.

3 Hypergeometric Distribution

In this section we discuss a specific case of hypergeometric distribution and show how it is related to our problem. Recall that a hypergeometric random variable with parameters (N, n, ℓ) is a random variable ξ that takes values $k=0, \ldots, \ell$ with probability

$$
p_{k}=\frac{\binom{\ell}{k}\binom{N-\ell}{n-k}}{\binom{N}{n}} .
$$

In this section we consider only the case $N=2 n, \ell \leq n$. It is well known that $\mathbb{E} \xi=\ell / 2$. In the next proposition we estimate the central moment of ξ.

Proposition 3.1 Let $1 \leq \ell \leq n$. Let ξ be $(2 n, n, \ell)$ hypergeometric random variable. Then for $p \geq 2$ one has

$$
\mathbb{E}|\xi-\mathbb{E} \xi|^{p} \leq \sqrt{2}\left(\frac{p \ell}{4}\right)^{\frac{p}{2}}=C_{1}^{p}\left(\frac{p \ell}{4}\right)^{\frac{p}{2}} .
$$

Remark 3.2 It is well known that the conclusion of Proposition 3.1 is equivalent to the following, so-called ψ_{2} deviation inequality: there are $C_{2}, C_{2}^{\prime}>0$, such that for all $t \geq C_{2}^{\prime}$,

$$
\mathbb{P}(|\xi-\mathbb{E} \xi|>t) \leq \exp \left(\frac{-t^{2}}{C_{2}^{2} \ell}\right)
$$

Relationships between C_{1}, C_{2}, and C_{2}^{\prime} can be found, for example, in [5, Theorem 1.1.5]. This estimate, for hypergeometric ξ, is of independent interest; in particular, it is better than the previously observed bound $\exp \left(-2 t^{2} / n\right)$ when $\ell \ll n$ (see [8, Section 6.5] and [17, formulas (10), (14)]).

Remark 3.3 One can use Theorem 1.2 to estimate $\mathbb{E}_{S}\left|\sum_{i=1}^{2 n} a_{i} \varepsilon_{i}\right|^{p}$ in the case where the vector a has $0 / 1$ coordinates with ℓ ones. Indeed, without loss of generality assume that $a_{1}=a_{2}=\cdots=a_{\ell}=1$ and $a_{\ell+1}=a_{\ell+2}=\cdots=a_{2 n}=0$. Then $\sum_{i=1}^{2 n} a_{i} \varepsilon_{i}=\sum_{i=1}^{\ell} \varepsilon_{i}$. Theorem 1.2 implies the following estimate.

Corollary 3.4 Let $a \in \mathbb{R}^{N}, N=2 n$, be a vector with ℓ coordinates equal to one and $N-\ell$ zero coordinates. Then, for $p \geq 2$,

$$
\mathbb{E}_{S}\left|\sum_{i=1}^{N} a_{i} \varepsilon_{i}\right|^{p} \leq(2 p \ell)^{p / 2}
$$

Proof of Proposition 3.1 Denote $X:=\sum_{i=1}^{2 n} a_{i} \varepsilon_{i}=\sum_{i=1}^{\ell} a_{i} \varepsilon_{i}$. Since the vector a has $0 / 1$ coordinates with ℓ ones, $\|a\|_{2}=\sqrt{\ell}$. For every $0 \leq k \leq \ell$ we compute the probability q_{k} that exactly k of $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\ell}$ equals one (in that case $X=2 k-\ell$). Since $S=\sum_{i=1}^{2 n} \varepsilon_{i}=0$, in order to get k ones, we have to choose k ones out of $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\ell}$ and $n-k$ ones out of $\varepsilon_{\ell+1}, \varepsilon_{\ell+2}, \ldots, \varepsilon_{2 n}$. This gives us $\binom{\ell}{k}\binom{2 n-\ell}{n-k}$ choices. Since

$$
|\Omega|=\left|\left\{\varepsilon \in\{-1,1\}^{2 n} \mid \sum_{i=1}^{2 n} \varepsilon_{i}=0\right\}\right|=\binom{2 n}{n}
$$

we obtain that $q_{k}=p_{k}$, i.e., $X=2(\xi-\mathbb{E} \xi)$, where ξ has hypergeometric distribution with parameters $(2 n, n, \ell)$. Therefore, Corollary 3.4 implies

$$
\left(\mathbb{E}|\xi-\mathbb{E} \xi|^{p}\right)^{1 / p} \leq \sqrt{2 p \ell}
$$

We would also like to note that Proposition 3.1 can be proved directly. Below we provide such a direct proof, which gives 2 in place of $\sqrt{2}$ in front of $\left(\frac{p \ell}{4}\right)^{p / 2}$. This proof is of interest as it can be extended to a slightly more general situation (see Remark 3.5) and can be used in another approach to the main problem (see Remark 4.3).

Direct proof of Proposition 3.1 From Stirling's formula together with the observation that $\sqrt{\pi n}\binom{2 n}{n} / 4^{n}$ increases, we observe that

$$
\frac{2^{2 n}}{\sqrt{2 \pi n}} \leq\binom{ 2 n}{n} \leq \frac{2^{2 n}}{\sqrt{\pi n}}
$$

Using this, we obtain

$$
\frac{\binom{2 n-\ell}{n-k}}{\binom{2 n}{n}} \leq \frac{\binom{2 n-\ell}{n-\left\lfloor\frac{\ell}{2}\right\rfloor}}{\binom{2 n}{n}} \leq \frac{2^{2 n-\ell}}{\sqrt{\pi\left(n-\left\lfloor\frac{\ell}{2}\right\rfloor\right)}} \frac{\sqrt{2 \pi n}}{2^{2 n}} \leq \frac{2}{2^{\ell}} \leq 1 .
$$

Therefore

$$
\mathbb{E}|\xi-\mathbb{E} \xi|^{p}=\frac{1}{2^{p}} \sum_{k=0}^{\ell}|2 k-\ell|^{p} \frac{\binom{\ell}{k}\binom{2 n-\ell}{n-k}}{\binom{2 n}{n}} \leq \frac{2}{2^{\ell+p}} \sum_{k=0}^{\ell}|2 k-\ell|^{p}\binom{\ell}{k}=\frac{2}{2^{p}} \mathbb{E}\left|S_{\ell}\right|^{p}
$$

where S_{ℓ} is a sum of ℓ i.i.d. Rademacher random variables. By the Khinchine inequality (1.1), we have

$$
\left(\mathbb{E}\left|S_{\ell}\right|^{p}\right)^{1 / p} \leq \sqrt{p} \sqrt{\ell}
$$

Thus,

$$
\mathbb{E}|\xi-\mathbb{E} \xi|^{p} \leq 2\left(\frac{p \ell}{4}\right)^{p / 2}
$$

Remark 3.5 The above proof can be extended to a slightly larger class of hypergeometric random variables. Note that the proof works whenever $\binom{N-\ell}{n-k} /\binom{N}{n} \leq 1$. Thus, if $\ell \geq N-\log _{2}\left[\sqrt{\pi}\binom{N}{n}\right]$, then

$$
\mathbb{E}|\xi-\mathbb{E} \xi|^{p} \leq 2(p \ell / 4)^{\frac{p}{2}}
$$

for a (N, n, ℓ) hypergeometric random variable ξ.

4 Concluding Remarks

In this section we would like to prove Theorem 1.2 in a more general context; namely, we study behaviour of moments of $f(\sigma)=\left|\sum_{i=1}^{N} a_{\sigma(i)} b_{i}\right|$, where σ is permutation function. A possible approach to this problem is to use the concentration on the group Π_{N} (endowed with the distance $\left.d_{N}(\sigma, \pi)=|\{i: \sigma(i) \neq \pi(i)\}|\right)$. The following theorem is proved by Maurey ([11], see also [16]).

Theorem 4.1 Let $f: \Pi_{N} \rightarrow \mathbb{R}$ be a 1 -Lipschitz function. Then for all $t>0$

$$
\mu(\{\sigma:|f(\sigma)-\mathbb{E} f| \geq t\}) \leq 2 e^{-t^{2} /(32 N)}
$$

Let us mention here the following open question posed by G. Schechtman in [16]: Is there an equivalent (with constants independent of N) metric on Π_{N} for which the isoperimetric problem can be solved?
Theorem 4.1 implies the following estimate.
Corollary 4.2 Let $a, b \in \mathbb{R}^{N}$. Let $f: \Pi_{N} \rightarrow \mathbb{R}$ be defined by

$$
f(\sigma):=\left|\sum_{i=1}^{N} a_{\sigma(i)} b_{i}\right|
$$

Then

$$
\left(\mathbb{E}|f|^{p}\right)^{1 / p} \leq \mathbb{E}|f|+4 \sqrt{p} \sqrt{N}\|a\|_{\infty}\|b\|_{\infty}
$$

Proof It is easy to see that f is a Lipschitz function with Lipschitz constant $2\|a\|_{\infty}\|b\|_{\infty}$, indeed,

$$
\begin{aligned}
|f(\sigma)-f(\pi)| & \leq\left|\sum_{i=1}^{N} a_{\sigma(i)} b_{i}-\sum_{i=1}^{N} a_{\pi(i)} b_{i}\right| \\
& \leq \sum_{i=1}^{N}\left|b_{i}\left\|a_{\sigma(i)}-a_{\pi(i)} \mid \leq 2\right\| a\left\|_{\infty}\right\| b \|_{\infty} d_{N}(\sigma, \pi)\right.
\end{aligned}
$$

Using Theorem 4.1 and the bound $\Gamma(x) \leq x^{x-1}$ for all $x \geq 1$ (see, for example, [4]), we obtain

$$
\begin{aligned}
\mathbb{E}|f-\mathbb{E} f|^{p}=\int_{0}^{\infty} \mu_{N}\left(|f-\mathbb{E} f|^{p} \geq t^{p}\right) d t^{p} & \leq 2 p \int_{0}^{\infty} e^{-t^{2} /\left(32 N\|a\|_{\infty}^{2}\|b\|_{\infty}^{2}\right)} t^{p-1} d t \\
& \leq 4^{p} \Gamma\left(\frac{p}{2}\right) N^{p / 2}\|a\|_{\infty}^{p}\|b\|_{\infty}^{p} \\
& \leq 4^{p} N^{p / 2} p^{p / 2}\|a\|_{\infty}^{p}\|b\|_{\infty}^{p} .
\end{aligned}
$$

Thus,

$$
\left(\mathbb{E}|f|^{p}\right)^{1 / p} \leq \mathbb{E}|f|+4 \sqrt{p} \sqrt{N}\|a\|_{\infty}\|b\|_{\infty} \leq \sqrt{\mathbb{E}|f|^{2}}+4 \sqrt{p} \sqrt{N}\|a\|_{\infty}\|b\|_{\infty}
$$

Remark 4.3 In the case where $b_{i}= \pm 1$ with condition $\sum_{i=1}^{N} b_{i}=0$, Corollary 4.2 gives an additional factor \sqrt{N} in the upper estimate in (1.4). Using the chaining argument similar to the one used in [1-3] and Proposition 3.1, the factor \sqrt{N} can be reduced to $\sqrt{\ln N}$ (the details are provided in [18]).

Acknowledgment I would like to express my deep gratitude to my supervisor A. E. Litvak for encouragement and helpful discussions. I am also thankful to M. Rudelson for his valuable suggestions and very useful discussions.

References

[1] R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, Quantitative estimates of the convergence of the empirical covariance matrix in Log-concave ensembles. J. Amer. Math. Soc. 23(2010), no. 2, 535-561. http://dx.doi.org/10.1090/S0894-0347-09-00650-X
[2] , Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling. Constr. Approx. 34(2011), no. 1, 61-88. http://dx.doi.org/10.1007/s00365-010-9117-4
[3] R. Adamczak, R. Latała, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, Tail estimates for norms of sums of log-concave random vectors. Proc. Lond. Math. Soc. 108(2014), no. 3, 600-637. http://dx.doi.org/10.1112/plms/pdt031
[4] G. D. Anderson and S. L. Qiu, A monotoneity property of the gamma function. Proc. Amer. Math. Soc. 125(1997), no. 11, 3355-3362. http://dx.doi.org/10.1090/S0002-9939-97-04152-X
[5] D. Chafai, O. Guédon, G. Lecué, and A. Pajor, Interaction between compressed sensing, random matrices and high dimensional geometry. Panoramas et Synthèses, 37, Société Mathématique de France, Paris, 2012.
[6] D. J. H. Garling, Inequalities: a journey into linear analysis. Cambridge University Press, Cambridge, 2007.
[7] O. Guédon, P. Nayar, and T. Tkocz, Concentration inequalities and geometry of convex bodies. In: Analytical and Probabilistic Methods in the Geometry of Convex Bodies, IM PAN Lecture Notes, Vol. 2, Warsaw 2014. http://perso-math.univ-mlv.fr/users/guedon.olivier/listepub.html
[8] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate discrete distributions. Third ed., Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley \& Sons], Hoboken, NJ, 2005.
[9] J.-P. Kahane, Some random series of functions. Second ed., Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985.
[10] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer-Verlag, Berlin-New York, 1977; Classical Banach spaces. II. Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer-Verlag, Berlin-New York, 1979.
[11] B. Maurey, Construction de suites sýmétriques. C.R. Acad. Sci. Paris Sér. A-B, 288(1979), no. 14, A679-A681.
[12] V. D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov. Lecture Notes in Math., 1200, Springer-Verlag, Berlin, 1986.
[13] S. O'Rourke, A note on the Marchenko-Pastur law for a class of random matrices with dependent entries. Electron. Commun. Probab. 17(2012), no. 28, 1-13.
[14] P. Hitczenko, Domination inequality for martingale transforms of Rademacher sequence. Israel J. Math. 84(1993), no. 1-2, 161-178. http://dx.doi.org/10.1007/BF02761698
[15] G. Peskir and A. N. Shiryaev, The inequalities of Khinchine and expanding sphere of their action. Russian Math. Surveys 50(1995), no. 5, 849-904.
[16] G. Schechtman, Concentration, results and applications. In: Handbook of the geometry of Banach spaces, 2, North-Holland, Amsterdam, 2003. pp. 1603-1634.
[17] M. Skala, Hypergeometric tail inequalities: ending the insanity. arxiv:1311.5939
[18] S. Spektor, Selected topics in asymptotic geometric analysis and approximation theory. Ph.D. Thesis. University of Alberta, 2014.
[19] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific \& Technical, Harlow; John Wiley \& Sons, Inc., New York, 1989.
Department of Mathematical and Statistical Sciences,, University of Alberta,, Edmonton, AB, T6G 2G1
e-mail: sanaspek@gmail.com

