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Restricted Khinchine Inequality

Susanna Spektor

Abstract. We prove aKhintchine type inequality under the assumption that the sumofRademacher
random variables equals zero. We also show a new tail-bound for a hypergeometric random variable.

1 Introduction

_e Khinchine inequality plays a crucial role in many deep results of probability and
analysis (see [6, 9, 10, 12, 15, 19] among others). It says that Lp and L2 norms of sums
of weighted independent Rademacher random variables are comparable. More pre-
cisely, we say that ε0 is a Rademacher random variable if P(ε0 = 1) = P(ε0 = −1) = 1

2 .
Let ε i , i ≤ N , be independent copies of ε0 and a ∈ RN . _e Khinchine inequality (see
e.g., [10,_eorem 2.b.3] or [6,_eorem 12.3.1]) states that for any p ≥ 2 one has

(E∣
N

∑
i=1
a i ε i ∣

p
)

1
p
≤
√

p ∥a∥2 =
√

p(E∣
N

∑
i=1
a i ε i ∣

2
)

1
2
.(1.1)

Note that the (Rademacher) random vector ε = (ε1 , . . . , εN) in the Khinchine in-
equality has independent coordinates. However, in many problems of analysis and
probability it is important to consider random vectors with dependent coordinates,
e.g., so-called log-concave random vectors, which in general have dependent coor-
dinates, but whose behaviour is similar to that of the Rademacher random vector or
someGaussian random vector (see e.g., [7] and references therein). In [13] the author
considered random matrices, whose rows are independent random vectors satisfying
certain conditions (so the vectors may have dependent coordinates). He studied lim-
iting empirical distribution of eigenvalues of such matrices. As an example of such a
vector, showing that the conditions cover large class of natural distributions, not cov-
ered by previously known results, O’Rourke considered the vector ε = (ε1 , . . . , εN),
whose coordinates are Rademacher random variables under the additional condition

S =
N

∑
i=1
ε i = 0, where N is even,(1.2)

(see [13, Examples 1.4 and 1.10]). For such vectors he proved a Khinchine type in-
equality with the factor C

√
Np/ logN in front of ∥a∥2, which was enough for his
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Restricted Khinchine Inequality 205

purposes. _e goal of this paper is to show that such random variables satisfy aKhin-
chine type inequality with the same factor

√
p as in the standard Khinchine inequal-

ity. To shorten notation, we denote by ES the conditional expectation given the event
(1.2). Note that the corresponding probability space is

Ω = { ε ∈ {−1, 1}N
∣

N

∑
i=1
ε i = 0} = { ε ∈ {−1, 1}N

∣ card{i ∶ ε i = 1} = n} .(1.3)

Our main result is the following theorem.

_eorem 1.1 Let ε = (ε1 , . . . , εN), be a vectorwhose coordinates areRademacher ran-
dom variables under the condition (1.2). Let a = (a1 , . . . , aN) ∈ RN and b = 1

N ∑
N
i=1 a i .

_en

(1.4) (ES ∣
N

∑
i=1
a i ε i ∣

p
)

1/p
≤
√

2p (∥a∥2
2 − N b2)

1/2
≤
√

2p (ES ∣
N

∑
i=1
a i ε i ∣

2
)

1/2
.

_e ûrst step in the proof is a reformulation in terms of random variables on the
permutation group as follows. Let N = 2n. For the set Ω deûned in (1.3), we put into
correspondence the group ΠN of all permutations of the set {1, . . . ,N} as

σ ∈ ΠN ←→ Aσ = { ε ∈ Ω ∣ ε i = 1 if σ(i) ≤ n; ε i = −1 if σ(i) > n} .

Given a ∈ RN , deûne fa ∶ΠN → R by

fa(σ) ∶=
n

∑
i=1
aσ(i) −

2n

∑
i=n+1

aσ(i) .(1.5)

By EΠ we denote the average over ΠN , i.e., the expectation with respect to the nor-
malized counting measure on ΠN . Note that ES ∣∑

N
i=1 a i ε i ∣p = EΠ ∣ fa ∣p . _erefore,

_eorem 1.1 is equivalent to the following theorem.

_eorem 1.2 Let N = 2n, a ∈ RN . Let fa be the function deûned in (1.5). Let
b = 1

N ∑
N
i=1 a i . _en for p ≥ 2,

(EΠ ∣ fa ∣p)
1/p

≤
√

2p(
N

∑
i=1
a2
i − N b2

)
1/2

≤
√

2p(EΠ ∣ fa ∣2)
1/2

.

In Section 2 we prove_eorem 1.2. _en, in Section 3, we consider a special case
of our problem, when the coordinates of the vector a are either ones or zeros. _is
particular case leads to the hypergeometric distribution. We obtain new bounds for
the p-th central moments of such variables.

In the last section we discuss the behaviour ofmoments of the following function
deûned on the group of permutations endowed with normalized counting measure

f (σ) = ∣
N

∑
i=1
aσ(i)b i ∣ .

Note that the case b i = ±1, together with ∑N
i=1 b i = 0, corresponds to the settings of

_eorem 1.2.
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2 Proof of Theorem 1.2

We now compute

EΠ ∣ fa ∣2 = E∣
n

∑
i=1
aσ(i) −

2n

∑
i=n+1

aσ(i)∣
2
.

Expanding the square and noticing that for every i, and every k ≠ i, expectations over
all permutations respectively are

E(a2
σ(i)) =

∥a∥2
2

2n
and E(aσ(i)aσ(k)) =

(∑
2n
i=1 a i)

2 − ∥a∥2
2

2n(2n − 1)
,

we get that

EΠ ∣ fa ∣2 =
N∥a∥2

2 − (∑
N
i=1 a i)

2

(N − 1)
.

_us, without loss of generality wemay assume that∑N
i=1 a i = 0.

For k ≤ n, let

bk ,σ ∶= aσ(k) − aσ(n+k) and Hk ,σ ∶=
n

∑
i=k+1

aσ(i) −
2n

∑
i=n+k+1

aσ(i)

(with Hn ,σ = 0). Clearly,

n

∑
i=1
aσ(i) −

2n

∑
i=n+1

aσ(i) = b1,σ +H1,σ = b1,σ + b2,σ +H2,σ = ⋅ ⋅ ⋅ =
n

∑
i=1
b i ,σ .

Note that EΠ ∣b1,σ +H1,σ ∣
p = EΠ ∣ − b1,σ +H1,σ ∣

p . Hence,

EΠ ∣ fa(σ)∣p = EΠ ∣
n

∑
i=1
aσ(i) −

2n

∑
i=n+1

aσ(i)∣
p
=
EΠ ∣b1,σ +H1,σ ∣

p +EΠ ∣ − b1,σ +H1,σ ∣
p

2
.

Denoting by δ i , i ≤ n, i.i.d. Rademacher random variables independent of ε1 , . . . , εN ,
and using the Khinchine inequality (1.1), we obtain

EΠ ∣ fa(σ)∣p = EΠEδ1 ∣δ1 b1,σ +H1,σ ∣
p

= EΠEδ1Eδ2 ∣δ1 b1,σ + δ2 b2,σ +H2,σ ∣
p
= ⋅ ⋅ ⋅

= EΠEδ1Eδ2 ⋅ ⋅ ⋅Eδn ∣
n

∑
i=1
δ i b i ,σ ∣

p

≤ EΠ[
√

p(
n

∑
i=1
b2
i ,σ)

1/2
]

p
= pp/2 EΠ(

n

∑
i=1

∣aσ(i) − aσ(i+n)∣
2
)

p/2

≤ pp/2 EΠ(2
n

∑
i=1

(a2
σ(i) + a

2
σ(i+n)))

p/2
= (2p)p/2

∥a∥p
2 ,

which completes the proof.
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3 Hypergeometric Distribution

In this section we discuss a speciûc case of hypergeometric distribution and show
how it is related to our problem. Recall that a hypergeometric random variable with
parameters (N , n, ℓ) is a random variable ξ that takes values k = 0, . . . , ℓ with prob-
ability

pk =
(
ℓ
k)(

N−ℓ
n−k)

(
N
n)

.

In this sectionwe consider only the case N = 2n, ℓ ≤ n. It iswell known thatEξ = ℓ/2.
In the next proposition we estimate the central moment of ξ.

Proposition 3.1 Let 1 ≤ ℓ ≤ n. Let ξ be (2n, n, ℓ) hypergeometric random variable.
_en for p ≥ 2 one has

E ∣ξ −E ξ∣p ≤
√

2(
p ℓ
4

)

p
2
= C p

1 (
p ℓ
4

)

p
2
.

Remark 3.2 It is well known that the conclusion of Proposition 3.1 is equivalent to
the following, so-called ψ2 deviation inequality: there are C2 ,C′2 > 0, such that for all
t ≥ C′2,

P(∣ξ −E ξ∣ > t) ≤ exp(
−t2

C2
2ℓ

) .

Relationships betweenC1 ,C2, andC′2 can be found, for example, in [5,_eorem 1.1.5].
_is estimate, forhypergeometric ξ, isof independent interest; in particular, it isbetter
than the previously observed bound exp(−2t2/n) when ℓ ≪ n (see [8, Section 6.5]
and [17, formulas (10), (14)]).

Remark 3.3 One can use_eorem 1.2 to estimate ES ∣∑
2n
i=1 a i ε i ∣p in the case where

the vector a has 0/1 coordinateswith ℓ ones. Indeed,without loss of generality assume
that a1 = a2 = ⋅ ⋅ ⋅ = aℓ = 1 and aℓ+1 = aℓ+2 = ⋅ ⋅ ⋅ = a2n = 0. _en ∑2n

i=1 a i ε i = ∑ℓ
i=1 ε i .

_eorem 1.2 implies the following estimate.

Corollary 3.4 Let a ∈ RN , N = 2n, be a vector with ℓ coordinates equal to one and
N − ℓ zero coordinates. _en, for p ≥ 2,

ES ∣
N

∑
i=1
a i ε i ∣

p
≤ (2 p ℓ)p/2 .

Proof of Proposition 3.1 Denote X ∶= ∑2n
i=1 a i ε i = ∑ℓ

i=1 a i ε i . Since the vector a has
0/1 coordinates with ℓ ones, ∥a∥2 =

√
ℓ. For every 0 ≤ k ≤ ℓ we compute the prob-

ability qk that exactly k of ε1 , ε2 , . . . , εℓ equals one (in that case X = 2k − ℓ). Since
S = ∑

2n
i=1 ε i = 0, in order to get k ones, we have to choose k ones out of ε1 , ε2 , . . . , εℓ

and n − k ones out of εℓ+1 , εℓ+2 , . . . , ε2n . _is gives us (ℓk)(
2n−ℓ
n−k ) choices. Since

∣Ω∣ = ∣ {ε ∈ {−1, 1}2n
∣

2n

∑
i=1
ε i = 0}∣ = (

2n
n
),
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we obtain that qk = pk , i.e., X = 2(ξ −E ξ), where ξ has hypergeometric distribution
with parameters (2n, n, ℓ). _erefore, Corollary 3.4 implies

(E∣ξ −Eξ∣p) 1/p
≤
√

2 p ℓ.

We would also like to note that Proposition 3.1 can be proved directly. Below we
provide such a direct proof,which gives 2 in place of

√
2 in front of ( pℓ

4 )p/2. _is proof
is of interest as it can be extended to a slightlymore general situation (seeRemark 3.5)
and can be used in another approach to themain problem (see Remark 4.3).

Direct proof of Proposition 3.1 From Stirling’s formula together with the observa-
tion that

√
πn (

2n
n )/4

n increases, we observe that

22n
√

2πn
≤ (

2n
n
) ≤

22n
√

πn
.

Using this, we obtain

(
2n−ℓ
n−k )

(
2n
n )

≤
(

2n−ℓ
n−⌊ ℓ

2 ⌋
)

(
2n
n )

≤
22n−ℓ

√

π(n − ⌊ ℓ2 ⌋)

√
2πn
22n ≤

2
2ℓ

≤ 1.

_erefore

E ∣ξ −E ξ∣p =
1
2p

ℓ

∑
k=0

∣2k − ℓ∣p
(
ℓ
k)(

2n−ℓ
n−k )

(
2n
n )

≤
2

2ℓ+p

ℓ

∑
k=0

∣2k − ℓ∣p(
ℓ
k
) =

2
2pE∣Sℓ ∣p ,

where Sℓ is a sumof ℓ i.i.d. Rademacher random variables. By theKhinchine inequal-
ity (1.1), we have

(E∣Sℓ ∣p)
1/p

≤
√

p
√
ℓ.

_us,

E ∣ξ −E ξ∣p ≤ 2(
p ℓ
4

)
p/2

.

Remark 3.5 _e above proof can be extended to a slightly larger class of hyperge-
ometric random variables. Note that the proof works whenever (N−ℓ

n−k)/(
N
n) ≤ 1. _us,

if ℓ ≥ N − log2[
√

π(N
n)], then

E∣ξ −E ξ∣p ≤ 2(p ℓ/4)
p
2

for a (N , n, ℓ) hypergeometric random variable ξ.

4 Concluding Remarks

In this section we would like to prove_eorem 1.2 in amore general context; namely,
we study behaviour of moments of f (σ) = ∣∑

N
i=1 aσ(i)b i ∣, where σ is permutation

function. A possible approach to this problem is to use the concentration on the
group ΠN (endowed with the distance dN(σ , π) = ∣{i ∶ σ(i) ≠ π(i)}∣). _e follow-
ing theorem is proved by Maurey ([11], see also [16]).
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_eorem 4.1 Let f ∶ΠN → R be a 1-Lipschitz function. _en for all t > 0

µ({σ ∶ ∣ f (σ) −E f ∣ ≥ t}) ≤ 2e−t2/(32N) .

Let us mention here the following open question posed by G. Schechtman in [16]:

Is there an equivalent (with constants independent of N) metric on ΠN for
which the isoperimetric problem can be solved?

_eorem 4.1 implies the following estimate.

Corollary 4.2 Let a, b ∈ RN . Let f ∶ΠN → R be deûned by

f (σ) ∶= ∣
N

∑
i=1
aσ(i)b i ∣ .

_en

(E∣ f ∣p)
1/p

≤ E∣ f ∣ + 4
√

p
√

N∥a∥∞∥b∥∞ .

Proof It is easy to see that f is a Lipschitz function with Lipschitz constant
2∥a∥∞∥b∥∞, indeed,

∣ f (σ) − f (π)∣ ≤ ∣
N

∑
i=1
aσ(i)b i −

N

∑
i=1
aπ(i)b i ∣

≤
N

∑
i=1

∣b i ∣∣aσ(i) − aπ(i)∣ ≤ 2∥a∥∞∥b∥∞dN(σ , π).

Using _eorem 4.1 and the bound Γ(x) ≤ xx−1 for all x ≥ 1 (see, for example, [4]), we
obtain

E∣ f −E f ∣p = ∫
∞

0
µN(∣ f −E f ∣p ≥ tp)dtp ≤ 2p∫

∞

0
e−t2/(32N∥a∥2

∞
∥b∥2

∞
)tp−1dt

≤ 4p Γ(
p
2
)N p/2

∥a∥p
∞
∥b∥p

∞

≤ 4p N p/2pp/2
∥a∥p

∞
∥b∥p

∞
.

_us,

(E∣ f ∣p)
1/p

≤ E∣ f ∣ + 4
√

p
√

N∥a∥∞∥b∥∞ ≤
√
E∣ f ∣2 + 4

√
p
√

N∥a∥∞∥b∥∞ .

Remark 4.3 In the case where b i = ±1 with condition ∑N
i=1 b i = 0, Corollary 4.2

gives an additional factor
√

N in the upper estimate in (1.4). Using the chaining ar-
gument similar to the one used in [1–3] and Proposition 3.1, the factor

√
N can be

reduced to
√

lnN (the details are provided in [18]).
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