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CONCAVE RENEWAL FUNCTIONS DO NOT
IMPLY DFR INTERRENEWAL TIMES

YAMING YU,∗ University of California

Abstract

Brown (1980), (1981) proved that the renewal function is concave if the interrenewal
distribution is DFR (decreasing failure rate), and conjectured the converse. This note
settles Brown’s conjecture with a class of counterexamples. We also give a short
proof of Shanthikumar’s (1988) result that the DFR property is closed under geometric
compounding.
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1. Introduction

Structural relationships between the renewal function and the underlying distribution are of
great interest in renewal theory. For a renewal process with decreasing failure rate (DFR) inter-
renewal times, it is known that the renewal function is concave (see Brown (1980)). Conversely,
Brown (1981) conjectured that DFR interrenewal times are also necessary for the concavity
of the renewal function. As shown in Shanthikumar (1988), there exist counterexamples to a
discrete analogue of this conjecture. Brown’s conjecture in the continuous case, however, has
remained open. See Szekli (1986), (1990), Hansen and Frenk (1991), Shaked and Zhu (1992),
Kijima (1992), and Kebir (1997) for related results and discussions. Also relevant is the work
of Lund et al. (2006), who used hazard rates and renewal sequences to study reversible Markov
chains.

In this note we construct absolutely continuous distributions that do not have DFRs but
nevertheless lead to concave renewal functions. That is, we give a definite answer to Brown’s
question in the negative. Our counterexamples have the following feature. On [0, t1] for some
t1 > 0, the interrenewal time has a DFR; on [t1, t2] for some t2 > t1, the failure rate strictly
increases before decreasing again on [t2, ∞). It is shown that, for a suitable class of such
distributions, if the increase in failure rate on [t1, t2] is small enough, and the decrease shortly
after t2 is fast enough, then the resulting renewal density is decreasing, i.e. the renewal function
is concave. In Section 2 we present the precise statements and illustrate with a numerical
example. Section 3 contains the proofs.

The renewal process is closely related to compound geometric random variables. In Sec-
tion 4, by adapting the arguments of de Bruijn and Erdős (1953), we give an alternative proof of
Shanthikumar’s (1988) result that the DFR property is closed under geometric compounding.
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2. Concavity of the renewal function

Let F(t) be a distribution function on R+ = [0, ∞) with F(0) = 0. Then the renewal
function M(t), i.e. the average number of renewals in [0, t], for a renewal process with
underlying distribution F is given by

M(t) = F(t) +
∫ t

0
M(t − x) dF(x), t ≥ 0.

(Some authors define M(t)+1 as the renewal function; our results work with either definition.)
If F(t) is absolutely continuous with density f (t) then so is M(t), and a version of its density,
m(t), satisfies

m(t) = f (t) +
∫ t

0
m(x)f (t − x) dx, t ≥ 0. (1)

A positive function g(x), x ∈ R+, is log-convex if log g(x) is convex on R+. A distribution on
R+ has DFR if its survival function is log-convex on R+. We recall two fundamental results
relating M(t) to F(t).

Theorem 1. (De Bruijn and Erdős (1953), Brown (1980), and Hansen and Frenk (1991).) The
following assertions hold.

(i) If F(t) has a log-convex density f (t) then the renewal density m(t) as in (1) is also
log-convex.

(ii) If F(t) is DFR then M(t) is concave.

The question raised by Brown (1981) may be formulated as follows.

Conjecture 1. If the renewal function M(t) is concave on R+ then F(t) is DFR.

Shanthikumar (1988) resolved a discrete version of this conjecture by constructing a coun-
terexample using auxiliary results on discrete Markov chains. It has also been noted that the
discrete example does not generalize and the continuous case is still open. Our main result
(Proposition 1) finally disproves Conjecture 1.

Proposition 1. Let 0 < t1 < ∞. Let f (t) be a density function that is positive on R+
and continuously differentiable on each of Ik, 0 ≤ k ≤ 3, where I0 = [0, t1], I1 = [t1, t2],
I2 = [t2, t3], and I3 = [t3, ∞), with t2, t3 to be determined. That is, f (t) is continuous on R+,
but f ′(t) may jump at tk, k = 1, 2, 3. Assume that the corresponding hazard rate function r(t)

satisfies

(i) r ′(t) < 0, t ∈ I0;

(ii) on I1 we have

r(t) = λ

1 − εeλt
, t1 ≤ t ≤ t2, (2)

for some ε ∈ (0, 1), where λ > 0 is determined by ε and r(t1);

(iii) on I2 we have
r ′(t) ≤ r2(t) − f (0)r(t), t2 < t < t3; (3)

(iv) r(t3) ≤ r(t1) and r ′(t) ≤ 0, t ∈ I3.
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Figure 1: Illustration of a counterexample given by (4), (5), and (6) with t1 = 1, t2 = 1.5, t3 = 2, and
β = 0.02.

Then, for small enough ε > 0 and t2 − t1 > 0, both depending on the specification of r(t) for
t ∈ I0 only, the renewal density m(t) given by (1) decreases on R+.

Note that r(t) strictly increases on [t1, t2]. Proposition 1 therefore settles Conjecture 1 in
the negative. An example of a survival function F̄ satisfying Proposition 1(i) and (ii) is

F̄ (t) =
{

1
2 (e−t + 1), 0 ≤ t ≤ t1,

αe−λt − β, t1 < t ≤ t2,
(4)

where β > 0, and α and λ are determined by β via

F̄ (t1+) = F̄ (t1) and F̄ ′(t1+) = F̄ ′(t1−).

Specifically,
λ = [1 + (1 + 2β)et1 ]−1, α = (2λ)−1e(λ−1)t1 .

The ε in (2) corresponds to β/α. Proposition 1(iii) says that the hazard rate should decrease
fast shortly after t2. An example based on (4) that satisfies this condition is

r(t) = r(t2)e
(t2−t)/2, t2 < t ≤ t3,

which leads to

F̄ (t) = F̄ (t2) exp[−2r(t2)(1 − e(t2−t)/2)], t2 < t ≤ t3. (5)

For Proposition 1(iv), we need t3 ≥ t2 +2 log(r(t2)/r(t1)) to ensure that r(t3) ≤ r(t1), but r(t)

can stay flat on t ∈ I3, which gives

F̄ (t) = F̄ (t3)e
r(t3)(t3−t), t > t3. (6)

As an illustration, Figure 1 shows the survival function, density, hazard rate, and renewal
density for a distribution as specified by (4), (5), and (6) with t1 = 1, t2 = 1.5, t3 = 2, and
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β = 0.02. The almost imperceptible decrease of m(t) on t ∈ [1, 1.5] is verified numerically
as Proposition 1 guarantees the monotonicity of m(t) for small enough β > 0 and t2 − t1 > 0
but does not specify how small β or t2 − t1 has to be.

3. Proof of Proposition 1

We first establish a simple but useful identity.

Lemma 1. Let r(t) and F̄ (t) denote the hazard rate and survival functions, respectively, for a
distribution with density f (t) on R+. Assume that f (t) is absolutely continuous and that f ′(t)
is bounded on every compact subinterval of R+. Then the renewal density m(t) as defined by
(1) satisfies

m′(t) = r ′(t)F̄ (t) +
∫ t

0
m′(x)[r(t − x) − r(t)]F̄ (t − x) dx, t > 0. (7)

A discrete version of (7) can be traced back to Kaluza (1928).

Proof of Lemma 1. The conditions guarantee that m(t) is absolutely continuous. In fact, we
may differentiate under the integral sign in (1) and obtain

m′(t) = f ′(t) + m(t)f (0) +
∫ t

0
m(x)f ′(t − x) dx, t > 0. (8)

Integration by parts then yields

m′(t) = f ′(t) + m(0)f (t) +
∫ t

0
m′(x)f (t − x) dx, t > 0. (9)

We also have ∫ t

0
m′(x)F̄ (t − x) dx = m(t) − f (0)F̄ (t) −

∫ t

0
m(x)f (t − x) dx

= f (t) − f (0)F̄ (t), (10)

where we have used integration by parts in the first step and (1) in the second step. The identity
(7) follows by expanding its right-hand side and applying (9) and (10) to simplify.

Proof of Proposition 1. Since f ′(t) is piecewise continuous, so is m′(t), as seen from (8).
We have m′(0+) = r ′(0+) < 0. Suppose that m′(t) becomes nonnegative on I0. Then letting
t∗ be the smallest t ∈ (0, t1) such that m′(t) ≥ 0 we have m′(x) < 0, 0 < x < t∗, and, by
Proposition 1(i), r ′(t∗) < 0, r(t∗ − x) − r(t∗) > 0, 0 < x < t∗. It follows from (7) that
m′(t∗) < 0, a contradiction. Thus, m′(t) < 0, t ∈ I0. In fact, applying (7) again yields

m′(t) < r ′(t)F̄ (t), t ∈ I0, (11)

where the left derivatives are used if t = t1.
By (2) we have

r ′(t) = (λ−1r(t) − 1)r(t), t1 < t < t2,

where λ is determined from ε via r(t1) = λ/(1 − εeλt1). For fixed r(t1) as ε ↓ 0, we have
λ ↑ r(t1) and, hence, r ′(t1+) ↓ 0. Defining δ = m′(t1−) − r ′(t1−)F̄ (t1), and noting that
δ < 0 by (11), we obtain

m′(t1+) = r ′(t1+)F̄ (t1) + δ < 0 for small enough ε > 0.
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Because m′(t) is continuous on (t1, t2), and m′(t1+) < 0, we have m′(t) < 0, t ∈ (t1, t2), if
t2 − t1 is small enough. Thus, m(t) decreases on I1.

Also, m(t) must strictly decrease on I2. Assume the contrary, and let t∗ be the smallest
t ∈ [t2, t3) such that m′(t+) ≥ 0. Then (9) gives

0 ≤ m′(t∗+) < f ′(t∗+) + m(0)f (t∗), (12)

because inside the integral m′(x) < 0, x ∈ [0, t∗). However, by (3) we have

f ′(t∗+) + m(0)f (t∗) = F̄ (t∗)[r ′(t∗+) − r2(t∗) + f (0)r(t∗)] ≤ 0,

which contradicts (12).
Finally, we show that m(t) decreases on I3 by applying (7) again. The assumptions r(t3) ≤

r(t1) and r ′(t) ≤ 0, t ∈ I3, ensure that r(t − x) ≥ r(t), 0 < x < t, t > t3, with strict
inequality if t − x < t1. It is already shown that m′(x) < 0 for x < t3. Thus, (7) implies
that m′(t3+) < 0. The same argument proving that m′(t) < 0 for t ∈ I0 then shows that m(t)

decreases on I3.

4. Preservation of DFR under geometric compounding

Compound geometric random variables appear naturally in areas such as queueing theory
(see, e.g. Szekli (1986)) and financial risk modeling. It is well known that log-convexity is
closed under geometric compounding (this is essentially Theorem 1(i)). Shanthikumar (1988)
showed that the DFR property is also closed under geometric compounding. This was achieved
by establishing auxiliary results on discrete Markov chains. It may be worthwhile to note that the
argument of de Bruijn and Erdős (1953) can be adapted to give a short proof of Shanthikumar’s
(1988) result (Theorem 2(i) below). The same argument yields a parallel result (Theorem 2(ii))
concerning the increasing failure rate (IFR) property.

Theorem 2. Let X be a random variable on N = {1, 2, . . . }, and let T be geometric with
parameter p ∈ (0, 1), i.e. Pr(T = n) = pqn−1, n = 1, 2, . . . , q ≡ 1 − p. Define the random
sum Y ≡ ∑T

k=1 Xk , where X1, X2, . . . are independent and identically distributed with generic
copy X and also independent of T .

(i) If log Pr(X ≥ n) is convex in n ∈ N, i.e. X is discrete DFR, then so is Y .

(ii) If log Pr(Y ≥ n) is concave in n ∈ N, i.e. Y is discrete IFR, then so is X.

Proof. Define

fn = Pr(X = n), F̄n = Pr(X ≥ n), gn = Pr(Y = n), Ḡn = Pr(Y ≥ n).

We have the recursions

gn = pfn + q

n−1∑
k=1

fkgn−k, Ḡn = F̄n + q

n−1∑
k=1

fkḠn−k, n = 1, 2, . . . . (13)

The following identity is analogous to Equation (7) of de Bruijn and Erdős (1953); Hansen
(1988) used similar identities for compound Poisson probabilities (see Yu (2009) for related
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work). It is proved by expanding the right-hand side and then applying (13):

F̄n(Ḡn+2Ḡn − Ḡ2
n+1) = pḠn(F̄n+2F̄n − F̄ 2

n+1)

+ q

n∑
k=2

(F̄n+1fk−1 − F̄nfk)(Ḡn+1Ḡn+1−k − ḠnḠn+2−k). (14)

In particular, Ḡ3Ḡ1 − Ḡ2
2 = p(F̄3F̄1 − F̄ 2

2 ). Assuming that F̄n is log-convex, we obtain
Ḡn+1Ḡn+1−k ≥ ḠnḠn+2−k, 2 ≤ k ≤ n, and Ḡn+2Ḡn ≥ Ḡ2

n+1, n ≥ 1, by induction from
(14). Thus, Ḡn is log-convex in n ∈ N, i.e. Y is discrete DFR, and part (i) is proved. Similarly,
assuming that Ḡn is log-concave, we obtain F̄n+1fk−1 ≤ F̄nfk, 2 ≤ k ≤ n, and F̄n+2F̄n ≤
F̄ 2

n+1, n ≥ 1, by induction. Thus, F̄n is log-concave in n ∈ N, i.e. X is discrete IFR, and part
(ii) is proved.
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