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A straight cylindrical duct is considered containing an axial mean flow that is uniform
everywhere except within a boundary layer near the wall, which need not be thin. Within
this boundary layer the mean flow varies parabolically. The linearized Euler equations
are Fourier transformed to give the Pridmore-Brown equation, for which the Green’s
function is constructed using Frobenius series. The critical layer gives a non-modal
contribution from the continuous spectrum branch cut, and dominates the downstream
pressure perturbation in certain cases, particularly for thicker boundary layers. The
continuous spectrum branch cut is also found to stabilize what are otherwise convectively
unstable modes by hiding them behind the branch cut. Overall, the contribution from the
critical layer is found to give a neutrally stable non-modal wave when the source is located
within the sheared flow region, and to decay algebraically along the duct as O(x−5/2) for
a source located with the uniform flow region. The Frobenius expansion, in addition to
being numerically accurate close to the critical layer where other numerical methods lose
accuracy, is also able to locate modal poles hidden behind the branch cut, which other
methods are unable to find; this includes the stabilized hydrodynamic instability. Matlab
code is provided to compute the Green’s function.
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1. Introduction

The propagation of sound through an otherwise steady mean flow has many important
applications. One such application is predicting and optimizing aircraft engine noise. With
aircraft noise being subjected to ever increasing restrictions, being able to model this noise
successfully becomes increasingly important. In particular, aircraft engine noise at take-off
depends critically on the sound-absorbing performance of acoustic liners. Unfortunately,
acoustic liner performance in the presence of a steady mean flow is poorly predicted by
existing theory, as demonstrated by comparisons to laboratory experiments (Renou &
Aurégan 2011; Spillere et al. 2020). The theory is equally applicable to any situation with
small perturbations to an otherwise steady mean flow along a non-rigid boundary – for
example, the stability analysis of flow over a deformable surface.

The behaviour of sound in an otherwise steady mean flow is usually modelled
using the linearized Euler equations. Non-rigid boundaries, such as the acoustic liners
used in aircraft engines, are usually modelled using an impedance boundary condition,
where a disturbance with oscillating pressure Re( p exp{iωt}) leads to an oscillating
normal boundary velocity Re(v exp{iωt}) given by p = Z(ω) v. Such impedance boundary
conditions are well understood for a mean flow that satisfies no-slip at the boundary. Often,
however, we use a simplified model where the mean flow does not satisfy no-slip at the
boundary – for example, uniform axial flow in a duct. For slipping mean flows, it is known
that the impedance boundary condition must be modified. A common modified boundary
condition is the Myers, or Ingard–Myers, boundary condition (Ingard 1959; Myers 1980).
This boundary condition is known to be the correct limiting behaviour for an inviscid mean
flow boundary layer in the limit that the boundary layer thickness tends to zero (Eversman
& Beckemeyer 1972; Tester 1973). However, this boundary condition, when applied in the
time domain, is ill-posed (Brambley 2009). Several alternative boundary conditions have
been suggested (Brambley 2011b; Khamis & Brambley 2017; Schulz et al. 2017; Aurégan
2018), which each attempt to include more relevant physics, including the effect of the
mean flow boundary layer and the effect of viscosity. However, these boundary conditions
come with their own complications, including the need to fit further free parameters, and
as yet none have been made to agree with laboratory experiments (Spillere et al. 2020).

In light of this difficulty with boundary conditions in slipping mean flow, one may
instead consider only mean flows U(r) that satisfy no-slip at the boundary (e.g. Weng
et al. 2017). Doing so, however, involves solving for the sound in a strongly varying
mean flow, which is especially taxing when the boundary layers are particularly thin.
Numerically resolving the sound in thin boundary layers requires a fine resolution,
which then also requires a small time step owing to the Courant–Friedrichs–Lewy (CFL)
condition. Progress may be made analytically by considering the simplified situation of
a straight rectilinear or cylindrical duct containing axial mean flow (as depicted later, in
figure 1). By linearizing the Euler equations about this steady mean flow and assuming
exp{iωt − ikx} dependence, one eventually arrives at the Pridmore-Brown equation (2.5),
a second-order linear ordinary differential equation for the pressure perturbation within the
duct due to Pridmore-Brown (1958). The Pridmore-Brown equation has been the subject
of much analysis (e.g. Mungur & Gladwell 1969; Ko 1972; Swinbanks 1975; Nagel &
Brand 1982; Brambley, Darau & Rienstra 2012a; Rienstra 2020), owing to its complexity.
One complexity is that treating the frequency ω as known and solving for the axial
wavenumber k as the eigenvalue, the Pridmore-Brown equation is not Sturm–Liouville
and results in a nonlinear eigenvalue problem for k. A second complexity is that the
Pridmore-Brown equation possesses a regular singularity, referred to as a critical layer or
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Z = p/v
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U(r)

ρ0(r)

θ

Figure 1. A cross sectional view of a cylindrical duct with lined walls containing sheared axial flow. ρ0(r)
is the mean flow density (here taken constant), and U(r) is the mean flow velocity, here taken to be uniform
outside a boundary layer of width h. Z is the boundary impedance and defines the boundary condition at the
wall of the duct.

continuous spectrum. Despite these difficulties, eigenfunction expansions using
eigenfunctions of the Pridmore-Brown equation are used frequently, with the
eigenfunctions assumed to form a complete basis (despite the problem being
non-self-adjoint) and the effect of the critical layer ignored (e.g. Brooks & McAlpine
2007; Olivieri, McAlpine & Astley 2010; Oppeneer, Rienstra & Sijtsma 2016; Rienstra
2021).

The lack of completeness of the modal solutions of the Pridmore-Brown equation
motivates the investigation of the Green’s function solution. The Green’s function is the
solution of the governing equations subject to a point forcing; for example, a point mass
source leads to the right-hand-side of (2.5). The Green’s function may be used to construct
the solution of the governing equations subject to any arbitrary forcing; hence, the Green’s
function is capable of being used to express any solution of the governing equations, in
contrast to a modal eigenvalue expansion, which can only express an arbitrary solution
if the modal basis is complete. The Green’s function is also worth considering on its
own merits without reference to a particular forcing, since if the governing equations are
capable of exhibiting a particular feature (such as instability, focusing, perfect reflection,
etc.), then the Green’s function must also exhibit that feature. The Green’s function is also
used in various approximation techniques (e.g. Brambley, Davis & Peake 2012b; Posson
& Peake 2013; Mathews & Peake 2018b). For this reason, the Green’s function has been
constructed for a variety of acoustical situations (e.g. Rienstra & Tester 2008; Brambley
et al. 2012a; Mathews & Peake 2017, 2018a). In particular, the Green’s function solution
of the Pridmore-Brown equation naturally includes the critical layer.

The critical layer, or continuous spectrum, is a singularity of the linearized Euler
equations occurring when the phase velocity of the perturbation, ω/k, is equal to the local
fluid velocity of the steady flow, U(rc), for some critical radius rc. Because the phase
speed is equal to the flow speed, the effect of the critical layer may be thought of as
being convected with the mean flow, and therefore as hydrodynamic in nature (Case 1960;
Rienstra, Darau & Brambley 2013). For swirling flows, the critical layer is known to lead to
algebraically growing instabilities (Golubev & Atassi 1996; Tam & Auriault 1998; Heaton
& Peake 2006). For the Pridmore-Brown equation, the critical layer is currently thought
to lead to algebraically decaying disturbances, although publications differ on the exact
nature of the decay. For example, Swinbanks (1975) predicted a disturbance of constant
amplitude plus a disturbance with O(x−3) decay for a point source, and O(x−1) decay
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for a distributed source, although exact formulae for these disturbances are not given.
Swinbanks (1975, p. 62) goes on to argue that the constant amplitude disturbance would
not be present when the disturbance is caused ‘by moving the surface of a solid body’.
In contrast, Félix & Pagneux (2007) demonstrated numerically, for a point source in a
parabolic mean flow, a decay rate of O(x−1). More recently, Brambley et al. (2012a) gave
an explicit analytic solution for the critical layer far-field response for a mean flow U(r)
that is constant in the centre of the duct, and then varies linearly in a ‘boundary layer’
region to zero at the duct walls. Locating a point source at a radius r0, they found that
the pressure perturbation from the critical layer at a radius r consisted of three distinct
components with phase velocities U(0), U(r) and U(r0), each with different decay rates.
However, Brambley et al. (2012a) chose a rather special mean flow profile. In particular,
the critical layer is usually caused by a non-zero second derivative of the mean flow profile,
U′′(r), but for the constant-then-linear mean flow, U′′(r) either is identically zero or has
a delta function discontinuity; in the constant-then-linear case, Brambley et al. (2012a)
instead attributed the critical layer to the cylindrical geometry.

In many cases, the effect of the critical layer is negligible in comparison with the
modal sum of the acoustics modes. However, when all acoustic modes are cut-off and
non-propagating, the effect of the critical layer will be dominant. Moreover, Brambley
(2013, figure 6) showed that a mode representing a hydrodynamic instability could interact
with the critical layer, although this was not seen for a constant-then-linear mean flow
profile.

Since the critical layer is a singularity of the Pridmore-Brown equation, traditional
numerical methods are particularly inaccurate near the critical layer. This often manifests
as a collection of spurious numerical modes being located along the critical layer. In
contrast, previous studies have used a Frobenius expansion about the singular point r = rc
(e.g. Heaton & Peake 2006; Campos & Kobayashi 2009; Brambley et al. 2012a). This
technique both gives increasing accuracy as the critical layer is approached, and allows
analytical continuation behind the critical layer branch cut. For example, Brambley et al.
(2012a, figure 10) found a previously unknown mode close to the critical layer that
was unable to be resolved numerically using more traditional finite differences. One
complication of the Frobenius series, however, is that, much like a power series, it has
an associated radius of convergence. For the constant-then-linear mean flow Frobenius
expansion (Brambley et al. 2012a), this did not prove a problem, as the radius of
convergence covered the region of interest in all cases that were considered. For general
flow profiles, this will not be the case, and a solution covering the entire region of interest
will involve multiple Frobenius expansions with overlapping radii of convergence; this will
turn out to be the case here. By matching two different expansions in a region where both
converge, a hybrid solution may be constructed that spans the whole region of interest.

Here, we use the Frobenius expansion method as described by Brambley et al. (2012a),
and apply it to a mean flow that is constant in the centre of the duct and then varies
quadratically within a boundary layer to satisfy no-slip at the wall. As well as being more
realistic than the constant-then-linear profile considered by Brambley et al. (2012a), this
mean flow profile is twice differentiable, allowing U′′(r) to enter the analysis, and as such
we expect the results to be more representative of an arbitrary mean flow profile. The
Frobenius expansion is derived in § 2, along with a derivation of the Pridmore-Brown
equation by spatially Fourier transforming the linearized Euler equations. The Frobenius
expansion is then used in § 3 to derive the Green’s function for a point mass source,
including inverting the spatial Fourier transform and investigating the far-field behaviour.
Results are presented in § 4 by evaluating numerically the Frobenius expansions and the
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Green’s function. These results are compared against previous results, particularly against
the predictions by Swinbanks (1975) and the constant-then-linear results by Brambley et al.
(2012a). Finally, the implications of this work are discussed, and areas for further research
highlighted, in § 5.

2. Problem formulation and homogeneous solutions

2.1. Constructing the Pridmore-Brown equation
The governing equations for what follows are the Euler equations with a mass source q:

∂ρ

∂t
+ ∇ · (ρu) = q, ρ

Du
Dt

= −∇p,
Dp
Dt

= c2 Dρ
Dt
, (2.1a–c)

where u is the fluid velocity, p is the pressure, ρ is the density, and c2 = ∂p/∂ρ|s is the
square of the sound speed. In what follows, we take the mass source q to be a small
time-harmonic point mass source. In cylindrical coordinates (x, r, θ), with a suitable
choice of origin, this mass source q may in general be taken as

q = Re
(
ε

r0
δ(x) δ(θ) δ(r − r0) exp{iωt}

)
, (2.2)

where ε is the small amplitude, ω is the frequency, and the 1/r0 term comes from writing a
unit amplitude point source in cylindrical coordinates. We expand each variable in powers
of ε:

ρ = ρ0(r)+ Re(ερ̂ eiωt)+ O(ε2), p = p0 + Re(εp̂ eiωt)+ O(ε2),

u = U(r) ex + Re(ε(û, v̂, ŵ) eiωt)+ O(ε2), c2 = c2
0(r)+ O(ε),

}
(2.3)

where p0 is necessarily a constant in order that the steady state should satisfy the Euler
equations, and it turns out that c2 is needed only to leading order in what follows. Without
loss of generality, all perturbations are expanded using a Fourier series in θ and a Fourier
transform in x. As a result, the pressure perturbation is given as

p̂(x, r, θ) = 1
2π

∞∑
m=−∞

e−imθ
∫ ∞

−∞
p̃(r; k,m, ω) e−ikx dk, (2.4)

and similarly for the density ρ̂ and the velocity components û, v̂ and ŵ. Substituting
these into the Euler equations (2.1a–c), and linearizing by ignoring terms of O(ε2) or
smaller, each of ρ̃, ũ, w̃ and finally ṽ may be eliminated, to leave a second-order ordinary
differential equation in the radial coordinate r for p̃:

p̃′′ +
(

2kU′

ω − U(r) k
+ 1

r
− ρ′

0
ρ0

)
p̃′ +

(
(ω − U(r) k)2

c2
0

− k2 − m2

r2

)
p̃

= ω − U(r0) k
2iπr0

δ(r − r0), (2.5a)

with ṽ = ip̃′

ρ0(ω − Uk)
, (2.5b)

where a prime denotes the derivative with respect to r. This is the Pridmore-Brown (1958)
equation for a point mass source, written in cylindrical coordinates.
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One boundary condition to (2.5) is regularity at r = 0. The singular solution behaves,
for m /= 0, as O(r−|m|) as r → 0, and the regular solution behaves as O(r|m|). For m =
0, the singular solution behaves as O(log r), while the regular solution behaves as O(1).
Eliminating the singular solution is therefore possible using the boundary conditions at
r = 0:

p̃(0) = 0 for m �= 0, p̃′(0) = 0 for m = 0. (2.6a,b)
To model sound within a straight cylindrical duct of radius r = a, we take the other
boundary condition to be the impedance boundary condition at r = a:

p̃(a) = Z(ω) ṽ(a) ⇐⇒ p̃′(a) = − iωρ0

Z
p̃(a), (2.7)

where Z(ω) is the impedance of the duct wall, and the two expressions are equivalent in
light of (2.5b). A hard wall corresponds to Z → ∞, and hence to ṽ(a) = 0, or equivalently
to p̃′(a) = 0.

In what follows, we make the simplifying assumption of a constant density ρ0(r). This
is a homentropic assumption, and it implies that c0(r) is also constant. We may then
non-dimensionalize speeds by the sound speed c0, densities by ρ0, and distances by the
duct radius a. Note that this places the impedance boundary condition in non-dimensional
terms at r = 1. We also assume a flow profile U(r) that is uniform, except within a
boundary layer of width h where it varies quadratically:

U(r) =

⎧⎪⎨
⎪⎩

M, 0 ≤ r ≤ 1 − h,

M

(
1 −

(
1 − 1 − r

h

)2
)
, 1 − h ≤ r ≤ 1.

(2.8)

With the non-dimensionalization of velocities by c0, M here is the duct centreline Mach
number. This situation is depicted schematically in figure 1.

In order to solve the Pridmore-Brown equation (2.5a), we first consider solutions of the
homogeneous form

p̃′′ +
(

2kU′

ω − U(r) k
+ 1

r

)
p̃′ +

(
(ω − U(r) k)2 − k2 − m2

r2

)
p̃ = 0. (2.9)

2.2. Homogeneous solutions within the region of uniform flow
Within the region of uniform flow, the homogeneous Pridmore-Brown equation (2.9)
reduces to

p̃′′ + 1
r

p̃′ +
(
(ω − Mk)2 − k2 − m2

r2

)
p̃ = 0. (2.10)

This is Bessel’s equation of order m rescaled by α, where

α2 = (ω − Mk)2 − k2; (2.11)

it will turn out later that the branch chosen for α does not matter, although for definiteness,
one may choose Re(α) > 0. Bessel’s equation has two pairs of linearly independent
solutions that we will make use of: the Bessel functions of the first and second kind,
Jm(αr) and Ym(αr); and the Hankel functions of the first and second kind, H(1)

m (αr) and
H(2)

m (αr). More information regarding these can be found in Abramowitz & Stegun (1964).
It is worth noting that only Jm(αr) is regular at r = 0, with the other solutions all requiring
a branch cut along αr < 0, with a singularity at αr = 0.
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2.3. Homogeneous solutions within the region of sheared flow
In this section, we will construct the solution of the homogeneous Pridmore-Brown
equation (2.9) when U(r) varies by proposing a Frobenius expansion about the
singularities of the Pridmore-Brown equation.

In addition to the singularity at r = 0, the homogeneous Pridmore-Brown equation
possesses regular singularities whenever ω − U(r) k = 0; these singularities correspond
to the critical layer. Within the sheared flow region 1 − h < r < 1, since the velocity
profile U(r) is quadratic in r, there are exactly two critical values r = rc for which
ω − U(rc) k = 0. Note that in general, these critical values will be complex. Solving this
quadratic equation gives the two singularities explicitly as r+

c and r−
c , where

r±
c = 1 − h ± Q, Q = h

√
1 − ω

Mk
. (2.12)

For convenience, we will take Re(Q) ≥ 0, so that Re(r+
c ) ≥ 1 − h and Re(r−

c ) ≤ 1 − h.
Since solutions with this quadratic flow profile U(r) are valid only for 1 − h < r < 1, it
will therefore be r+

c that we are mostly concerned about here.
Following Brambley et al. (2012a), we propose a Frobenius expansion (Teschl 2012)

about the regular singularity r+
c :

p̃(r) =
∞∑

n=0

an(r − r+
c )

n+σ , with a0 /= 0. (2.13)

Specifying a0 /= 0 results in a condition on σ , and we find that σ = 0, 3. By Fuchs’
theorem (Teschl 2012), this gives a pair of linearly independent solutions of the form

p̃1(r) =
∞∑

n=0

an(r − r+
c )

n+3, (2.14a)

p̃2(r) = A p̃1(r) log(r − r+
c )+

∞∑
n=0

bn(r − r+
c )

n. (2.14b)

The coefficients an and bn are derived in Appendix A, where, in particular, it is found that

a0 = b0 = 1, b1 = 0, b2 = −1
2

(
k2 +

(
m
r+

c

)2
)
, b3 = 0, (2.15a–d)

and that

A = −1
3

(
1
Q

− 1
r+

c

)(
k2 +

(
m
r+

c

)2
)

− 2m2

3r+3
c
, (2.16)

the latter in agreement with (2.3)–(2.5) of Brambley et al. (2012a). We note in passing
that in practice we may be limited by the radius of convergence of (2.14), and in such
cases, the solutions given above are analytically continued by a companion expansion
of the Pridmore-Brown equation about r = 1, as described in § A.2. Other than being a
complication concerning numerical convergence, this complication may be ignored, and
p̃1 and p̃2 thought of as being defined by the expressions in (2.14).

Due to the log term in p̃2 in (2.14b), a branch cut is necessary in the complex r-plane
originating from the branch point r = r+

c . This branch cut must be such that the solutions
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0
Re(r)

Im(r)Im(r)

1 − h 1 − h1rc
−

rc
−

rc
+

rc
+

Branch cut

0
Re(r)

1

Branch cut

(b)(a)

Figure 2. Schematic of possible locations of the r+
c branch cut in the complex r-plane. (a) A possible choice

of branch cut when Im(r+
c ) > 0. (b) The other choice of branch cut is needed when Im(r+

c ) < 0.

remain continuous for the real values of r ∈ [1 − h, 1], so the branch cut must avoid
crossing the real r-axis between 1 − h and 1. In the following, we achieve this by choosing
the branch cuts parallel to the imaginary axis and away from the real axis, as depicted in
figure 2. When r+

c is real and 1 − h < r+
c < 1, no suitable choice of branch cut exists, and

as a result, any solution p̃(r) with p̃(r+
c ) /= 0 necessarily has a singular third derivative at

r+
c . This occurs only for particular values of k, however, and we can map the corresponding

values of k in the complex k-plane to find that they fall exactly on the half-line [ω/M,∞);
we refer to this range of excluded values of k as the critical layer branch cut. As r+

c becomes
real, note that the value of p̃2(r+

c ) is different depending on whether we approach from the
positive or negative imaginary part. Thinking of r+

c (k) as a function of k, this corresponds
to approaching the critical layer branch cut [ω/M,∞) in k from above or below. This
reinforces the consideration of the critical layer appearing as a branch cut in the complex
k-plane. The change in p̃2 when crossing the critical layer branch cut from below to above
is described as

Δp̃2(r) = lim
Im(k)↘0+

p̃2(r)− lim
Im(k)↗0−

p̃2(r) = −2πiA p̃1(r)H(r+
c − r), (2.17)

where H(r) is the Heaviside function.
In order to retrieve this result, we need only consider the log(r − r+

c ) term of p̃2. Note
that ∂r+

c /∂k > 0 for real k and real positive ω; hence if k is nearly real and Im(k) > 0,
then Im(r+

c ) > 0, and we must take the branch cut of log(r − r+
c ) upwards towards +i∞.

Similarly, if Im(k) < 0, then Im(r+
c ) < 0, and the branch cut for log(r − r+

c ) must be
taken downwards to −i∞. When r+

c is located on the real line, (r − r+
c ) is negative for

r < r+
c . When we choose the branch cut into the upper half-plane, this corresponds to

a complex argument of −π. When we choose the branch cut into the lower half-plane,
this corresponds to a complex argument of π. This difference results in the jump of 2πi
given. If we instead consider r > r+

c , then the same argument is retrieved regardless of
which direction we take the branch cuts, so no jump is observed. This is the reason for the
presence of the Heaviside function.
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The critical layer in quadratic boundary layers

2.4. Homogeneous solutions across the full domain
In order to construct a full solution in r ∈ [0, 1], we now construct two solutions ψ1(r) and
ψ2(r) that solve (2.9) across r ∈ [0, 1], by patching together the solutions derived above
in §§ 2.2 and 2.3. We construct ψ1(r) to satisfy the boundary conditions (2.6a,b) at r = 0,
by taking

ψ1(r) =
{

Jm(αr), 0 ≤ r ≤ 1 − h,
C1 p̃1(r)+ D1 p̃2(r), 1 − h ≤ r ≤ 1,

(2.18)

where the coefficients C1 and D1 ensure C1 continuity, and are given by

C1 = Jm(α(1 − h)) p̃′
2(1 − h)− α J′

m(α(1 − h)) p̃2(1 − h)
W(1 − h)

, (2.19a)

D1 = −Jm(α(1 − h)) p̃′
1(1 − h)− α J′

m(α(1 − h)) p̃1(1 − h)
W(1 − h)

, (2.19b)

and W(r) = W(p̃1, p̃2; r) is the Wronskian of p̃1 and p̃2, given in § A.4 as

W(r) = W(p̃1, p̃2; r) = p̃1(r) p̃′
2(r)− p̃2(r) p̃′

1(r) = −3
4

r+
c (r − r+

c )
2(r − r−

c )
2

rQ2 . (2.20)

Having constructed ψ1 to satisfy the boundary condition at r = 0, we now proceed to
construct ψ2 that satisfies the boundary condition (2.7) at r = 1. Writing ψ2 in terms of
the homogeneous solutions derived above,

ψ2(r) =
{

Č2 H(1)
m (αr)+ Ď2 H(2)

m (αr), 0 ≤ r ≤ 1 − h,
Ĉ2 p̃1(r)+ D̂2 p̃2(r), 1 − h ≤ r ≤ 1,

(2.21)

we choose Ĉ2 and D̂2 to satisfy ψ2(1) = 1 and ψ ′
2(1) = −iω/Z. This forces a non-zero

normalized solution for ψ2 that satisfies the boundary condition (2.7) at r = 1, and leads
to

Ĉ2 =
p̃′

2(1)+ iω
Z

p̃2(1)

W(1)
, D̂2 = −

p̃′
1(1)+ iω

Z
p̃1(1)

W(1)
. (2.22a,b)

The coefficients Č2 and Ď2 are chosen such that our solution is C1 continuous at r = 1 − h,
giving

(
Č2
Ď2

)
= iπ(1 − h)

4

(
αH(2)′

m (α(1 − h)) −H(2)
m (α(1 − h))

−αH(1)′
m (α(1 − h)) H(1)

m (α(1 − h))

)

×
(

p̃1(1 − h) p̃2(1 − h)
p̃′

1(1 − h) p̃′
2(1 − h)

)(
Ĉ2
D̂2

)
, (2.23)

where the factor at the beginning comes from the Wronskian of H(1)
m and H(2)

m from
Abramowitz & Stegun (1964), formula 9.1.17.

We will also require later the jump in behaviour of ψ1 and ψ2 as k crosses the critical
layer branch cut from below to above. Since any jump comes from the log term in p̃2(r)
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when r < r+
c , we have, provided that r+

c < 1,

ΔC1 = 2iπAD1, ΔĈ2 = ΔD1 = ΔD̂2 = 0, (2.24a)(
ΔČ2

ΔĎ2

)
= π2(1 − h)AD̂2

2

(
αH(2)′

m (α(1 − h)) −H(2)
m (α(1 − h))

−αH(1)′
m (α(1 − h)) H(1)

m (α(1 − h))

)(
p̃1(1 − h)
p̃′

1(1 − h)

)
,

(2.24b)

resulting in (provided that r+
c < 1)

Δψ1(r) = 2iπAD1 p̃1H(r − r+
c ), (2.25a)

Δψ2(r) =
{

ΔČ2 H(1)
m (αr)+ ΔĎ2 H(2)

m (αr), 0 ≤ r ≤ 1 − h,
−2iπA p̃1(r) D̂2 H(r+

c − r), 1 − h ≤ r ≤ 1.
(2.25b)

Note that if r+
c > 1, then Δψ1 = Δψ2 = 0, since the ψ1 and ψ2 solutions are defined

uniquely by their boundary conditions, and no branch point occurs on the interval r ∈
[1 − h, 1] to cause a jump.

2.5. Modal solutions
Modal solutions of the homogeneous Pridmore-Brown equation (2.9) are non-zero
solutions p̃(r) that satisfy the boundary conditions (2.6a,b) and (2.7) at r = 0 and r = 1.
In general, satisfying both boundary conditions would force the solution p̃(r) ≡ 0, so
non-zero solutions exist only for particular modal eigenvalues k (assuming that ω is given
and fixed). In contrast, the solution ψ1(r) is never identically zero and always satisfies
the homogeneous Pridmore-Brown equation and the boundary condition at r = 0; indeed,
any solution satisfying the boundary condition at r = 0 is necessarily a multiple of ψ1(r).
Likewise, the solutionψ2(r) is never identically zero and always satisfies the homogeneous
Pridmore-Brown equation and the boundary condition at r = 1, and any solution satisfying
the boundary condition at r = 1 is necessarily a multiple of ψ2(r). In general, ψ1 and ψ2
are linearly independent, so their Wronskian W(ψ1, ψ2; r) is not identically zero, where

W(ψ1, ψ2; r) = ψ1(r) ψ ′
2(r)− ψ2(r) ψ ′

1(r). (2.26)
However, if p̃(r) is non-zero and satisfies both the boundary conditions at r = 0 and r = 1,
then p̃(r) = aψ1(r) = bψ2(r) for some non-zero coefficients a, b. In other words, a modal
solution is one where ψ1 and ψ2 are linearly dependent, so W(ψ1, ψ2; r) ≡ 0.

For 1 − h ≤ r ≤ 1, substituting ψ1 from (2.18) and ψ2 from (2.21) into the Wronskian
(2.26) gives

W(ψ1, ψ2; r) = (C1D̂2 − Ĉ2D1)W(r), (2.27)
where W(r) is the Wronskian between p̃1 and p̃2 and is given earlier, in (2.20). Since p̃1
and p̃2 were constructed to be linearly independent, we expect W(r) not to be identically
zero, and indeed (2.20) shows that W(r) /= 0 except at the critical layer r = r+

c . A modal
solution, therefore, is given by the condition C1D̂2 − Ĉ2D1 = 0, which is independent of
r, and implies that C1/D1 = Ĉ2/D̂2, so that ψ1 and ψ2 are multiples of one another.

The same can be seen for r ≤ 1 − h. In this case, the Wronskian (2.26) becomes

W(ψ1, ψ2; r) = αČ2 W(Jm,H(1)
m ; r)+ αĎ2 W(Jm,H(2)

m ; r) = α(Č2 − Ď2)
2i
πr
, (2.28)

where we have made use of the Bessel function identities 9.1.3, 9.1.4 and 9.1.16 from
Abramowitz & Stegun (1964). Note in particular that rW(ψ1, ψ2; r) is a constant
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The critical layer in quadratic boundary layers

independent of r for 0 ≤ r ≤ 1 − h. Since W(ψ1, ψ2; r) is continuous in r across r =
1 − h, because ψ1 and ψ2 are both C1 continuous, it follows that for 0 ≤ r ≤ 1 − h, we
can set rW(ψ1, ψ2; r) = (1 − h)W(ψ1, ψ2; 1 − h). We therefore arrive at the conclusion
that

W(ψ1, ψ2; r) = (C1D̂2 − Ĉ2D1)×
⎧⎨
⎩

W(r), 1 − h ≤ r ≤ 1,

W(1 − h)
1 − h

r
, 0 ≤ r ≤ 1 − h,

(2.29)

and that a mode corresponds to the dispersion relation 0 = D(k, ω) = C1D̂2 − Ĉ2D1. In
the next section, we see how these modal solutions occur naturally as poles in the solution
of the non-homogeneous Pridmore-Brown equation.

3. Inhomogeneous solutions and inverting the Fourier transform

3.1. Inhomogeneous solution of the Pridmore-Brown equation
While previously we have been solving only the homogeneous form (2.9), our original
problem was to solve the inhomogeneous Pridmore-Brown equation (2.5a) subject to a
harmonic point mass source. Due to the right-hand side of (2.5a) being a scalar multiple
of a delta function, located at r = r0, our solution will be the same scalar multiple of
the Green’s function, and we denote this solution as G̃. This function will satisfy the
boundary condition at r = 0 and r = 1, and will solve the homogeneous Pridmore-Brown
equation for r < r0 and r > r0; hence G̃ may be written as a multiple of the homogeneous
solution ψ1 for r < r0, and as a multiple of the homogeneous solution ψ2 for r > r0. All
that is required is to join the two solutions at r = r0 such that they are continuous, and
their derivative is discontinuous with a jump exactly matching the amplitude of the delta
function. This may be written succinctly as

G̃ = ω − U(r0) k
2πir0

ψ1(ř) ψ2(r̂)
W(ψ1, ψ2; r0)

, (3.1)

where

r̂ = max(r, r0), ř = min(r, r0), (3.2a,b)

and once again W(ψ1, ψ2; r) is the Wronskian of ψ1 and ψ2. Using (2.29), this may be
rewritten as

G̃ = ω − U(r∗) k
2πir∗ W(r∗)

ψ1(ř) ψ2(r̂)

C1D̂2 − Ĉ2D1
, where r∗ = max(1 − h, r0). (3.3)

3.2. Analytic continuation behind the critical layer branch cut

The solution for G̃ in (3.3) contains a branch cut along the critical layer k ∈ [ω/M,∞).
We now introduce the following additional notation. When evaluating a function f (k) on
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the branch cut, for k ∈ [ω/M,∞), we denote

f +(k) = lim
ε→0

f (k + iε), f −(k) = lim
ε→0

f (k − iε), Δf (k) = f +(k)− f −(k). (3.4a–c)

Note that the definition of Δf agrees with the use of Δ in (2.17), (2.24) and (2.25). By
using these equations, we find that

ΔG̃ = −ω − U(r∗) k
2iπr∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×
[

2iπAD1D̂2 ψ
−
1 (ř) ψ

−
2 (r̂)

C−
1 D̂2 − Ĉ2D1

− ψ−
1 (ř)Δψ2(r̂)− Δψ1(ř) ψ−

2 (r̂)− Δψ1(ř)Δψ2(r̂)

]
.

(3.5)

A typical branch cut, such as the branch cut in
√

z − z0, may be taken in any direction
from the branch point z0. The critical layer branch cut in the complex k-plane is different,
in that the choice of branch cut was forced upon us by the requirement that the solution be
continuous in r for r ∈ [1 − h, 1]. Nonetheless, noting from (3.5) that ΔG̃ is a well-defined
function for general complex k, we may use (3.5) to analytically continue G̃ behind the
critical layer branch cut. For real ω, we therefore define the analytic continuation of G̃
behind the branch cut into the lower half k-plane as

G̃+(k) =
⎧⎨
⎩

G̃(k), Im(k) > 0 or Re(k) <
ω

M
,

G̃(k)+ ΔG(k), Im(k) < 0 and Re(k) >
ω

M
.

(3.6)

Similarly, we may rewrite (3.5) as

ΔG̃ = −ω − U(r∗) k
2iπr∗ W(r∗)

1

C+
1 D̂2 − Ĉ2D1 − 2iπAD1D̂2

×
[

2iπAD1D̂2 ψ
+
1 (ř) ψ

+
2 (r̂)

C+
1 D̂2 − Ĉ2D1

− ψ+
1 (ř)Δψ2(r̂)− Δψ1(ř) ψ+

2 (r̂)+ Δψ1(ř)Δψ2(r̂)

]
,

(3.7)

which allows the analytic continuation of G̃ into the upper half k-plane,

G̃−(k) =
⎧⎨
⎩

G̃(k), Im(k) < 0 or Re(k) <
ω

M
,

G̃(k)− ΔG(k), Im(k) > 0 and Re(k) >
ω

M
.

(3.8)

The utility of these analytic continuations is not readily apparent. However, their
use allows for poles of G̃, corresponding to modal solutions of the homogeneous
Pridmore-Brown equation, to be tracked behind the branch cut, and in particular, a possible
hydrodynamic instability mode will later be found to be hidden behind the critical layer
branch cut in certain cases. Their use also allows the deformation of integral contours
behind the critical layer branch cut, as will be needed for the steepest descent contours
needed for the large-x asymptotic evaluation of the inverse Fourier transform.

In what follows, k+ and k− denote modal poles (see § 2.5) of only G̃+ or G̃− respectively.
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3.3. Inverting the Fourier transform

Having formulated G̃ as the solution of the inhomogeneous Pridmore-Brown equation
(2.5a), to recover the actual pressure perturbation p̂(x, r, θ), we are required to invert the
Fourier transform and sum the Fourier series. For a fixed azimuthal mode m, we invert the
Fourier transform using the formula

G(x, r; r0,m) = 1
2π

∫
C

G̃(r, r0, k,m) e−ikx dk. (3.9)

Note, however, that the critical layer branch cut is located along the real k-axis, k ∈
[ω/M,∞). We are therefore required to be careful in choosing a suitable inversion contour
C.

3.3.1. Choosing an inversion contour
In order to choose the correct Fourier inversion contour C, we appeal to the Briggs–Bers
criterion (Briggs 1964; Bers 1983). The Briggs–Bers criterion, summarized below, invokes
the notion of causality: that the cause of the disturbance (the delta function forcing) should
occur before the effect (the disturbance p̂), which is otherwise lost when considering a
time-harmonic forcing, as we do here. A more in-depth description is available in many
places in the literature (e.g. Brambley 2009, Appendix A).

In order to make use of the Briggs–Bers criterion, the rate of exponential growth of the
solution must be bounded; that is, there must exist Ω,K > 0 such that if Im(ω) < −Ω ,
then G̃ is analytic for |Im(k)| < K. For a given ω with Im(ω) < −Ω , we take the
k-inversion contour C in (3.9) along the real k-axis, and map the locations of any
singularities (e.g. poles, branch points, etc.). In order to find a correct integration contour
for the real values of ω that are of interest, the imaginary part of ω is increased smoothly
to 0, and the locations of any singularities tracked throughout this process. During this
process, the k-inversion contour C must be deformed smoothly in order to maintain
analyticity; that is, no singularities must cross the k-inversion contour. Assuming that this
process may be completed and Im(ω) increased to zero, the resulting k-inversion contour
C is the correct causal contour. Since for x < 0 the exp{−ikx} term is exponentially small
as |k| → ∞ in the upper half k-plane, for x < 0 we may close the contour with a large
semicircular arc at infinity in the upper half k-plane, denoted C>. The resulting contours,
for realω, are illustrated in figure 3 for a typical unstable case. The majority of singularities
of G̃ are poles that do not cross the real k-axis as Im(ω) is varied, and hence correspond
to exponentially decaying disturbances away from the point mass source at x = 0. The
exception to these poles is the pole labelled k+, which for this illustration originates in
the lower half k-plane for Im(ω) sufficiently negative, and therefore belongs below the
k-inversion contour. This implies that this pole is seen downstream of the point mass
source, for x > 0, despite having Im(k) > 0, and therefore corresponds to an exponentially
growing instability. For a typical stable case, the situation is the same as shown in figure 3
but with the k+ pole not present. Irrespective of the stability, the critical layer, as described
earlier, exists when k/ω = 1/U(rc) ∈ [1/M,∞] for some critical radius rc, and so is found
in the lower half k-plane for Im(ω) < 0. Thus, as shown in figure 3, for x > 0 in order to
close C in the lower half k-plane, we must pass around the critical layer branch cut, denoted
by the contour Cb, before closing in the lower half k-plane with a semicircular arc denoted
C>. The contribution from integrating around the critical layer branch cut Cb leads to the
non-modal contribution of the critical layer, and is discussed in detail in § 3.3.3.
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(b)(a)

k+ k+

C C

C<

C>

Cb
ω/M ω/M

Figure 3. Illustration of typical pole locations, branch cuts and inversion contours taken when an unstable k+

pole is present for real ω. The inversion contour for G̃ is labelled C. (a) For x < 0, the contour is closed in the
upper half-plane along the C< contour. (b) For x > 0, the contour is closed in the lower half-plane along the C>
contour, and around the critical layer branch cut along the Cb contour. Contributing modal poles are indicated
in blue.

3.3.2. Contribution from the poles of G̃
We may now write the integral around the closed contour as a sum of residues of poles:

1
2π

∫
C∪C<

G̃(r, r0, k,m) e−ikx dk = G(x, r; r0,m) =
∑

j: Im(kj)>Im(C)
R(kj) for x < 0,

(3.10a)

1
2π

∫
C∪Cb∪C>

G̃(r, r0, k,m) e−ikx dk = G(x, r; r0,m)− I(x) =
∑

j: Im(kj)<Im(C)
R(kj) for x > 0,

(3.10b)

where I(x) is the contribution from integrating around the critical layer branch cut contour
Cb discussed in the next subsubsection, R(kj) is the residue from a pole at kj discussed
below, and the notation Im(kj) > Im(C) is used to denote poles kj lying above the inversion
contour C.

The poles of G̃ correspond to zeros of the denominator of G̃, as given in (3.3). They
can occur in two ways: as modal or non-modal poles. We consider the modal poles first.
The modal poles occur as zeros of the term C1D̂2 − Ĉ2D1 = 0. As discussed in § 2.5, this
occurs when both ψ1 and ψ2 satisfy the boundary conditions at r = 0 and r = 1. These
modal poles can be classified further into acoustic modes and surface modes: acoustic
modes are those for which α in (2.11) has a small imaginary part, and correspond to
functions that are oscillatory in r; surface modes are those for which α has a significant
imaginary part, and correspond to functions that decay exponentially away from the duct
walls at r = 1. For different parameters, we may find a variety of surface modes, and two
with which we will be particularly interested here will be denoted k− and k+. For further
details of surface modes, the reader is referred to the existing literature (e.g. Rienstra 2003;
Brambley 2013).
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Since the modal poles occur as zeros of C1D̂2 − Ĉ2D1 = 0, which we will assume are
simple zeros, the contributions from the residues of these poles are given by

R(k) = −sgn(x)
ω − U(r∗) k
2πr∗ W(r∗)

ψ1(ř) ψ2(r̂)
∂

∂k
(C1D̂2 − Ĉ2D1)

e−ikx. (3.11)

The second type of poles are the non-modal poles, which occur when W(r∗) = 0. These
occur when we lose independence between p̃1 and p̃2 at r∗. Note from the formula (2.20)
for W(r) that W(r∗) = 0 implies that r∗ = r+

c . Since 1 − h ≤ r∗ ≤ 1, this can occur only
when k is located on the critical layer branch cut. In what follows, we will refer to this
non-modal pole as k0. Note that k0 is a function of the radial location of the point source
r0 (through r∗), which is unlike the modal poles for which kj is independent of the value of
r0; this is one reason why this k0 pole is referred to as a non-modal pole. However, since
our closed contour goes around the critical layer branch cut (along contour Cb), this pole is
always excluded from the sum of residues in (3.10), and occurs only within the calculation
of I(x), which we consider next.

3.3.3. Contribution from the critical layer branch cut
The contribution from the critical layer branch cut, including any non-modal pole k0 along
the branch cut, is contained solely within the integral along the critical layer branch cut
denoted Cb in figure 3:

I(x) = −1
2π

∫
Cb

G̃ e−ikx dk. (3.12)

However, as it stands, this integral for I(x) is oscillatory, owing to the e−ikx factor in
the integrand, so it is difficult to accurately compute numerically. This is especially
true for large values of x. Instead, it is helpful to deform the integral onto the steepest
descent contour, for which e−ikx is exponentially decaying along the contour. This contour
deformation has three benefits: first, it allows accurate numerical calculation of the
integral; second, it allows the derivation of large-x asymptotics using the method of
steepest descent; and third, it brings insight into the various contributions that make up
I(x). In deforming the integration contour, however, we must analytically continue G̃
behind the branch cut (as described in § 3.2), and carefully deform around any poles and
branch points. This is illustrated schematically in figure 4. Note that poles and branch
points of G̃ may exist behind the critical layer branch cut, and we must therefore use
analytic continuations of G̃; the reader is reminded that G̃+ is the analytic continuation
of G̃ down behind the branch cut from above, while G̃− is the analytic continuation of
G̃ up behind the branch cut from below. Here, we use the notation that a pole of G̃+
with Re(k) > ω/M is denoted k+, and a pole of G̃− with Re(k) > ω/M is denoted k−.
Thus a k+ pole with Im(k+) < 0, or a k− pole with Im(k−) > 0, are considered as being
hidden behind the critical layer branch cut. In the schematic in figure 4, one k− and one k+
pole are present, both with Im(k) < 0, although this is not always the case; moreover, if
present, the k+ pole may interact with the integral contours around k< and k>, in addition
to interacting with the integral contour around ω/M depicted in figure 4, depending on the
location of the k+ pole.

The steepest descent contours are where e−ikx is decaying exponentially, i.e. towards
−i∞ in the complex k-plane. There is no difficulty deforming the contour at infinity, since
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(b)(a)

k+

k–

k+

k–

k< k> k< k>
ω/Mω/M

Im
(k

)

Figure 4. (a) Illustration of the integration contour required for the computation of the contribution from the
critical layer branch cut, understood by integrating above and below the branch cut. Possible poles of G̃− and
G̃+ are denoted k− and k+, respectively. (b) The integration contour after being transformed onto the steepest
descent contour. Red lines behave as if evaluated below ω/M (using G̃−); blue as if having been analytically
continued around the ω/M branch point; green as if having been analytically continued around the ω/M and
k< branch points; and purple as if having been analytically continued around all branch points, giving G̃+.
Note that we have been required to deform contours around the k+ and k− poles.

e−ikx is exponentially small there (provided that x > 0, which is the only case in which the
critical layer branch cut contributes). Along the branch cut, there are up to three branch
points singularities, denoted ω/M, k< and k> in figure 4, that must be deformed around.
These occur because of the presence of the log(r − r+

c ) term in p̃2(r), and the presence of
p̃2(1 − h), p̃2(r0) and p̃2(r) in the expression for G̃; each of these terms leads to a branch
point, respectively at ω/M, at k0 corresponding to r+

c (k0) = r0, and at kr corresponding to
r+

c (kr) = r.
Moreover, G̃ possesses a pole at k0, which is exactly the non-modal pole referred to

above, although there are no poles of G̃ at ω/M or at kr. Details of these calculations are
given in Appendix C. The branch point at kr is not present when r ≤ 1 − h, and the pole
and branch point at k0 are not present when r0 ≤ 1 − h. For simplicity in what follows, we
denote k< = min{k0, kr} and k> = max{k0, kr}, as depicted in figure 4.

The total integral around the branch cut can therefore be found by summing these
three integrals, subtracting any k− contributions below the branch cut and adding any
k+ contributions below the branch cut, and adding the pole residue at k0 calculated as if it
was located above the branch cut. This results in

I(x) = Iω/M(x)+ I0(x)+ Ir(x)+ R+
0 (k0)+

∑
Im(k+)<0

R+(k+)−
∑

Im(k−)<0

R−(k−), (3.13)

where R± is the residue given in (3.11) evaluated using G̃±. Here, R+
0 (k0) is the residue

of the non-modal pole k0 evaluated as if approached from above the branch cut, derived in
§ C.2 and given in (C20) as

R+
0 (k0) = 2Mk2

0(ω − Mk0) e−ik0x

3πr0h2ω(C+
1 D̂2 − Ĉ2D1)

×
{

D̂2 ψ1(r), r < r0,

D1 ψ2(r), r > r0.
(3.14)
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The steepest descent integrals are defined as

Iq(x) = 1
2πi

∫ ∞

0
ΔG̃q(kq − iξ) e−i(kq−iξ)x dξ, (3.15)

and the jumps across each of the steepest descent branch cuts are calculated in Appendix B
to be

ΔG̃ω/M = −(ω − U(r∗) k)A

r∗ W(r∗) (C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̂2
2 ψ

−
1 (ř) ψ

−
1 (r̂)

C−
1 D̂2 − Ĉ2D1

, r̂ < 1 − h,

D1D̂2 ψ
−
1 (ř) ψ

−
2 (r̂)

C−
1 D̂2 − Ĉ2D1

, ř < 1 − h < r̂,

D2
1 ψ

−
2 (ř) ψ

−
2 (r̂)

C−
1 D̂2 − Ĉ2D1

, 1 − h < ř,

(3.16a)

ΔG̃< = −(ω − U(r∗)k)
r∗ W(r∗)

AD1 p̃1(ř) ψ−
2 (r̂)

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

H(ř − (1 − h)), (3.16b)

ΔG̃> = −(ω − U(r∗) k)
r∗ W(r∗)

AD̂2 ψ
−
1 (ř) p̃1(r̂)

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

H(r̂ − (1 − h)). (3.16c)

Note that ΔG̃ω/M + ΔG̃< + ΔG̃> = ΔG̃ = G̃+ − G̃−. While these integrals are now
amenable to numerical integration, additional understanding of the contribution from the
three steepest descent contours may be gained by considering the large-x limit.

3.4. Far-field decay rates of the critical layer contribution
The critical layer branch cut contribution (3.13) contains integrals Iq(x) given by (3.15)
that are amenable to asymptotic analysis in the limit x → ∞, using the method of steepest
descent. Having already deformed the integration contours onto the steepest descent
contours, so that the integrands have had their x-dependent oscillation removed and are
now exponentially decaying along the contour, we may directly apply Watson’s lemma
(Watson 1918). If some function q(k) satisfies f (kq − iξ) ∼ Bξν + O(ξν+1) to leading
order for small ξ with ν > −1, then Watson’s lemma implies that for large x,

1
2iπ

∫ ∞

0
f (kq − iξ) e−i(kq−iξ)x dξ ∼ BΓ (ν + 1) e−ikqx

2iπxν+1 + O(x−(ν+2)), (3.17)

where Γ is the Gamma function, and in particular, Γ (ν + 1) = ν! for integer ν. For each
of the Iq(x) integrals, this can then be interpreted as an algebraically decaying wave of
phase velocity ω/kq.

In order to find the decay rates of the steepest descent contours, we are required
to understand the behaviour of ψ1(r, kq − iξ) and ψ2(r, kq − iξ) for small ξ at
r ∈ {1 − h, r, r0, 1}. Details of this can be found in Appendix C. The result, given in (C13)
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and (C14), is that for k = ω/M − iξ , as ξ → 0 with ξ > 0, we find that

ΔG̃ω/M ∼
{
ξ3/2, r0 ≤ 1 − h,
ξ5/3, r0 > 1 − h.

(3.18)

By Watson’s lemma, this results in a wave convected with the flow speed M = U(1 − h)
and decaying algebraically like x−5/2 when the source is within the region of uniform
flow, and like x−7/2 for a source located in the sheared flow; the pre-factor in each case is
different, and is also governed by the above expressions.

In the case r0 > 1 − h, the leading-order contribution to ΔG̃0 as k → k0 is derived in
§ C.2 as

ΔG̃0 = Aωh2 U(r0)

6r0Mk2
0(r0 − 1 + h)

(k − k0)
2

C−
1 D̂2 − Ĉ2D1 + 2πiAD1D̂2

×
{

D̂2 ψ
−
1 (r), r0 > r,

D1 ψ
−
2 (r), r0 < r.

(3.19)
By Watson’s lemma, this results in a wave convected with the flow speed at the point
source, U(r0), and decaying algebraically like x−3.

Finally, considering ΔG̃r as k → kr, it is found in § C.3 that

ΔG̃r ∼ A(ω − U(r∗) kr)ω
3h6

8r∗ W(r∗)M3k6
r (r − 1 + h)3

(k − kr)
3

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×
{

D̂2 ψ
−
1 (r0), r0 < r,

D1 ψ
−
2 (r0), r0 > r.

(3.20)

By Watson’s lemma, this results in a wave convected with the flow speed U(r) and
decaying algebraically like x−4.

It may be noted that the decay rates for I0 and Ir are the same as predicted for a linear
boundary layer flow profile by Brambley et al. (2012a). We now proceed to compare these
results with the previous literature.

3.4.1. Comparisons with previous far-field scalings
Our results for the large-x decay of the various components of the critical layer are
compared to those predicted by Swinbanks (1975) for a general flow profile, and those
predicted by Brambley et al. (2012a) for a constant-then-linear flow profile, in table 1. The
I0 integral gives a wave with phase velocity equal to that of the mean flow at the location
of the point mass source, U(r0), provided that the point mass source is in a region of
sheared flow, r0 > 1 − h. It can be observed in table 1 that agreement is seen in all three
works for r0 > 1 − h. While Swinbanks (1975) did not consider the other cases in detail,
this work finds further agreement for the Ir contribution with Brambley et al. (2012a).
In both the linear and quadratic shear flow cases, when the source is located within the
region of sheared flow, the I0 contribution is the slowest decaying term. When the source
is located within the uniform flow region, the Iω/M contribution is the slowest decaying
term, although this is matched by the Ir contribution for linear shear. It should noted,
however, that when r0 > 1 − h, we have in addition the contribution of the non-modal k0
pole, which does not decay.
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Iω/M Ir I0 R+
0 (k0)

r0 ≤ 1 − h r0 > 1 − h r > 1 − h r0 > 1 − h r0 > 1 − h

Swinbanks (1975) — — — x−3 1
Linear boundary layer x−4 x−5 x−4 x−3 1
Quadratic boundary layer x−5/2 x−7/2 x−4 x−3 1

Table 1. Comparison of the different decay rates given for a general flow profile by Swinbanks (1975) and for a
linear boundary layer flow profile by Brambley et al. (2012a) against those given here for a quadratic boundary
layer flow profile.

The difference in the behaviour of the Iω/M integrals may be understood as having two
causes. The first is the difference in behaviour of the constant A, given in general as

A = −1
3

(
ω2

M2 + m2

r2
c

)(
U′′(rc)

U′(rc)
− 1

rc

)
− 2m2

3r3
c
. (3.21)

In the case of linear shear flow, the U′′ term is zero for k �= ω/M and the resulting
expression is O(1) as k → ω/M. In the case of a quadratic shear boundary layer, U′′
is non-zero and dominates A as k → ω/M, providing a factor (k − ω/M)−1/2. The
remainder of the differences between the decay rates is explained, for Iω/M , by the
fact that (r+

c − (1 − h)) ∼ (k − ω/M)1/2 in the quadratic shear case, whereas for linear
shear, (rc − (1 − h)) ∼ (k − ω/M). For the I0 and Ir contributions, where we do not have
r+

c → 1 − h, all the other terms are equivalent between the linear and quadratic cases,
therefore giving the same eventual asymptotics scalings, although the pre-factors may vary
significantly. Further details are given in Appendix D.

4. Numerical results

In this section, the above analysis is illustrated with some numerical examples. The
Frobenius series solutions p̃1 and p̃2 are computed by summing the terms of the series,
as given in Appendix A, until a relative error of order 10−16 is achieved, using the Matlab
code in the supplementary material. In particular, this is more expensive numerically
and prone to numerical rounding errors near the edge of the radius of convergence
for each of the solutions, and care must therefore be taken to choose an accurate
and efficient numerical implementation of p̃1 and p̃2 in terms of the Frobenius series
solutions. The modal poles are found using a variant of the secant method, and have been
confirmed against results using a finite difference method applied to the Pridmore-Brown
equation (Brambley 2011b). When summing the residues of modal poles, all poles with
|Im(k)| < 400 have been included.

Throughout this section, we show results from four parameter sets, detailed in table 2.
These parameter sets are inspired by values used in previous studies (Brambley et al.
2012a; Brambley 2013; Brambley & Gabard 2016), and motivated by application to
aeroengine intakes; in particular, parameter set B is intended to be typical of a rotor-alone
tone at take-off, while parameter set C might represent the same type of mode during the
landing approach.

In § 4.1, we will explore the locations of the modal poles in the complex k-plane. This
section will particularly focus on the k± modal poles discussed in § 3.3, including tracking
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A1 A2 B C

Frequency ω 10 10 31 16
Azimuthal order m 5 5 24 24
Centreline Mach number M 0.5 0.5 0.5 0.35
Boundary layer thickness h 0.05 0.001 0.01 0.005
Impedance mass μ 0.2 0.2 0.01 0.01
Impedance spring K 10 10 10 10
Impedance damper R 2 2 0.75 0.75
Impedance Z(ω) Z 2 + i 2 + i 0.75 − 0.01i 0.75 − 0.465i

Table 2. Parameter sets used for the following numerical results. The impedance is of mass–spring–damper
type, Z(ω) = R + iμω − iK/ω.

these modal poles as they move behind the critical layer branch cut for certain parameters
(by taking advantage of the ability of the Frobenius series solutions to analytically continue
behind the critical layer branch cut). In § 4.2, we compare the various contributions from
the critical layer branch cut described in § 3.3.3, including their large-x behaviour, and
show that these agree with the predicted large-x behaviour from § 3.4. In § 4.3, the full
solution in terms of x and r is plotted, and these results are compared to the linear boundary
layer case. Finally, in § 4.4, we investigate how the results vary as we vary parameters,
including the frequency ω, the boundary layer thickness h, the wall impedance Z, and the
steady mean flow velocity M.

4.1. Pole locations
The locations of the poles in the complex k-plane for parameter sets A1 and A2 are plotted
in figure 5. In addition to the usual acoustic modes (denoted as ∗ in figure 5), one k+
and one k− pole is found for each parameter set. For parameter set A1, both the k+
and k− poles are behind the critical layer branch cut, and so would not be found using
conventional numerical methods, although the k+ pole does still contribute to the total
pressure field through the critical layer branch cut contribution, as described in § 3.3.3.
In contrast, for parameter set A2, the k+ pole is not behind the branch cut and takes the
form of a standard modal pole, in this case a hydrodynamic instability surface wave. The
stability of the modal poles is verified from the movement of the poles in the k-plane as
Im(ω) is decreased from zero, following the Briggs–Bers criterion (shown in figures 5b,d);
note that the critical layer branch cut also moves as a function of Im(ω). Of particular note
is that the k+ pole for parameter set A1 emerges from behind the critical layer branch cut
as Im(ω) is reduced from zero, becoming a standard modal pole provided that Im(ω) is
taken sufficiently negative.

As discussed in § 3.3, when the k+ pole is located above the branch cut, it is unstable,
with a contribution growing exponentially in x. When the k+ pole is located below
the branch cut, we do not see its contribution to the modal sum directly, but instead it
contributes as part of the branch cut integral, as seen when deforming onto the steepest
descent contour. In this latter case, we would observe a contribution that decays in x.
In both examples, the k− pole is located above the branch cut and does not contribute
towards the Fourier inversion. In the event that this k− pole were located below the branch
cut, its contribution would almost exactly cancel the critical layer branch cut contribution,
again seen by deforming onto the steepest descent contour; however, the k− pole has not
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Figure 5. Locations of the poles in the complex k-plane for parameter sets A1 (a,b) and A2 (c,d). (a,c) For
real ω: acoustic modes with Re(k) < ω/M (∗); k+ poles (+); k− poles (×); the critical layer branch cut (solid
line); and branch points ω/M and k0 for r0 = 1 − 9h/10 (◦). (b,d) Trajectories of poles for −50 < Im(ω) < 0.
Poles coloured red (a,c) and solid lines (b,d) denote poles contributing to the modal sum. Poles coloured blue
(a,c) and dashed lines (b,d) denote poles hidden behind the branch cut (which varies with Im(ω)) and do not
contribute.

been found below the branch cut for any parameters considered here, unlike in the linear
boundary layer profile case, which is investigated further in § 4.3.

Also plotted in figure 5 is the critical layer branch cut for k > ω/M, together with the
non-modal k0 pole, which is present only for a point mass source within the boundary
layer, r0 > 1 − h. The effects of these non-modal contributions are illustrated in the next
subsection.

4.2. Branch cut contributions
Figure 6 illustrates, for three different parameter sets (left to right columns), the differences
between the three types of contributions occurring due to the presence of the critical
layer branch cut: the sum of the three steepest descent contour integrals (row (i)); the
k0 non-modal pole (row (ii)); and the k+ modal pole (row (iii)), which is located below the
branch cut for all three parameter sets and therefore does not appear in the modal sum. The
sum of these contributions is plotted in row (iv) of figure 6. Comparing the non-modal k0
pole (row (ii)) to the sum of the three steepest descent integrals (row (i)), the non-modal
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Figure 6. A comparison of the terms that contribute to the critical layer, for r0 = 1 − 4h/5. Plotted are the
absolute values on a log10 scale. Left to right: parameter sets A1, B and C. Top to bottom: (i) the sum of the
three steepest descent contours, Iω/M + Ir + I0; (ii) the non-modal k0 pole; (iii) the contribution of the k+ pole
located behind the branch cut; and (iv) the total contribution from integrating around the critical layer branch
cut, obtained by summing (i)–(iii).
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Figure 7. Plots of the real part of the contribution from integrating around the branch cut (Re( p(x, r))) for
parameter set C, excluding any k+ pole located below the branch cut. Solid lines indicate positive values,
dashed lines indicate negative values: (a) r0 = 1 − 9h/10; (b) r0 = 1 − 3h/5.

k0 pole appears in all three parameter sets to have a small contribution compared to the
sum of the three steepest descent integrals for small x, although it is comparable and even
dominant for larger x. For small x, the k+ pole’s contribution (row (iii)) is greater than
those of the three steepest descent integrals (row (i)) and the non-modal k0 pole (row (iii)),
particularly near the wall at r = 1. However, since the k+ pole decays exponentially in x,
the non-modal pole will dominate the far-field behaviour of the critical layer branch cut,
as can be seen by comparing row (ii) with row (iv).

We can look further at how these contributions vary as we adjust the location of the
source, shown in figure 7. The contribution of the non-modal k0 pole is seen to be far
smaller for the case when r0 is closest to 1 − h (figure 7a). Note that there is no non-modal
k0 pole when r0 ≤ 1 − h, in which case the dominant contribution will be from the k+ pole
and the steepest descent contours, which in all cases decay to zero.

Figure 8 compares the numerically computed steepest descent integrals with their
predicted far-field rates of decay given in § 3.4, and good agreement is seen in all cases.

4.3. Full Fourier inversion
We now consider the full Fourier inversion, including the contribution from all the modal
poles as well as the critical layer branch cut contribution considered above. Figure 9
compares a snapshot in the near field (for small x values) of the wave field generated
by only the stable modal poles (figure 9a) with the full solution including the critical layer
and any unstable k+ pole (figure 9b). When the k+ pole is a convective instability, it clearly
dominates the solution sufficiently far downstream, as it grows exponentially in x. In these
near-field plots, the critical layer often appears negligible compared with the modal sum,
although in some circumstances it can have a significant effect, as shown by the plots of
case C.

In comparison, figure 10 shows the behaviour outside the near field for the three stable
cases from figure 9, plotting the amplitude of oscillations |p| on a logarithmic scale. In all
cases, since the modal sum decays exponentially, in the far field, the dominant contribution
is from the critical layer, and this is often true from only one or two radii downstream of
the point source.

Figure 11 compares the wave field generated in a quadratic boundary layer with the
wave field in a linear boundary layer profile (as studied by Brambley et al. 2012a).
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Figure 8. Plotted for parameter set A1 are |Iω/M | (top), |Ir| (middle), and |I0| (bottom). The point source is
at r0 = 1 − 4h/5 (a) and r0 = 0.4 (b). Solid lines correspond to radial locations r = 0.2, 0.6, 1 − 9h/10 and
1 − 3h/5. The dashed line is the predicted far-field rate of decay according to § 3.4. Note that for r = 0.2 and
r = 0.6, Ir is identically zero, since the branch point does not exist. Similarly for r0 = 0.4 and I0.

The wave fields are reasonably similar, although when the point mass source is within
the boundary layer, significant differences are seen downstream. This is related to whether
the k+ pole is located above or below the branch cut. In the quadratic case, the k+ pole
always contributes, whether it is behind the branch cut or not, while the k− is always found
above the branch cut and so is not seen to contribute at all. With the linear boundary layer,
instead we find a k− pole that can be located either above or below the branch cut, while the
k+ pole is instead located above in all cases. The result of this is that the linear boundary
layer profile is always found to be convectively unstable, while the quadratic boundary
layer profile is found to be unstable only if the boundary layer is sufficiently thin. Even
when both flow profiles give rise to a convective instability, we can see in figure 11 that
the growth rates of the instabilities can be significantly different.

The change in nature of the k+ pole in the quadratic case from convective instability to
stable is clearly of significant importance. We therefore finally consider the variation of
the solution as various parameters of interest are varied.
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Figure 9. Plotting the real values of the different contributions. (a) Just the contribution for the stable modal
poles. (b) The full Fourier inversion, which also includes the k+ pole. The parameter sets used from top to
bottom are A1, A2, B and C, with r0 = 1 − 4h/5 in each case. In case A2, the k+ pole is a convective instability.
In cases A1, B and C, the k+ pole is located behind the branch cut.

4.4. Variation of results with changing parameters
The variation of the acoustic modal sum is relatively well understood, so in this subsection
we concentrate on the variation of the k+ and k− modal poles as various parameters are
varied. This includes whether Im(k+) > 0, corresponding to a convective instability, or
Im(k+) < 0, corresponding to a stable modal pole hidden behind the branch cut that
nonetheless contributes to the modal sum through the branch cut contribution. We also
consider whether Im(k−) > 0, meaning the pole is not included, or Im(k−) < 0, in which
case the pole is included as part of the contribution of the critical layer branch cut.

Figure 12 illustrates how the k+ and k− modal poles vary with boundary layer thickness,
frequency, impedance and Mach number. In particular, taking wider boundary layers and
lower mean flow velocities appears to stabilize the k+ pole, moving it to below the branch
cut. In contrast, thinner boundary layers and higher mean flow velocities lead to convective
instability. The value of the impedance is also seen to alter the stability of the solution,
with, in this case, a range of values of Im(Z) being unstable, and nearly hard-walled values
of |Im(Z)| → ∞ being stable, as is seen from the k+ poles movement in figure 12(b). The
variation of stability as the frequency is varied remains unclear, although it appears likely
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Figure 10. The absolute value of pressure on a log scale (10 log10(|p|)) over a longer range of axial distances
downstream of the point source. (a) Just the contribution for the modal poles. (b) Modal poles plus the three
steepest descent contours and the k0 non-modal pole. (c) The full Fourier inversion, which also includes the
k+ pole. The parameter sets used from top to bottom are A1, B and C, with r0 = 1 − 4h/5 in each case. In
each case, the k+ pole is located behind the branch cut. In the bottom left plot, the contribution from the modal
poles is too small to be shown (with 10 log10(|p|) < −78).
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Figure 11. Plotting the real values of the full solution for a quadratic boundary layer flow profile (a) and a linear
boundary layer flow profile (b) (from Brambley et al. 2012a). From left to right, parameters are: set A1 with
r0 = 0.4; set A1 with r0 = 1 − 4h/5 = 0.96; set A2 with r0 = 0.4; and set A2 with r0 = 1 − 4h/5 = 0.9992.

from figure 12(c) that for certain parameters, there would be a finite range of frequencies
for which the k+ pole would be unstable, while for frequencies either higher or lower than
this range, the k+ pole would be stable. Note also from figure 12 that in all cases, the k−
pole is located above the branch cut and so does not contribute to either the modal sum or
the critical layer branch cut.
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Figure 12. Motion of the modal poles for parameter set C as one parameter is varied (arrows show the motion
as the parameter is increased): (a) varying h in (0.001, 0.5); (b) varying Im(Z) in (−∞,∞), with a dot
showing hard-walled values; (c) varying Re(ω) in (1, 50); and (d) varying M in (0.06, 0.9). Modal positions
for parameter set C are denoted + (k+) and × (k−). Dashed lines denote a pole hidden behind the branch cut.
Note that (c) and (d) use a rescaled k-plane in order for the branch cut to remain fixed as ω or M is varied.

5. Conclusions

In this work, we have considered a cylindrical duct containing a parallel mean flow that is
uniform everywhere except within a boundary layer of thickness h near the wall. Within
the boundary layer, which need not be thin, the flow has a quadratic profile and satisfies the
no-slip boundary condition at the duct wall, whilst maintaining a C1 continuous flow. For
such a flow profile, irrespective of the the thickness of the boundary layer, a solution of
the Pridmore-Brown equation has been constructed making use of two Frobenius series
expansions, valid for any wavenumber k. This enables the evaluation of the Green’s
function of the Pridmore-Brown equation, which is found to consist of a sum of the usual
acoustic duct modes plus a non-modal contribution from the critical layer branch cut. Full
source code is provided in the supplementary material to evaluate all solutions presented
here.

In this work, we have aimed to construct the Green’s function solutions, which is
equivalent to the solution for a point mass source in the linearized Euler equations. The
Green’s function is in some sense the general solution, as the solution subject to any
forcing can be written as an integral over the Green’s function, suitably weighted. Because
of this, any behaviour the equations are capable of must necessarily be demonstrated in the
Green’s function solution, so once the behaviour of the Green’s function is understood,
the equations cannot hold any further surprises. This is particularly important in this
case, considering that the Green’s function solution has been shown to include non-modal
contributions, such as the critical layer branch cut, that cannot be investigated clearly using
other methods, such as eigenfunction methods that capture only the modal contributions.
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The Frobenius series method employed here has two particular advantages over other
numerical methods to solve the Pridmore-Brown equation (such as finite differences, e.g.
Brambley 2011b). The first is that the Frobenius series, being a series solution about the
critical points of the equation, is at its most accurate near the critical layer singularity
found in the Pridmore-Brown equation. This allows for accurate numerical solutions near
the critical layer, required for the integration around the critical layer singularity and
its associated branch cut to evaluate their effect on the resulting pressure field. Other
numerical methods such as finite difference are typically at their least accurate near the
critical layer (Brambley et al. 2012a). Moreover, the Frobenius series solution makes
explicit the branch cut along the critical layer, allowing for analytic continuation of the
solution behind the branch cut. This allows for tracking hydrodynamic instability surface
wave modes as they become stable and enter the critical layer (as seen figure 12), which
makes it significantly easier to track the boundary between stable and unstable behaviour.

An advantage of considering this particular quadratic flow profile is that the origins
of the critical layer are on a more solid footing. For the linear flow profile (Brambley
et al. 2012a), the critical layer was due to the cylindrical geometry of the duct, whereas
in general, the critical layer is due to a non-zero second derivative of the sheared flow
profile. This also allows comparison to previous works, such as that of Swinbanks (1975)
and Félix & Pagneux (2007). Further, as the quadratic flow profile has a continuous first
derivative, we have also been able to investigate the specific case of a point mass source
at the boundary between uniform and sheared flow, r0 = 1 − h, and we find that this case
retains the same behaviour as a point mass source within the region of uniform flow. In
contrast, for the linear flow profile, r0 → 1 − h is a singular limit. We therefore believe the
results of the quadratic boundary layer flow profile to be in some ways typical of solutions
for a general boundary layer profile.

The final solution for the Green’s function for a point mass source was found to consist
of a number of contributions. This solution is dominated, both upstream, and in the near
field downstream too, by the sum of modal poles. The modal poles, including acoustic
and surface modes, are well known, and are typically used in mode-matching numerical
methods. One complication found here with the surface modes is that a particular surface
mode, here labelled k+, is found to sometimes disappear behind the critical layer branch
cut (or, in other words, into the continuous spectrum). The contribution of this mode is
not lost, however, and is in effect added to the critical layer contribution. In general,
the modal poles present difficulty only in establishing which poles contribute upstream
(x < 0) or downstream (x > 0) of the source. This can be established through application
of the Briggs–Bers criterion, as summarized in § 3.3.

The effect of the critical layer, the focus of this work, always contributes downstream
of the source, and is the dominant contribution to the far-field pressure downstream of the
point mass source. This contribution, which results from integrating the Fourier inversion
contour around the critical layer branch cut, may be viewed in three parts. The first
contribution is from the k0 non-modal pole, present only when r0 > 1 − h, which does
not decay with distance from the point source and is therefore dominant in the far field
downstream of the source. This contribution is similar to that described in the linear flow
profile case (Brambley et al. 2012a), and may be interpreted similarly as a hydrodynamic
vorticity wave generated from the point mass source interacting with the sheared mean
flow, travelling downstream with phase velocity equal to the local fluid velocity U(r0).
The second contribution to the critical layer is from the steepest descent non-oscillatory
integrals Iω/M , Ir and I0, which are the result of accounting for the branch points coming
from the critical points of the Pridmore-Brown equation. These contributions have phase
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speeds equal to, respectively, the uniform flow speed M, U(r) and U(r0), and decay
algebraically in the far field downstream of the point source. The final contribution is
from any modal pole that is hiding behind the branch cut, such as from a k+ surface wave
mode that has stabilized by moving into the critical layer branch cut from above. These
poles, while looking very much like ordinary modal poles, are not able to be found by
traditional numerical methods, as they require analytically continuing behind the critical
layer branch cut. While these poles decay exponentially with distance downstream of the
point source, their decay rate may be slower than any other acoustic modal pole, depending
on the parameters used, and so may still be significant in the far field; this was seen for
parameter set C in figure 10.

The k+ modal pole may be present as a hydrodynamic instability surface wave, or as
a stable mode included within the critical layer branch cut contribution. Interestingly, in
the linear flow profile case (Brambley et al. 2012a), this mode was always an instability
and was never hidden behind the critical layer branch cut. From the results of figure 12,
we expect that this mode is stable for quadratic flow boundary layer profiles when the
boundary layer is sufficiently thick or the flow speed is sufficiently slow, although the
specific stability boundary also depends on the impedance Z and frequency ω.

For the linear flow profile boundary layer (Brambley et al. 2012a), a k− pole was found
below and behind the critical layer branch cut that contributed to the critical layer. For the
quadratic flow profile boundary layer here, this k− pole is always found to be above the
critical layer branch cut, and so never contributes. We believe that this k− pole was an
artefact of the unphysical linear boundary layer profile, although we have no direct way of
demonstrating this. Incidentally, for the linear flow profile boundary layer, Brambley et al.
(2012a) argued that the k+ pole could never be behind the critical layer branch cut, as this
would cause an unphysical discontinuity in the final solution; in fact, it is found here that
when the k+ pole is behind the branch cut, the unphysical discontinuity in the k+ pole
contribution is exactly cancelled by the Ir steepest descent contour contribution, resulting
in a continuous solution.

The various decay rates of the components of the critical layer have been predicted
previously by Swinbanks (1975) and Brambley et al. (2012a); a summary can be found
in table 1. Swinbanks (1975) considered only the contribution from waves with phase
velocity U(r0), which are present only for a point mass source within the region of sheared
flow, r0 > 1 − h. Swinbanks (1975) predicted these to behave as a constant amplitude
plus a decay as O(x−3) in the far field. Brambley et al. (2012a) found the same result,
despite Swinbanks (1975) considering a two-dimensional flow in a rectilinear duct with an
arbitrary flow profile, and Brambley et al. (2012a) considering only a constant-then-linear
flow profile in a three-dimensional cylindrical duct; in particular, Swinbanks (1975)
emphasized the importance of the non-zero second derivative of the mean flow profile,
which is identically zero for a constant-then-linear flow profile. As a result, it would not
have been unsurprising if these results were different. Here, the same result is again found,
with the constant amplitude coming from the k0 non-modal pole, and the algebraic decay
coming from the I0 integral. This shows that this agreement is not by coincidence. For the
critical layer contribution that propagates with phase velocity U(r) when r is within the
boundary layer, we also find here the same result as given by Brambley et al. (2012a) of
an O(x−4) far-field decay.

The critical layer also contributes a term with phase velocity equal to the uniform
flow velocity M, which is always present, and which dominates the other critical layer
contributions in the far field whenever the point mass source is in the uniform flow region,
r0 < 1 − h. The amplitude of this term can decay at two different rates depending on
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the location of the source. When the source is within the uniform flow, a decay rate of
O(x−5/2) is found, while when the source is within the sheared flow, we instead have a
faster rate of decay of O(x−7/2). These results differ from those found by Brambley et al.
(2012a) in the linear flow profile boundary layer case, despite corresponding to the same
physical behaviour. This difference may be understood as result of both the difference in
the overall shape of the flow profile, and the importance of the second derivative of the
flow. Indeed, we conjecture that these scalings will differ depending on the flow profile
within the boundary layer, and an example discussion of this for n-polynomial flow profiles
is given in Appendix D.

In most aeroacoustic analyses, particularly those involving mode matching, the critical
layer is either implicitly or explicitly ignored. The work here suggests that this may be
valid in the near field provided that not all acoustic modes are cut-off, although even in
the near field the critical layer can be dominant if all acoustic modes are cut-off, as shown
in figure 9 for parameter set C. However, it is certainly not valid to ignore the critical
layer downstream in the far field, when the critical layer will be the dominant contribution.
Moreover, without considering the critical layer, it would not be apparent whether a barely
stable hydrodynamic surface wave is present only just hidden behind the critical layer
branch cut (or, in other words, within the continuous spectrum).

There are a number of possible avenues for further investigation following on from
this work. One of practical importance concerns whether the hydrodynamic surface wave
k+ can be predicted accurately using a surface wave dispersion relation (e.g. Brambley
2013), especially when the k+ pole is located behind the critical layer branch cut; our
experience in this work has been that it cannot, at least with the simplified surface wave
dispersion relations that assume a thin boundary layer with a linear flow profile, although
more complicated surface wave dispersion relations may prove more accurate. Another
possibility for further investigation is to consider parameters on the stability boundary
when the k+ pole is neutrally stable. In this case, the k+ pole is exactly located on the
critical layer branch cut, and there would also exist a value of r0 for which the non-modal
k0 pole and the k+ pole overlap; this case has been explicitly excluded here. While this may
seem a rather contrived case, a distributed sound source would correspond to an integral
of source strength over all values of r0, so k0 and k+ coinciding could be expected to occur
for any parameters leading to exact neutral stability. One could also extend this problem
to a non-constant mean density and sound speed making use of (2.5). For a given mean
density profile ρ0(r) and sound speed profile c0(r), one could still construct a solution of
the resulting Pridmore-Brown equation, taking careful notice of the potentially complex
roots of c0(r). It would still be possible to construct a solution using the Frobenius series
solutions so long as these are not double roots or of higher order, and ρ′

0(r)/ρ(r) has
at most regular singularities in the complex r-plane. The critical layer branch cut would
still occur in identical form to that seen in our work (except in the case where these
singularities occur at r = r+

c ), although the resulting scaling in the various limits seen
above may vary. When calculating the scalings in the various limits above, the work given
here would provide a suitable outline for the approach to be taken. Finally, the critical layer
may be regularized by considering either viscosity or weak nonlinearity, and it would be
interesting to investigate how the results presented here are recovered in the inviscid or
small-amplitude limits. In particular, for viscous thin boundary layers, the critical layer is
recovered as a caustic in the high-frequency limit (Brambley 2011a).

Supplementary material. The Matlab source code used to produce the data plotted here is available at
https://doi.org/10.1017/jfm.2022.753.
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Appendix A. Frobenius series solutions of the Pridmore-Brown equation with a
quadratic mean flow profile

In this appendix, we use a Frobenius expansion method to solve the homogeneous
Pridmore-Brown equation (2.9), i.e.

p̃′′ +
(

2kU′

ω − U(r) k
+ 1

r

)
p̃′ +

(
(ω − U(r) k)2 − k2 − m2

r2

)
p̃ = 0, (A1)

for the flow profile (2.8),

U(r) =

⎧⎪⎨
⎪⎩

M, 0 ≤ r ≤ 1 − h,

M

(
1 −

(
1 − 1 − r

h

)2
)
, 1 − h ≤ r ≤ 1,

(A2)

in the quadratic flow region 1 − h ≤ r ≤ 1. The Pridmore-Brown equation (A1) has
regular singularities at r = 0 and r = rc, where ω − U(rc) k = 0. For the quadratic flow
profile (A2), the solutions of ω − U(rc) k = 0 are given by (2.12),

r±
c = 1 − h ± Q, where Q = h

√
1 − ω

Mk
. (A3)

This results in the Pridmore-Brown equation in the quadratic flow region 1 − h ≤ r ≤ 1
being given by

p̃′′ +
(

2
r − r+

c
+ 2

r − r−
c

+ 1
r

)
p̃′ +

(
M2k2

h4 (r − r+
c )

2(r − r−
c )

2 − k2 − m2

r2

)
p̃ = 0.

(A4)
We choose Re(Q) ≥ 0 and consider the Frobenius expansion about r = r+

c .

A.1. Frobenius expansion about r = r+
c

Following Brambley et al. (2012a), we propose a Frobenius expansion about the regular
singularity r+

c ,

p̃(r) =
∞∑

n=0

an(r − r+
c )

n+σ , with a0 /= 0. (A5)
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We substitute (A5) into (A4) and expand using a Laurent series. Specifying that a0 /= 0
results in the requirement that σ(σ − 3) = 0. By Fuchs’ theorem (Teschl 2012), this gives
a pair of linearly independent solutions of the form

p̃c1(r) =
∞∑

n=0

an(r − r+
c )

n+3, (A6a)

p̃c2(r) = A p̃c1(r) log(r − r+
c )+

∞∑
n=0

bn(r − r+
c )

n. (A6b)

The coefficients an and bn are then given by setting the remaining terms of the Laurent
expansion of (A4) to zero, resulting in the recurrence relations

an = 1
n(n + 3)

[
k2an−2 − k2M2

h4 (an−6 + 4Qan−5 + 4Q2an−4)

−
n−1∑
j=0

(−1) j (n + 2 − j) an−1−j

(
1

(r+
c )j+1

− 2
(2Q)j+1

)

+ m2
n−2∑
j=0

(−1) j

(r+
c )j+2

(j + 1) an−2−j

⎤
⎦ , (A6c)

bn = − 1
n(n − 3)

⎡
⎣A

⎛
⎝(2n − 3)an−3 +

n−4∑
j=0

an−4−j (−1) j
(

1
(r+

c )j+1
− 2
(2Q)j+1

)⎞⎠

− k2bn−2 + k2M2

h4 (bn−6 + 4Qbn−5 + 4Q2bn−4)

+
n−1∑
j=0

(−1) j (n − 1 − j) bn−1−j

(
1

(r+
c )j+1

− 2
(2Q)j+1

)

− m2
n−2∑
j=0

(−1) j

(r+
c )j+2

(j + 1) bn−2−j

⎤
⎦ , (A6d)

where we take an = bn = 0 for n < 0. Requiring a0 = b0 = 1, we then find that

b1 = 0, b2 = −1
2

(
k2 +

(
m
r+

c

)2
)
, (A7a,b)

and that b3 is arbitrary, so we choose b3 = 0. However, for the recurrence relation
involving b3 on the left-hand side to hold, we also require that A is chosen to be

A = −1
3

(
1
Q

− 1
r+

c

)(
k2 +

(
m
r+

c

)2
)

− 2m2

3r+3
c
. (A8)

Here, the notation p̃c1 and p̃c2 denotes that these are two linearly independent solutions for
p̃ about the critical point r+

c .
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0

Im(r)

0

Im(r)

r−
c

r+
c r+

c

r−
c

Re(r) Re(r)

(b)(a)

1 − h 1 1

Figure 13. Schematic of possible locations of the r±
c critical points in the complex r-plane. (a) The radius

of convergence of the expansion about r+
c covers the region of interest r ∈ [1 − h, 1]. (b) The radius of

convergence about r+
c is insufficient to cover r ∈ [1 − h, 1].

The Frobenius series solutions (A6) are limited by a radius of convergence, in that the
series converge if |r − r+

c | < R for some radius of convergence R. Following from Fuchs’
theorem (Teschl 2012, Theorem 4.5), this R is the distance between r+

c and the next nearest
singularity of the Pridmore-Brown equation, which is at either r = 0 or r = r−

c , and hence

R = min{|1 − h + Q|, 2|Q|}. (A9)

The choice of r+
c as the singularity to expand around means that this expansion maximizes

the region of [1 − h, 1] contained within the radius of convergence. This is shown
schematically in figure 13. It can be observed that these solutions are not always valid
for all r ∈ [1 − h, 1]. In particular, in the case k → ω/M, we observe r±

c → (1 − h) and
the radius of convergence R → 0.

A.2. Frobenius expansion r = 1
In order to cover the remainder of the domain [1 − h, 1], we construct a second series
solution about r = 1:

p̃11(r) =
∞∑

n=0

αn(r − 1)(n+1), p̃12(r) =
∞∑

n=0

βn(r − 1)n. (A10a,b)

Specifying that α0 = β0 = 1, this results in the recurrence relations

αn = − 1
n(n + 1)

⎡
⎣−k2αn−2 + k2M2

h4 (αn−6 + 4hαn−5 + 2(3h2 − Q2)αn−4

+ 4h(h2 − Q2)αn−3 + (h2 − Q2)2αn−2)

+
n−1∑
j=0

(−1) j (n − j) αn−j−1

(
1 − 2

(h + Q)j+1 − 2
(h − Q)j+1

)

− m2
n−2∑
j=0

(−1) j (j + 1) αn−j−2

⎤
⎦ , (A11a)
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βn = − 1
n(n − 1)

⎡
⎣−k2βn−2 + k2M2

h4 (βn−6 + 4hβn−5 + 2(3h2 − Q2)βn−4

+ 4h(h2 − Q2)βn−3 + (h2 − Q2)2βn−2)

+
n−1∑
j=0

(−1) j (n − j − 1) βn−j−1

(
1 − 2

(h + Q)j+1 − 2
(h − Q)j+1

)

− m2
n−2∑
j=0

(−1) j (j + 1) βn−j−2

⎤
⎦ , (A11b)

with αn = βn = 0 for n < 0. These solutions are labelled p̃11 and p̃12 to indicate that they
are two linearly independent solutions for p̃ expanded about the point r = 1.

A.3. A homogeneous solution valid across [1 − h, 1]
We now construct solutions to the homogeneous Pridmore-Brown equation p̃1(r) and p̃2(r)
such that they are valid across the whole of [1 − h, 1]. We set

p̃1(r) =
{

p̃c1(r), |r − r+
c | < R,

A1 p̃11(r)+ B1 p̃12(r), otherwise,
(A12a)

p̃2(r) =
{

p̃c2(r), |r − r+
c | < R,

A2 p̃11(r)+ B2 p̃12(r), otherwise.
(A12b)

First, note that these expansions are sufficient for a uniformly valid expansion, as sketched
in figure 14. Note also from figure 14 that the regions of convergence of the p̃c solutions
and the p̃1 solutions always overlap (except when k = ω/M, which we exclude here).
For any real r̄ > Re(r+

c ) contained within both regions of convergence, we may find the
coefficients A1, A2, B1 and B2 by requiring continuity and continuous derivatives at r = r̄:[

A1 A2
B1 B2

]
=
[

p̃11(r̄) p̃12(r̄)
p̃′

11(r̄) p̃′
12(r̄)

]−1 [ p̃c1(r̄) p̃c2(r̄)
p̃′

c1(r̄) p̃′
c2(r̄)

]
. (A13)

These coefficients A1, B1, A2 and B2 are independent of the specific choice of r̄, and the
resulting solutions p̃1 and p̃2 have not only C1 continuity but C∞, since both are solutions
of the Pridmore-Brown equation. In effect, p̃1 analytically continues p̃c1 beyond its radius
of convergence, and similarly p̃2 analytically continues p̃c2.

As described in (2.17), there is a jump in p̃c2 across the critical layer branch cut due
to the log term in (A6b). If the radius of convergence R is sufficiently large that r = 1 is
within the radius of convergence, then no matching coefficients are needed, and this jump
in p̃c2 obviously carries through to p̃2. In the other case, that R is sufficiently small that
matching is needed, it follows that r̄ < 1. In this case, there is no jump in the matching
coefficients A1, A2, B1 and B2 as r̄ > Re(r+

c ), and hence

Δp̃2(r) = −2πiA p̃1(r)H(r+
c − r). (A14)

This is analogous to the jump in p̃2 given in (2.17), and shows that the jump in p̃c2 carries
through the analytic continuation, as might have been expected a priori.
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rrrrrr +++++
cc

0

Im(r)

1

rc
+

rc
–

Re(r)

Figure 14. As for figure 13(b) with the radii of convergence for p̃11 and p̃12 added.

A.4. The Wronskian of p̃1 and p̃2

We define the Wronskian of p̃1 and p̃2 to be

W(r) = W(p̃1, p̃2; r) = p̃1(r) p̃′
2(r)− p̃2(r) p̃′

1(r). (A15)

Since p̃1 and p̃2 are solutions of the homogeneous Pridmore-Brown equation (A1), we
have that

W ′ +
(

2kU′

ω − Uk
+ 1

r

)
W = 0 ⇒ W(r) ∝ (r − r+

c )
2(r − r−

c )
2

r
. (A16)

By considering the behaviour of p̃1 and p̃2 as r → r+
c , we find that W(r) = −3(r − r+

c )
2 +

O((r − r+
c )

4), so the constant of proportionality can be found, giving

W(r) = −3
4

r+
c (r − r+

c )
2(r − r−

c )
2

rQ2 . (A17)

Appendix B. The jump in G̃ across the critical layer branch cut

In this appendix, we split the jump in G̃ across the critical layer branch cut, ΔG̃, into its
various components about the three possible branch points ω/M, k0 and kr. For this reason,
we restrict attention to k ∈ [ω/M,∞), that is, to k on the critical layer branch cut. In this
case, r+

c (k) ∈ [1 − h, 1), and r+
c (k) is an increasing function of k. Recall from (3.5) that

ΔG̃ = −ω − U(r∗) k
2iπr∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×
[

2iπAD1D̂2 ψ
−
1 (ř) ψ

−
2 (r̂)

C−
1 D̂2 − Ĉ2D1

− ψ−
1 (ř)Δψ2(r̂)− Δψ1(ř) ψ−

2 (r̂)− Δψ1(ř)Δψ2(r̂)

]
,

(B1)

with Δψ1 and Δψ2 given in (2.25) as

Δψ1(r) =
{

0, r < r+
c ,

2iπAD1p̃1, r ≥ r+
c ,

(B2a)
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Δψ2(r) =

⎧⎪⎨
⎪⎩

ΔČ2 H(1)
m (αr)+ ΔĎ2 H(2)

m (αr), 0 ≤ r ≤ 1 − h,
−2iπA p̃1(r) D̂2, 1 − h ≤ r ≤ r+

c ,

0 r+
c < r,≤ 1.

(B2b)

Note that since ř < r̂, it must be that Δψ1(ř)Δψ2(r̂) = 0 in all cases.
When r, r0 < 1 − h, for any k on the branch cut we have that Δψ1 = 0 and Δψ2 /= 0.

This means that we have the same formula for ΔG̃ for any k on the branch cut in this case,
so that ω/M is the only branch point of ΔG̃. Hence we write ΔG̃ = ΔG̃ω/M , where

ΔG̃ω/M = −ω − U(r∗) k
2iπr∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×
[

2iπAD1D̂2 ψ
−
1 (ř) ψ

−
2 (r̂)

C−
1 D̂2 − Ĉ2D1

− ψ−
1 (ř)Δψ2(r̂)

]
,

= −ω − U(r∗) k
r∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

AD̂2
2 ψ

−
1 (ř) ψ

−
1 (r̂)

C−
1 D̂2 − Ĉ2D1

. (B3)

When ř < 1 − h < r̂, the formula for ΔG̃ depends on whether ω/M < k < k> or k >
k>. In this case, we set ΔG̃ = ΔG̃ω/M for ω/Mk < k>, and ΔG̃ = ΔG̃ω/M + ΔG̃> for
k > k>, so that ΔG̃> is the correction required for k > k>. In effect, ΔG̃ has two branch
points, one at ω/M and one at k> in this case, and by making this definition, we may write

∫ ∞

ω/M
ΔG̃ e−ikx dk =

∫ ∞

ω/M
ΔG̃ω/M e−ikx dk +

∫ ∞

k>
ΔG̃> e−ikx dk. (B4)

By considering (B1) in this case, we find that

ΔG̃ω/M = −ω − U(r∗) k
r∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

AD1D̂2 ψ
−
1 (ř) ψ

−
2 (r̂)

C−
1 D̂2 − Ĉ2D1

, (B5a)

ΔG̃> = ω − U(r∗) k
2iπr∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

ψ−
1 (ř)Δψ2(r̂)

= −ω − U(r∗) k
r∗ W(r∗)

AD̂2 ψ
−
1 (ř) p̃1(r̂)

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

. (B5b)

Finally, when we have 1 − h < ř, we must consider three cases:ω/M < k < k<, k< < k <
k> and k> < k. Similarly to the previous case, we consider ΔG̃ω/M = ΔG̃ for ω/M < k <
k<, and take ΔG̃< and ΔG̃> to be correction terms as k crosses k< and k>, respectively.
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The critical layer in quadratic boundary layers

This leads to

ΔG̃ω/M = −ω − U(r∗) k
2iπr∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×
[

2iπAD1D̂2 ψ
−
1 (ř) ψ

−
2 (r̂)

C−
1 D̂2 − Ĉ2D1

− Δψ−
1 (ř) ψ2(r̂)

]

= −ω − U(r∗) k
r∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

AD2
1 ψ

−
2 (ř) ψ

−
2 (r̂)

C−
1 D̂2 − Ĉ2D1

, (B6a)

ΔG̃< = −ω − U(r∗) k
2iπr∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

Δψ−
1 (ř) ψ2(r̂)

= −ω − U(r∗) k
r∗ W(r∗)

AD1 p̃1(r̂) ψ−
2 (r̂)

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

, (B6b)

ΔG̃> = ω − U(r∗) k
2iπr∗ W(r∗)

1

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

ψ−
1 (ř)Δψ2(r̂)

= −ω − U(r∗) k
r∗ W(r∗)

AD̂2 ψ
−
1 (ř) p̃1(r̂)

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

. (B6c)

Appendix C. Asymptotic behaviours of G̃ and ΔG̃q

In order to find the residue contribution of the non-modal pole at k = k0, and the decay
rates of the steepest descent contours given by integrating ΔG̃q along k = kq − iξ , we
are required to understand the behaviour of p̃1 and p̃2 at r = 1 − h, r, r0 and 1 as k →
ω/M, kr, k0, where p̃1 and p̃2 are given in § A.3.

Considering the evaluations at r, r0 > 1 − h and 1, it can be noted that we must examine
the cases that p̃1 and p̃2 are described as p̃c1 and p̃c2, respectively (as described in § A.1),
or, if we have been required to perform matching, that both are expressed in terms of p̃11
and p̃12 (given in § A.2). If we examine the limit k → ω/M, then it will follow that in each
case we are required to take the matched solutions p̃11 and p̃12.

C.1. Asymptotic behaviour as k → ω/M
Consider first p̃c1 and p̃c2 for k close to ω/M and r close to 1 − h. Since Q =
h
√

1 − ω/(Mk) = O((k − ω/M)1/2), we consider the limit |Q| → 0 and set r = 1 − h +
RQ for |R| ≤ O(1). By considering the recurrence formulae for the Frobenius expansion
coefficients an and bn given in (A6c) and (A6d) in this limit, and after some algebra, it can
be found to leading order that

p̃c1(1 − h + RQ) = Q3(R − 1)3
(

1 + 3
4
(R − 1)+ 3

20
(R − 1)2

)
+ O(Q4), (C1a)

p̃c2(1 − h + RQ) = 1 + O(Q2 log(Q)), (C1b)

p̃′
c1(1 − h + RQ) = 3Q2(R − 1)2

(
1 + (R − 1)+ 1

4
(R − 1)2

)
+ O(Q3), (C1c)
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p̃′
c2(1 − h + RQ) = −Q log(Q)

(
ω2

M2 + m2

(1 − h)2

)
(R − 1)2

×
(

1 + (R − 1)+ (R − 1)2

4

)
+ O(Q). (C1d)

We consider next p̃11 and p̃12 in the same limit. By considering the recurrence formulae
for the series coefficients αn and βn given in (A11a) and (A11b), it can be found that there
are coefficients p̃(n)11 , p̃′(n)

11 , p̃(n)12 and p̃′(n)
12 that are O(1) as |Q| → 0 such that

p̃11(1 − h + RQ) =
∞∑

n=0

(RQ)np̃(n)11 , p̃12(1 − h + RQ) =
∞∑

n=0

(RQ)np̃(n)12 , (C2a)

p̃′
11(1 − h + RQ) =

∞∑
n=0

(RQ)np̃′(n)
11 , p̃′

12(1 − h + RQ) =
∞∑

n=0

(RQ)np̃′(n)
12 . (C2b)

Note in particular that as |Q| → 0, the coefficients of the R5 term in both p̃11 and p̃12 tend
to zero at least as fast as Q5, whereas in p̃c1 from (C1a) the coefficient of R5 tends to zero
as Q3. Hence if we were to write p̃c1 = A1p̃11 + B1p̃12, then at least one of the coefficients
A1 and B1 would need to tend to infinity as Q−2 or faster as |Q| → 0. We argue that the
choice of p̃11 and p̃12 as two linearly independent solutions about r = 1 is arbitrary, and so
by symmetry between p̃11 and p̃12 we expect A1 and B1 to be the same order of magnitude
in Q, therefore forcing that A1 = O(Q−2) and B1 = O(Q−2). Similarly, since p̃′

c2 has a
coefficient of R4 that scales as Q log Q, if we were to write p̃′

c2 = A2p̃′
11 + B2p̃′

12, then at
least one of the coefficients A2 and B2 would need to tend to infinity as Q−3 log Q or faster
as |Q| → 0, and so we argue that A2 = O(Q−3 log Q) and B2 = O(Q−3 log Q).

Note, however, that by evaluating the Wronskian W(p̃c1, p̃c2; r) = W(r) at r = 1 using
(A17), and by definition of p̃11 and p̃12 at r = 1, considering W(p̃11, p̃12; r) at r = 1 shows
that

A1B2 − A2B1 = 3(h − Q)2(h + Q)2(1 − h + Q)
4Q2 = O(Q−2). (C3)

This is smaller than might have been expected from the individual scalings of A1, B1, A2
and B2 given above, but this is expected as, when the critical point r+

c is approached, the
two linearly independent solutions lose their linear independence, so there is significant
cancellation between A1B2 and A2B1.

Note also from (A17) that as |Q| → 0, we have

W(r∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−3Q2

4

(
1 + Q

1 − h

)
, r0 ≤ 1 − h,

−3(1 − h − r0)
4

4r0

(
1 − h

Q2 + 1
Q

+ O(1)
)

r0 > 1 − h.

(C4)
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Assuming that p̃11 and p̃12 are O(1) when r is not close to 1 − h, it follows that

C1 = 4α J′
m(α(1 − h))

3Q2 + O(Q−1) = O(Q−2), (C5a)

D1 = Jm(α(1 − h))+ O(Q) = O(1), (C5b)

Ĉ2 = −4Q2

3

A2 + iω
Z

B2

(1 − h + Q)(h − Q)2(h + Q)2
= O(Q−1 log(Q)), (C5c)

D̂2 = 4Q2

3

A1 + iω
Z

B1

(1 − h + Q)(h − Q)2(h + Q)2
= O(1), (C5d)

Č2 = πi(1 − h)α
4

D̂2 H(2)′
m (α(1 − h)) = O(1), (C5e)

Ď2 = −πi(1 − h)α
4

D̂2 H(1)′
m (α(1 − h)) = O(1). (C5f )

We can use the above to establish that ψ1 and ψ2 are both order 1 quantities for particular
values of r:

ψ1(r) = Jm(αr) = O(1) for r < 1 − h, (C6)

ψ2(r) = Ĉ2p̃1 + D̂2p̃2 = p̃12 − iω
Z

p̃11 = O(1) for r > 1 − h. (C7)

We also note thatω − U(r∗) k = −M(k − ω/M) = −ωQ2/h2 + O(Q4) = O(Q2) for r0 ≤
1 − h, and it is O(1) for r0 > 1 − h, and that

A = −1
3

(
ω2

M2 + m2

r+2
c

)(
1
Q

− 1
r+

c

)
− 2m2

3r+3
c

= − 1
3Q

(
ω2

M2 + m2

r+2
c

)
+ O(1). (C8)

C.1.1. Behaviour of k → ω/M
We now use the above scalings to consider the branch point of G̃ at k = ω/M, with the
aim of showing that G̃ does not experience a pole at k = ω/M for any value of r0. Recall
from (3.3) that

G̃ = (ω − U(r∗) k)
2πir∗ W(r∗)

ψ1(ř) ψ2(r̂)

C1D̂2 − Ĉ2D1
. (3.3)

Using the results above, if k = ω/M + ε eiθ , then for r0 ≤ 1 − h,

G̃ ∼ Mε eiθ

2πi(1 − h)
ψ1(ř) ψ2(r̂)

α J′
m(α(1 − h)) D̂2

= O(ε). (C9)

If instead r0 > 1 − h, then we find that

G̃ ∼ −Mh4ε2 e2iθ (M − U(r0))

2πiω(1 − h)(1 − h − r0)4
ψ1(ř) ψ2(r̂)

α J′
m(α(1 − h)) D̂2

= O(ε2). (C10)
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In particular, in either case there is no pole of G̃ at k = ω/M. Hence we have that

Iε(x) = −1
2π

∫ 2π

0
G̃
(
ω/M + ε eiθ

)
exp

{
−ix

(
ω/M + ε eiθ

)}
iε eiθ dθ → 0 as ε → 0.

(C11)

C.1.2. Behaviour of ΔG̃ω/M as k → ω/M
We now substitute all of the above into the equation for ΔG̃ω/M given in (3.16a). First, we
rewrite (3.16a) exactly as

ΔG̃ω/M = 4A(D̂2 ψ
−
1 (1 − h))2 f (r) f (r0) j(r∗)

3(1 − h)Q3(C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2)(C−

1 D̂2 − Ĉ2D1)
, (C12a)

where j(r0) = −3
4
(1 − h)Q3 ω − U(r0) k

r0 W(r0)
and f (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ−
1 (r)

ψ−
1 (1 − h)

, r < r0,

D1 ψ
−
2 (r)

D̂2 ψ
−
1 (1 − h)

, r > r0.

(C12b)

Taking now the leading-order terms as k → ω/M, we find that

ΔG̃ω/M ∼ −
ω2

M2 + m2

(1 − h)2

4(1 − h)
Jm(α(1 − h))2

α2 J′
m(α(1 − h))2

f (r) f (r0) j(r0), (C13a)

where f (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Jm(αr)
Jm(α(1 − h))

, r < r0,

ψ−
2 (r)

D̂2
, r > r0,

(C13b)

and j(r0) =

⎧⎪⎪⎨
⎪⎪⎩

− ω

h2 Q3, r0 < 1 − h,

ω(1 − U(r0)/M)
(r0 − 1 + h)4

Q5, r0 > 1 − h.
(C13c)

Finally, setting k = ω/M − iξ , so that Q = (1 − i)h
√

Mξ/2ω + O(ξ3/2) (recalling that
Re(Q) ≥ 0), we find that j(r0) may be written to leading order as

j(r0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + i√
2

hM3/2

ω1/2 ξ3/2, r0 < 1 − h,

−1 − i√
2

h5M5/2

ω3/2
1 − U(r0)/M
(r0 − 1 + h)4

ξ5/2, r0 > 1 − h.

(C14)
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C.2. Asymptotic behaviour as k → k0

We now consider k → k0 with r0 > 1 − h. We have that

r0 − r+
c = −ωh2(k − k0)

2Mk2
0Q0

+ O((k − k0)
2), where Q0 = h

√
1 − ω

Mk0
. (C15)

Hence in this limit, p̃1(r0) and p̃2(r0) may always be evaluated in terms of p̃c1 and p̃c2, as
we are always eventually within their radius of convergence. Hence in this limit,

p̃1(r0) =
(

−ωh2(k − k0)

2Mk2
0Q0

)3

+ O((k − k0)
4), p̃2(r0) = 1 + O((k − k0)

2). (C16)

For r �= r0, the Bessel function, Hankel functions, and p̃1 and p̃2 all behave as O(1)
quantities when evaluated at 1 − h, r and 1, resulting in O(1) behaviour for C1, D1, Č2,
Ď2, Ĉ2 and D̂2. It can be shown that A = O(1) and that

W(r0) = −3h4ω2(k − k0)
2

4Q2
0M2k4

0
+ O((k − k0)

3). (C17)

C.2.1. Behaviour of G̃ as k → k0, and the residue of the non-modal k0 pole
Substituting all the above into (3.3) (as k → k0 from above) gives

G̃(k) = −2Mk2
0(ω − Mk0)

3πir0h2ω(k − k0)

1

C+
1 D̂2 − Ĉ2D1

×
{

D̂2 ψ1(r), r < r0

D1 ψ2(r), r > r0
+ O(1), (C18)

confirming a pole at k = k0 that, once integrated around, gives a residue contribution of

R+
0 (k0) = 2Mk2

0(ω − Mk0) e−ik0x

3πr0h2ω(C+
1 D̂2 − Ĉ2D1)

×
{

D̂2 ψ1(r), r < r0,

D1 ψ2(r), r > r0.
(C19)

C.2.2. Behaviour of ΔG̃0 as k → k0
Moreover, we may substitute all the above into ΔG̃0 from (3.16b) and (3.16c) to find the
leading-order contribution to ΔG̃0 as k → k0. First, we find the exact expression for ΔG̃0

to be (considering only r0 > 1 − h, as otherwise ΔG̃0 ≡ 0)

ΔG̃0 = −ω − U(r0) k
r0 W(r0)

A p̃1(r0)

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×
{

D̂2 ψ
−
1 (r), r0 > r,

D1 ψ
−
2 (r), r0 < r.

(C20)

Using asymptotics above, to leading order we find that

ΔG̃0 = Aωh2 U(r0)

6r0Mk2
0(r0 − 1 + h)

(k − k0)
2

C−
1 D̂2 − Ĉ2D1 + 2πiAD1D̂2

×
{

D̂2 ψ
−
1 (r), r0 > r,

D1 ψ
−
2 (r), r0 < r.

(C21)

950 A8-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

75
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.753


M.J. King and others

C.3. Asymptotic behaviour as k → kr

Analogously to the derivation above for k → k0, we consider here the limit k → kr. In
this case, the only difference is that both W(r∗) and (ω − U(r∗) k) remain O(1) quantities
whenever r �= r∗, unlike for the limit k → k0. Otherwise, the same procedure is applicable,
with, in particular,

r − r+
c = −ωh2(k − kr)

2Mk2
r Qr

+ O((k − kr)
2), where Qr = h

√
1 − ω

Mkr
, (C22)

and similarly

p̃1(r) =
(−ωh2(k − kr)

2Mk2
r Qr

)3

+ O((k − kr)
4), p̃2(r) = 1 + O((k − kr)

2). (C23a,b)

C.3.1. Behaviour of G̃r as k → kr
Substituting all the above into (3.3) as k → kr gives, to leading order,

G̃ ∼ ω − U(r∗) kr

2πir∗ W(r∗)
1

C1D̂2 − Ĉ2D1
×
{

D1 ψ2(r0), r < r0

D̂2 ψ1(r0), r > r0
= O(1), (C24)

confirming no singular behaviour at k = kr, and in particular no pole at k = kr.

C.3.2. Behaviour of ΔG̃r as k → kr
Equations (3.16b) and (3.16c) for r > 1 − h give ΔGr as

ΔG̃r = −ω − U(r∗) k
r∗ W(r∗)

A p̃1(r)

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×
{

D1 ψ
−
2 (r0), r < r0,

D̂2 ψ
−
1 (r0), r > r0.

(C25)

Substituting the above asymptotics into this equation gives

ΔG̃r ∼ A(ω − U(r∗) kr)ω
3h6

8r∗ W(r∗)M3k6
r (r − 1 + h)3

(k − kr)
3

C−
1 D̂2 − Ĉ2D1 + 2iπAD1D̂2

×
{

D̂2 ψ
−
1 (r0), r0 < r,

D1 ψ
−
2 (r0), r0 > r.

(C26)

Appendix D. Conjecture on the behaviour of an n-polynomial flow profile

In this appendix, we give an argument to support the conjectured behaviour of the critical
layer contribution for large x for an n-polynomial flow profile given by

U(r) =
⎧⎨
⎩

M, 0 ≤ r ≤ 1 − h,

M
(

1 −
(

1 − 1 − r
h

)n)
, 1 − h ≤ r ≤ 1.

(D1)

The three steepest descent contours will be analogous in form to those given in § 3.3.3.
Setting rC to be some solution of ω − U(rC) k = 0, the solutions for small |r − rC| will
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take the form
p̃1(r) = (r − rC)

3 + O((r − rC)
4), (D2a)

p̃2(r) = A log(r − rC)p̃1(r − rC)+ 1 + O((r − rC)
2), (D2b)

p̃′
1(r) = 3(r − rC)

2 + O((r − rC)
3), (D2c)

p̃′
2(r) = b2(r − rC)+ O((r − rC)

2), (D2d)
for some coefficient b2. The Wronskian will satisfy

W(p̃1, p̃2; r) = W(r) ∝ 1
r

∏
ω−U(rc) k=0

(r − rc)
2. (D3)

For the solutions expanded around the particular critical point rC, we therefore have

W(r) = −3
rC

r

∏
ω−U(rc) k=0

(r − rc)
2

∏
ω−U(rc) k=0

rc �=rC

(rC − rc)
2
. (D4)

As k → ω/M, we have

A = −1
3

(
ω2

M2 + m2

r2
C

)(
U′′(rC)

U′(rC)
− 1

rC

)
− 2m2

3r3
C

∼ −1
3

(
ω2

M2 + m2

(1 − h)2

)
n − 1

rC − 1 − h
+ O(1), (D5)

and also W(1 − h) = O(1 − h − rC)
2, and W(r) = O((1 − h − rC)

−2(n−1)) for r > 1 − h.
Because of the W(r) scalings and the p̃1 and p̃2 scalings, we also have that C1 = O((1 −

h − rC)
−2), while D1, Ĉ2, D̂2 = O(1).

It then follows that
C1D̂2 − D1Ĉ2 = O((1 − h − rC)

−2) (D6a)

and Δ(C1D̂2 − D1Ĉ2) = 2πiAD1D̂2 = O((1 − h − rC)
−1). (D6b)

We further know that as k → ω/M, we have
ω − U(1 − h)k = M(k − ω/M) and ψ1(r), ψ2(r) = O(1). (D7a,b)

Noting also that (1 − h − rC) = O((k − ω/M)1/n), we may predict the behaviour of Iω/M:

ΔG̃ω/M � (ω − U(r∗) k)A

r∗ W(r∗) (C1D̂2 − Ĉ2D1)(C1D̂2 − Ĉ2D1 + 2iπAD1D̂2)

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(k − ω/M)(1 − h − rC)
−1

(1 − h − rC)2(1 − h − rC)−4 �
(

k − ω

M

)
1+1/n, r0 ≤ 1 − h,

(1 − h − rC)
−1

(1 − h − rC)−2(n−1)(1 − h − rC)−4 �
(

k − ω

M

)
2+1/n, r0 > 1 − h,

(D8)

and hence we predict that Iω/M decays like x−2−1/n for r0 ≤ 1 − h, and like x−3−1/n for
r0 > 1 − h.
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In order to do the same for Ir and I0, we first note that (r − rC) = O(k − kr) as k → kr,
and analogously for k → k0. Further, we have C1,D1, Ĉ2, D̂2 = O(1) and A = O(1). It
is noticed that for r > 1 − h, p̃1(r) = O((r − rC)

3), while ψ1(r0), ψ2(r0) = O(1). Using
the results given previously for ω − U(r∗) k, and noting that W(r0) = O((r0 − rC)

2) for
I0 only, and otherwise W(r0) = O(1), gives us our results that I0 decays like x−3 while Ir

decays like x−4, exactly as for the quadratic and linear cases.
The validity of the above conjecture depends on the the assumed scalings for p̃1(r)

and p̃2(r) at r = 1 − h, 1 − h < r < 1 and r = 1, in the limits k → ω/M, k → kr and
k → k0 �= kr. Particular attention would be required for n ≥ 6, where three expansions
would be needed to cover the whole domain r ∈ [1 − h, 1]. Moreover, the locations of the
k± poles have a significant bearing on the overall far-field magnitude of the critical layer,
and in particular whether the k+ occurs as a convective instability or is stabilized by the
boundary layer thickness.
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