MG2016+112: A DOUBLE GRAVITATIONAL LENS MODEL

S. NAIR AND M. A. GARRETT University of Manchester, NRAL, Jodrell Bank, U.K.

MG2016+112, discovered by Lawrence et al. (1984) is one of the beststudied among multiply-imaged systems, but is still only partially understood. Ostensibly a three-image system consisting of images A, B and C of a quasar at z = 3.273, the observed lensing galaxy D (a giant elliptical at z = 1.01) at the centroid of the image system seems inadequate to provide the minimum mass of $\sim 2.5 \times 10^{12} M_{\odot}$ within 10 kpc of its center (in projection along the l.o.s.) required to produce the observed 3."9 image-splitting. C itself appears to consist of two components, radio emission that may be associated with the faint optical image counterpart of A and B (called C₂, see Garrett et al. 1994) and flat-spectrum C₁, which dominates radio observations of the system and apparently consists of at least three linearly stretched subcomponents, C₁₁ to C₁₃ (see Garrett et al. in these proceedings).

The observationally suggested second lens in region C (e.g. Lawrence et al. 1993) is strongly supported by lens modeling, because of the presence of the faint image C_2 . The two elliptical lenses produce a five-image configuration with two core-captured images demagnified to levels of undetectability; see Fig.1. Each lens consists of two non-singular oblate spheroidal mass distributions, one compact (the 'galaxy') and the other extended ('dark matter', DM). The DM associated with lens plane D has a scale length of about 25 kpc, and appears to have a high eccentricity (axial ratio about 0.6 in a typical model). Hattori et al. (these proceedings) suggest that there could be a cluster here. The redshift of lens plane C is assumed to be greater than that of D, for definiteness (this is not constrained by the configuration). Masses (in M_{\odot}) of the lenses in the present model are: lens plane D: galaxy -2.7×10^{11} , DM -2.3×10^{12} ; lens plane C: galaxy -6.5×10^9 (high eccentricity), DM $- 7.0 \times 10^{12}$ (scale length of ~ 65 kpc; spherical). Lens plane C is at $z_C = 1.2$, and lens plane D is at $z_D = 1.01$. The modeling code used is a version of Narasimha, Subramanian and Chitre (1982, 1984).

195

C. S. Kochanek and J. N. Hewitt (eds), Astrophysical Applications of Gravitational Lensing, 195–196.

^{© 1996} IAU. Printed in the Netherlands.

Figure 1. (a) Image and (b) Source Planes for the Two-Lens Model, with the position of the second galaxy, after single-imaging by the foreground lens D, near C_1 in (a). The model is constrained by the image separations (the average error $\sim 10\%$, being the largest with the position of image B), image intensity ratios and vlbi observations of this system.

Figure 2. Is C_1 multiply-imaged radio emission? (Main Fig.:) The images C_{11} to C_{13} as formed by a 2^{nd} radio source just behind Galaxy C, near a cusp of the 'lips' caustic that develops. C_2 is shown for reference. (Inset:) Predicted parity relations between the subcomponent images in the case of C_{11} to C_{13} being formed at the lips caustic. If C_{12} and C_{13} are formed by some relatively extended radio emission (at z = 3.273 and related to the core-jet source that gives rise to A, B and C_2) which may be imaged with high magnification between C_{11} and C_2 as it crosses a radial critical curve just east of the source position in Fig.1(b), then the predicted parities for C_{12} and C_{13} are the same as in the previous case. In this picture, C_{11} is the core-captured image near Galaxy C (demagnified version of A, B and C_2). The corresponding images near A and B of this extended radio flux could well be resolved out in VLBI observations. Note high magnification gradient near image C_2 ; image flux ratios can vary with wavelength.

 C_1 could be the second lens as a peculiar (singly-imaged) radio emitting galaxy; else, if it is multiply-imaged background radio emission from a second source or fuzz associated with the source at z = 3.273, see Fig.2 for predicted substructure. Acknowledgements: S.N. thanks the Raman Research Institute, Bangalore, India, for the use of computing facilities.

References

Garrett, M.A., Muxlow, T.W.B, Patnaik, A.R., & Walsh, D., 1994, MNRAS, 269, 902 Lawrence, C.R., Schneider, D.P., Schmidt, M. et al., 1984, Science, 223, 46 Lawrence, C.R., Neugebauer, G., & Matthews, K., 1993, A.J., 105, 17 Narasimha, D., Subramanian, K., & Chitre, S.M., 1982, MNRAS, 200, 941 Narasimha, D., Subramanian, K., & Chitre, S.M., 1984, MNRAS, 210, 79