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DENSITY OF NUMERICAL RADIUS ATTAINING
OPERATORS ON SOME REFLEXIVE SPACES

CARMEN SILVIA CARDASSI

We show that for reflexive spaces X the density of numerical

radius attaining operators in L(X) is equivalent to the density

of numerical radius attaining operators in L(X*) . As a

consequence of this fact and of a result of Berg and Sims, we

prove that for uniformly smooth spaces X the numerical radius

attaining operators are dense in L(X) .

I f X i s a Banach space, we define the numerical radius of a bounded

l inear operator T : X -*• X , denoted by v(T) , by

v{T) = sup{|<x*, Tx>| : (x , x*) € IlU)} ,

where nU) = {(x, x*) € X x X* : \\x\\ = ||x*|| = <x*, x> = 1} .

We say that T attains i t s numerical radius if there is

(xQ, x*) € IlU) such that v(T) = |{x*, Txo}| and denote the set of

numerical radius attaining operators by NRA(̂ ) .

We denote L{X) the space of al l bounded linear operators from X to

X .

THEOREM 1. Let X be a reflexive space. Then NRA(X) = L{X) if
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and only if NRA(X*) = L{X*) .

Proof. We will show first that NRA(l) = L(X) implies

NBAU*) = L{X*) .

Let R € L(X*) and e > 0 be given. Since X i s r e f l ex ive , there

i s T € L{X) such tha t T* = R .

By hypothesis , there i s TQ € NRA(Jf) such tha t \\T-T' \\ < e . Let

[xQ, x*) € IIU) be such tha t v[TQ) = \(x*, TQxQ)\ .

Then (x*, x.) (. n(^f*) , where " denotes the canonical in jec t ion

from X i n to X** , which in t h i s case i s also onto.

Since v[TQ) = v(T*) ( [ 2 ] ) , we get v[T*) = | (x Q , T*x*)\ and then

T*

But ||i?-T*|| = 112*—2* || < £ and so we conclude that NRAU*) = L{X*) .

For the reverse impl ica t ion , note tha t X* i s ref lexive and apply the

f i r s t pa r t of the proof to get t h a t NRA(X*) = L(X*) implies

T = L(X**) .

Since X i s r e f l ex ive , NRAU**) = NRAU) and L(X**) = L{X) and we

have f inished the proof.

COROLLARY 2. Let X be a uniformly smooth space. Then

NRAU) = L(X) .

Proof. Since X i s uniformly smooth, X* i s uniformly convex. By

C7], NRA(X*) = L{X*) . But X i s also reflexive and applying Theorem 1

we get NRAU) = L(X) .

We note that i t i s possible to give a d i rec t proof of the r e s u l t of

Corollary 2 , by means of a minor modification on Berg and Sims' argument

(CH) .

Inc iden ta l l y , we do not know any example of a ref lexive space X for

which NRA(#) t L(X) . Actually we do not know any example of a Banach

space with th i s property.
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