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Abstract. We discuss the ultraviolet to near-IR galaxy counts from
the deepest imaging surveys, including the northern and southern Hubble
Deep Fields. The logarithmic slope of the galaxy number-magnitude rela-
tion is flatter than 0.4 in all seven UBVIJH K optical passbands at faint
magnitudes, i.e. the light from resolved galaxies has converged from the
UV to the near-IR. Most of the galaxy contribution to the extragalactic
background light (BEL) comes from relatively bright, low-redshift ob-
jects (50% at Vap < 21 and 90% at Vap < 25.5). We find a lower limit
to the surface brightness of the optical EBL of about 15 nWm™2sr™!,
comparable to the intensity of the far-IR background from COBE data.
Diffuse light, lost because of surface brightness selection effects, may add
substantially to the EBL.

1. Introduction

The extragalactic background light (EBL) is an indicator of the total luminosity
of cosmic structures, as the cumulative emission from pregalactic, protogalactic,
and evolving galactic systems, together with active galactic nuclei (AGNs), is
expected to be recorded in this background. The recent progress in our under-
standing of faint galaxy data, made possible by the combination of Hubble Space
Telescope (HST) deep imaging and ground-based spectroscopy, and of the evolu-
tion of the stellar birthrate in optically-selected galaxies from the present-epoch
up to z = 4 (Steidel et al. 1999; Madau, Pozzetti, & Dickinson 1998), has been
complemented by measurements of the far-IR/submillimetre background by the
COBE satellite (Hauser et al. 1998; Fixsen et al. 1998; Puget et al. 1996), show-
ing that a significant fraction of the energy released by stellar nucleosynthesis is
re-emitted as thermal radiation by dust (Dwek et al. 1998).

In this talk I will focus on the galaxy number-apparent magnitude relation
and its first moment, the galaxy contribution to the EBL. The logarithmic slope
of the differential galaxy counts (dlog N/dmap = <) is a remarkably simple
cosmological probe of the history of the stellar birthrate, as it must drop below
0.4 to yield a finite value for the EBL. The radiation emitted from unresolved
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Figure 1. Differential UBV IJH K galaxy counts as a function of AB
magnitudes, including HST and ground-based data. Note the decrease
of the logarithmic slope dlog N/dm at faint magnitudes, with a flatten-
ing which is more pronounced at the shortest wavelengths. The shaded
region in the U band shows the results of the “fluctuation analysis” by
Pozzetti et al. (1998) (see text).
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Figure 2. Extragalactic background light per magnitude bin, 7, =
10-04(maB+486) N (1) as a function of U (filled circles), B (open cir-
cles), V (filled pentagons), I (open squares), J (filled triangles), H
(open triangles), and K (filled squares) magnitudes. For clarity, the
BV IJH K measurements have been multiplied by a factor of 2, 6, 15,
50, 150, and 600, respectively.

sources that could be lost due to uncertainties in the faintest galaxy data and
surface brightness selection effects will be discussed, together with the contribu-
tion to the EBL from high-z populations such as the Lyman-break galaxies and
extremely red objects.

2. Galaxy Counts

Figure 1 shows the northern and southern Hubble Deep Fields (HDFn and HDF's)
galaxy counts as a function of AB isophotal magnitudes in the UBV IJH K pass-
bands. Details of the data reduction, source detection algorithm, and photome-
try can be found on http://www.stsci.edu/ftp/science/hdfsouth/catalogs.html.
No correction for detection completeness have been made; in the HDFn the
optical counts are likely to be more than 80% complete down to the limits plot-
ted in U, B,V,I (Williams et al. 1996). A compilation of existing HST and
ground-based data is also shown (see Madau & Pozzetti 2000 for references).
All magnitudes have been corrected to the AB system, while the second order
colour corrections for the differences in the filter effective wavelengths have not
been applied to the ground-based data.

Due to local homogeneity, the differential counts at bright magnitude follow
a Euclidean slope (v ~ 0.6) in all seven bands up to map g 22 to 19 from U to
K. Because of the curvature of the universe as well as the evolution of galaxies
at intermediate magnitudes, galaxy counts depart from Euclidean expectation

https://doi.org/10.1017/50074180900225916 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900225916

74 Pozzetti & Madau

o
@
—T

EBL/EBLyg;

o
IS
—T

0.2

Figure 3. Cumulate contribution to the EBL per magnitude bin as
a function of U, B,V, I, J, H K AB magnitudes, derived from a fit to
the observed counts.

and follow a slope v ~ 0.45 to 0.3 up to map < 26 to 22 from U to K. At
even fainter magnitudes the counts show a clear flattening to a slope v < 0.4 for
mag > 26 to 22 from U to K: in particular v < 0.2 in the optical passbands
U,B,V,I,and v ~ 0.3 in the J, H and K NIR bands.

A fluctuation analysis by Pozzetti et al. (1998) has shown that the turnover
observed in the U band in the HDFn is likely due to the ‘reddening’ of high
redshift galaxies caused by neutral hydrogen along the line of sight. Recently, a
re-analysis of the HDF's by Volonteri et al. (2000) shows, however, a steeper slope
in the faintest U magnitude bin. In the B-band the flattening at faint apparent
magnitudes cannot be due to IGM absorption, since the fraction of Lyman-break
galaxies at B = 25 is small (Steidel et al. 1996; Pozzetti et al. 1998). Moreover,
an absorption-induced loss of sources cannot explain the similar change of slope
of the galaxy counts observed in the VI, J, H, and K bands.

3. The Resolved EBL

The contribution of known galaxies to the optical EBL can be calculated directly
by integrating the emitted flux times the differential number counts down to the
detection threshold.

3.1. Differential Contribution from Known Galaxies

The leveling off of the counts is clearly seen in Figure 2, where the func-
tion i, = 1070-4(maB+486) N'(m) is plotted against apparent magnitude in all
bands. The differential EBL peaks at (U, B)ap ~ 24 to 25, (V,R,I)ap ~
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Figure 4. Spectrum of the optical extragalactic background light
from resolved sources as derived from a compilation of ground-based
and space-based galaxy counts in the UBVIJHK bands (filled trian-

gles).

21 to 22 and (J, H, K)AB ~ 1Y to 21. While counts having a logarithmic slope
dlog N/dmap = a > 0.40 continue to add to the EBL at the faintest magni-
tudes, it appears that the HDF survey has achieved the sensitivity to capture the
bulk of the near-ultraviolet, optical, and near-IR extragalactic light from discrete
sources. The effect of count flattening is depicted in Figure 3, which shows that
relatively bright galaxies contribute the most to the resolved EBL: We found
that 50% of the background is produced by galaxies with (U, B,V, I, J, H, K)aB
< (23, 22.5, 21, 20.5, 20, 20, 18), and 90% with (U, B,V,I,J, H,K)ap < (26,
26, 25.5, 25, 24, 24, 21.5).

3.2. Spectrum of the Resolved EBL

The EBL from detected galaxies in all seven bands has been derived by inte-
grating the galaxy counts down to the faintest detection threshold. The results
for 0.36 < A < 2.2 um are listed in Table 1, along with the magnitude range of
integration and the estimated lo error bars, which arise mostly from field-to-
field variations in the numbers of relatively bright galaxies. An extrapolation of
the observed N(m) to brighter and fainter fluxes would typically increases the
integrated light by less than 20%. The integrated optical galaxy light varies in
the range vI, = 2.9 to 9.7nWm™2sr™!, increases o< A from U to I, and peaks
around A ~ 1.1um.

In Figure 4 we show the spectrum of the integrated galaxy light including
a UV point at 2000 A from Armand, Milliard, & Deharveng (1994) and the
results of HST/STIS integrated counts at 1600 and 2300 A from Gardner, Brown
& Ferguson (2000). Also plotted are the 90% all-sky-photometry upper limits
from Bowyer (1991), Toller (1983), Dube et al. (1977, 1979), Wright (2000), and
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Hauser et al. (1998). These are from 3 to 5 times higher than the contribution
from known galaxies.

Table 1. The resolved EBL

A(A) | AB (range) | vI, | ot | 0~
3600 | 18.0-28.0 | 2.87 | 0.58 | 0.42
4500 | 15.0-29.0 | 4.57 | 0.73 | 0.47
6700 | 15.0-30.5 | 6.74 | 1.25 | 0.94
8100 | 12.0-29.0 | 8.04 | 1.62 | 0.92

11000 | 10.0-29.0 | 9.71| 3.00 | 1.90

16000 | 10.0-29.0 | 9.02 | 2.62 | 1.68

22000 | 12.0-25.5 | 7.92]2.04 | 1.21

vI, is in units of nWm~2sr~1.

4. The Unresolved EBL

Diffuse, unresolved light may contribute substantially to the optical EBL. In-
deed, different algorithms used for ‘growing’ the photometry beyond the outer
isophotes of galaxies may significantly change the magnitude of faint galaxies.
According to Bernstein (1999) and Bernstein et al. (2000), roughly 50% of the
flux from resolved galaxies with V' > 23 mag lie outside the standard-sized aper-
tures used by photometric packages. An extragalactic sky pedestal created by
the overlapping wings of resolved galaxies also contributes significantly to the
sky level, and is undetectable except by absolute surface photometry (Bernstein
et al. 2000). Also, at faint magnitude levels, distant objects which are brighter
than the nominal depth of the catalog may be missed due to the (1+2)* dimming
factor. All these systematic errors are inherent in faint-galaxy photometry; as a
result, our estimates of the integrated fluxes from resolved galaxies will typically
be too low, and must be strictly considered as lower limits.

4.1. Uncertainties in Faint Galaxy Counts

An issue in galaxy counts is the uncertain faint slope, particularly in the U
band (cf. Volonteri et al. 2000). We have estimated the undetected EBL in the
case the number counts have an intrinsic faint slope of v = 0.3, finding an EBL
higher by 15 to 30% down to zero fluxes. The integrated galaxy contribution
could increase by 100% only if the counts continue to grow with a slope v = 0.4
up maB < 35 to 40, or with v ~ 0.5 to 0.8 up to map < 29, depending on the
band.

4.2. Surface Brightness Selection Effects

At faint magnitudes distant objects and low surface brightness (LSB) galaxies
may be missed due to the (1+2z)* dimming factor. According to Yoshii (1993)
40% of galaxies are undetected at B > 27 if y;m(B) = 29 mag/arcsec?; however,
since most of the light comes from relatively bright objects, the resolved EBL
increases only by ~ 20% up to AB~30.
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Figure 5. Spectrum of the optical extragalactic background light.
The integrated galaxy contribution as derived from a compilation
of ground-based and space-based galaxy counts in the UBVIJHK
bands (filled triangles) is shown together with the FIRAS 125-5000
pm (dashed line) and DIRBE 140 and 240 pm (filled squares) detec-
tions (Hauser et al. 1998; Fixsen et al. 1998). The empty squares show
the DIRBE points after correction for WIM dust emission (Lagache et
al. 1999, 2000). Also plotted (empty triangles) is a FOCA-UV point
at 2000 A from Armand et al. (1994) and the HDF+STIS integrated
counts at 1600 and 2300 A from Gardner et al. 2000; the tentative de-
tection at 3.5 um (filled dot) from COBE/DIRBE observations (Dwek
& Arendt 1998), at 2.2, 3.5 um from Gorjian et al. 2000 (empty dot)
and the upper limit from Wright 2000 at 1.25 ym, and finally at 60,
100 pm (empty pentagons) from Finkbeiner et al. 2000. The crosses at
3000, 5500, and 8000 A are Bernstein et al. (2000) tentative measure-
ments of the EBL from resolved and unresolved galaxies fainter than
V = 23 mag (the error bars showing 2o statistical errors). Upper limits
are from Bowyer (1991), Toller (1983), Dube et al. (1977, 1979), and
Hauser et al. (1998), lower limits from ISO counts (Elbaz et al. 1999).

https://doi.org/10.1017/50074180900225916 Published online by Cambridge University Press

77


https://doi.org/10.1017/S0074180900225916

78 Pozzetti & Madau

The correction for such effects is however model dependent. We have esti-
mated it for different scenarios: from the PLE models of Totani & Yoshii (2000),
which include surface brightness selection effects, we found an integrated galaxy
light which is about 10% higher in the B band up to Bag < 30, due to high-z
objects; in a dwarf dominated model (Ferguson & Babul 1998) the faint slope
of “total” I counts is v ~ 0.32 at Ipxp > 25.0; the background from galaxies in-
creases then by ~ 15% due to LSBs and high-z objects. Vaisanen & Tollestrup
(1999) estimate that the maximum LSB contribution to the EBL could be sim-
ilar to that from known objects. Vogeley (1997) shows that there is a uniform
unresolved optical background in the HDFn, which would add a fraction from
few tens to 50% to the surface brightness from detected galaxies.

Bernstein (1999) has presented the first tentative detection of the optical
EBL at 3000, 5500 and 8000 A, derived from coordinated data sets from HST
and Las Campanas Observatory, and shown that the optical EBL is a factor
2 to 4 higher than the integrated contribution of known galaxies. The EBL in
the near-IR has been recently estimated from DIRBE data by Gorjian, Wright
& Chary (2000) and by Wright (2000), and shows a similar excess compared to
the integrated galaxy light. From the above discussion it is difficult, however,
to completely explain this discrepancy by a surface brightness selection effect
and flux lost by standard photometry (Angeretti, Pozzetti, & Zamorani 2000).
A high optical/near-IR EBL implies that a high fraction of baryonic mass has
been processed by stars throughout cosmic history; these stellar baryons must
be accounted for in the local universe (Fukugita et al. 1998; see also contribution
by Madau et al. , this volume).

5. Optical and FIR EBL

The spectrum of the optical EBL is shown in Figure 5, together with the recent
results from COBE. The values derived by integrating the galaxy counts down
to very faint magnitude levels imply a lower limit to the EBL intensity in the
0.3-2.2 pm interval of I, = 15 nW m~2sr~!. Including the tentative detection
at 3.5 um by Dwek & Arendt (1998) would boost Iop to 22 19 nWm=2sr~!. The
COBE/FIRAS (Fixsen et al. 1998) measurements, in the 125-2000 um range,
when combined with the DIRBE (Hauser et al. 1998) points at 140 and 240 pm,
yield a far-IR background intensity of I'rir (140 — 2000 ym) ~ 20 nW m~2sr7 1
The tentative direct measurements in the optical by Bernstein et al. (2000) and
in the near-IR by Gorjian et al. (2000), lie between a factor of 2 to 4 higher than
the integrated light from galaxy counts, with an uncertainty that is largely due
to systematic rather than statistical error. Applying this correction factor to the
range 0.3-3.5 um gives a total optical+ NIR EBL intensity of ~ 45 nWm™2sr~1.
Including the recent FUV results from Gardner et al. (2000), we derive a ‘best-
guess’ estimate of the optical/near-IR EBL intensity observed today of

IgpL(0.16 < A < 3.5um) = 20 to 50 nWm™2sr™ 1. (1)
Gispert et al. (2000) derive a similar value in the FIR, Igpy,(> 6um) = 40 to 52

nWm~2sr~!. The FIR/optical EBL ratio ranges between 0.8 and 2.5, signifi-
cantly higher than the local value of 0.3 (Soifer & Neugebauer 1991).
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6. Contribution to the Resolved EBL at Different Redshifts

Since the optical galaxy light peaks around A ~ 1.1um and the differential
resolved EBL shows a maximum at relatively bright magnitudes, most of the
background light should come from relatively low redshift (z < 1). In the follow-
ing we will estimate the contribution to the optical EBL from two populations
of high redshift sources, the Lyman-break galaxies (LBGs) and the extremely
red objects (EROs), and the predictions of different star formation histories.

6.1. Lyman-Break Galaxies

Using color selection techniques which take into account the opacity at high
redshift of intergalactic matter, faint ground-based and HST observations have
made possible the detection of star forming galaxies at z > 2 (Steidel et al. 1996,
1999; Madau et al. 1996). From a statistical analysis of the HDFn Pozzetti et al.
(1998) found that the differential fraction of z > 2 galaxies (U- and B-dropouts)
increases from ~ 5 to 40% in the range 23.5 < Vg < 27.5. The fraction of U-
dropouts to Vap < 27.5 is 28 +2%, and of B-dropouts to Vap < 28 is 2.5+ 0.6%,
Integrating the LBG counts and extending them to bright magnitudes using
ground based observation (Steidel et al. 1999) we estimate a sky brightness
I,52(V) ~0.4—1.1 nW m~2sr~!, which constitutes only a fraction from 5 to 12%
of the resolved EBL in the visible band. Near-IR observations have pointed out
that LBGs are dusty and therefore must contribute to the FIR and submillimetre
background: assuming the spectral energy distribution of a star-forming object
and an amount of dust with E(B-V)~0.1, we estimate Ipir ~ 5nW m~2sr L.
Adelberger & Steidel (2000) have argued that LBGs may produce the entire
850um background.

6.2. Extremely Red Objects

The extremely red galaxies (EROs) discovered in deep near-infrared (IR) and
optical surveys (Hu & Ridgway 1994) are defined in terms of their very red
optical/near-IR colours (R — K > 5 or I — K > 4). While very rare at bright
K magnitudes, their sky density approaches 0.5 & 0.1 arcmin~—2 at K=20 (Mc-
Cracken et al. 2000). Such very red colours can be explained by three different
scenarios: EROs may be 1) starburst galaxies hidden by large amounts of dust,
or 2) high redshift (z > 1) old ellipticals with intrinsically red spectral energy
distributions (SEDs) and large positive k-corrections, or 3) obscured AGNs.
In the last year increasing evidence has been found — from HST profiles and
morphologies (Moriondo et al. 2000; Pozzetti et al. 2000), VLT /ISAAC spectra
(Cimatti et al. 1999), and clustering properties (Daddi et al. 2000) — that most
(up to 70%) of the EROs could be high-z ellipticals. Some EROs have been de-
tected also in the X-ray by ROSAT and XMM (Hasinger 2000). Since the space
density of EROs is relatively low up to faint magnitudes (Daddi et al. 2000),
their integrated contribution to the EBL in the K band is almost negligible.
At K<19.2, Daddi et al. found (13,2)% of objects with R — K > (5, 6) respec-
tively and therefore Ir_g5(K) ~ 0.14nWm™2sr™! =~ 2% I(K) (extrapolating
to brighter and fainter fluxes the light from EROs converges to 0.3 nW m™2sr~!,
which constitutes only about 4% of the observed EBL in the K-band). If, how-
ever, EROs are mainly dusty starburst at high-z, they can contribute to the
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Figure 6. Evolution of the luminosity density at rest-frame wave-
lengths of 0.15 (dotted line), 0.28 (solid line), 0.44 (short-dashed line),
1.0 (long-dashed line), and 2.2 (dot-dashed line) pm from Madau,
Pozzetti & Dickinson (1998). The data points with error bars are
taken from Lilly et al. (1996) (filled dots at 0.28, 0.44, and 1.0 pm),
Connolly et al. (1997) (empty squares at 0.28 and 0.44 pym), Madau et
al. (1996, 1998) (filled squares at 0.15 pm), Ellis et al. (1996) (empty
triangles at 0.44 pm), and Gardner et al. (1997) (empty dot at 2.2 pm).
The inset in the upper-right corner of the plot shows the SFR density
(Mg yr~! Mpc~3) versus redshift. Left panel: model (A). Right panel:
model (B) (see text for details).

FIR background: assuming a star-forming stellar spectrum and a reddening
E(B — V) ~ 0.5 to 0.8, we estimate a contribution to the FIR background of
~ 3 to 4nWm~2sr~!. If EROs are mainly obscured AGNs they may contribute
to the hard X-ray background.

6.3. Cosmic Star Formation History

An interesting question arises as to whether a simple stellar evolution model,
defined by a time-dependent SFR per unit volume and a constant IMF, may
reproduce the global UV, optical, and near-IR photometric properties of the
universe as recorded in the comoving luminosity density as a function of redshift
and in the global EBL. We assume a universal IMF and fit a smooth function
to the UV-continuum emissivity at various redshifts (Lilly et al. 1996; Connolly
et al. 1997; Madau et al. 1998; Ellis et al. 1996; Gardner et al. 1997). We then
use Bruzual & Charlot’s synthesis code to predict the cosmic emission history
at long wavelengths together with the optical EBL.

Following Madau, Pozzetti & Dickinson (1998), we have constructed two
simple models: model (A), with a star formation history which peaks at z ~ 1.5
and decreases at higher redshift, as expected in a “hierarchical” scenario of
galaxy formation (Somerville et al. 1999) where about 65% of the present-day
stars formed at z > 1 and only 20% at z > 2; model (B), with increasing star
formation at early times, as expected in a “monolithic” scenario where 50% of
the present-day stars formed at z > 2.5 and were shrouded by dust. A Salpeter
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Figure 7.  Optical EBL produced by model (A) (left panel) and model
(B) (right panel) as a function of wavelength (solid lines) in different
redshift ranges: z < 1 (dotted lines) 1 < z < 2 (short-dashed lines) and
z > 2 (long-dashed lines).

IMF between 0.1 and 120 Mg has been assumed in both models (cf. Madau &
Pozzetti 2000).

Figure 6 shows the model predictions for the evolution of the luminosity
density p, at rest-frame ultraviolet to near-infrared frequencies; the instanta-
neous star formation rate is shown in the inset in the upper-right corner of
the figure. The shape of the predicted and observed p,(z) relations agrees bet-
ter, within the uncertainties, in model (A) if some amount of dust extinction,
E(B-V)=0.1, is included. In this case the observed UV luminosities must be
corrected upwards by a factor of 1.4 at 2800 A and 2.1 at 1500 A. In model (B)
consistency with the HDF data has been obtained assuming a dust extinction
which increases rapidly with redshift, E(B — V) = 0.011(1 + z)%2. This results
in a correction to the rate of star formation of a factor ~ 5 at z =3 and ~ 15
at z = 4. Overall, the fit to the data is still acceptable, showing how the blue
and near-IR light at = < 1 are relatively poor indicators of the star formation
history at early epochs. We have also checked that a larger amount of hidden
star formation at early epochs, as advocated by Meurer et al. (1997), would
generate too much B, 1 um and 2.2 pm light to be still consistent with the
observations. An IMF which is less rich in massive stars would only exacerbate
the discrepancy.

The amount of optical starlight produced by the two models at different
wavelengths and redshifts is shown in Figure 7. While in both scenarios most of
the optical light comes from z < 1 galaxies at all wavelengths, model (A) recovers
the resolved EBL at all frequencies except the UV. In model (B) z > 1 galaxies
produce additional UV and IR light, but there is still a deficit compared with the
Gardner et al. (2000) resolved UV light and Gorjian et al. (2000) near-IR EBL
measurements. The total amount of starlight radiated at optical wavelengths is
16.5 and 28.6 nW m~2 sr~! for model (A) and (B), respectively. By comparison,
the amount of light absorbed by dust and reprocessed in the infrared is equal
t0 9.9 nW m~2 sr! in model (A), about 38% of the total radiated flux, while
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Figure 8.  Left: Mean comoving density of star formation as a func-
tion of cosmic time (from Madau 1999). The data points with er-
ror bars have been inferred from the UV-continuum luminosity den-
sities of Figure 6, together with the data of Treyer et al. (1998)
and Steidel et al. (1999). The dotted line shows the fiducial rate,
(s) = 0.054 Mg yr~! Mpc~3, required to generate the total EBL.
Right: dust corrected values (Ajs00 = 1.2 mag, SMC-type dust in a
foreground screen). The Ha determinations of Gallego et al. (1995),
Glazebrook et al. (1999), and Tresse & Maddox (1998) (filled triangles),
together with the SCUBA lower limit (Hughes et al. 1998) (empty pen-
tagon), have been added for comparison.
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Figure 9.  Right: Optical EBL for model (C) as in Figure 7. Left:
Contribution to the optical EBL as a function of redshift in different
passbands.
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Figure 10. Optical EBL as in Figures 7 and 9 for the star formation
histories of model (A) (left), B (centre) and C (right), without dust
extinction.

the monolithic collapse scenario (model B) generates 11.0 ntW m™2 sr~! (~ 28%
of the total flux). While both models appear then to be consistent with the
data (given the large uncertainties associated with the removal of foreground
emission and with the observed and predicted spectral shape of the CIB), it is
clear that much more infrared light would be generated by scenarios that have
a significantly larger amount of hidden star formation at early and late epochs.

Finally we have used the “last” version of star formation history corrected
for dust extinction estimated from SCUBA observations (Hughes et al. 1998)
and near-IR measurements of Balmer lines (Tresse & Maddox 1998). Figure 8
depicts the version of the star formation history with an extinction correction of
A1s00 = 1.2 mag (Madau 1999), hereafter model (C), and an approximately flat
star formation at high-z. In this case the total amount of optical light produced is
23 nWm2sr~!, while ~ 14nWm~2sr~!(~ 38%) will be re-radiated in the far-
IR. Also in this case the model reproduces well, within the uncertainties, the EBL
recorded in the galaxy counts (Figure 9), while it is still lower than the detections
of Bernstein (1999) and Gorjian et al. (2000). Half of the resolved EBL in the
(U,B,V,I,J, H, K) bandpasses is radiated at z < (0.8,0.7,0.4,0.4,0.4,0.5,0.5),
respectively (Figure 9).

As a test we have compared the EBL predicted by the three models without
dust extinction. The results are shown in Figure (10): only in these unrealistic
cases we are able to approximately reproduce the EBL detected by Bernstein
(1999) and Gorjian et al. (2000); in particular in model (B) and (C) high-z
galaxies produce the light undetected in the galaxy counts at optical and near-IR
wavelengths. In model (B) a non-negligible amount of optical light is radiated at
z > 2. To account for the far-IR background a higher mean star formation rate
must be assumed, but in this case a larger fraction of baryons must be processed
by stars throughout cosmic history, perhaps in conflict (for the assumed IMF)
with the local stellar census.
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