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INTRODUCTION .

An affine connection in an w-dimensional manifold Xn defines a
system of paths, but conversely a connection is not denned uniquely
by a system of paths. It was shown by H. Weyl1 that any two
affine connections whose components are related by an equation of
the form

(!) • Tfc-rfc + ̂  + ^ j ,
where A1} is the unit affinor2, give the same system of paths. In the
geometry of a system of paths, a particular parameter on the paths,
called the projective normal parameter, plays an important part.
This parameter, which is invariant under a transformation of con-
nection (1), was introduced by J. H. .C. Whitehead3. It can be
defined by means of a Schwarzian differential equation and it is
determined up to linear fractional transformations4. In § 1 this
method is briefly discussed.

In §2 another method of treating the projective geometry of paths
is given, based upon the introduction of homogeneous coordinates in
an n-dimensional manifold5. Instead of one parameter two homo-
geneous parameters u°, u1 are introduced on each path. This leads
to a set of coefficients of a projective connection on each path. Then
a preferred system of projective parameters is obtained by putting

1 H. Weyl, "Zur Infinitesimalgeometrie : Einordnung der projektiven und der
konformen Auffassung," Gottinger Nachrichten (1921), pp. 99-112.

2 In this paper the term " affinor " is used instead of " tensor."
3 J. H. C. Whitehead, "The representation of projective spaces," Ann. of Math.,

32 (1931), pp. 327-360.
4 L. Berwald, " On the projective geometry of paths," Ann. of Math., 37 (1936),

pp. 879-898.
6D. van Dantzig, "Theorie des projektiven Zusammenhangs n-dimensionaler

Raume," Math. Annalen 106 (1932), pp. 400-454. See also J. A. Schouten and
J. Haantjes, "Zur allgemeinen projektiven Differentialgeometrie," Compositio Math. 3
(1935), pp. 1-51. This paper is referred to as A. P. D.

https://doi.org/10.1017/S001309150000835X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000835X


104 J. HAANTJES

these coefficients equal to zero. Such a preferred system is deter-
mined up to linear homogeneous transformations with constant
coefficients. Hence the ratio p = u1/^ is a non-homogeneous para-
meter, which is defined up to linear fractional transformations. In
§ 3 it is shown that the parameter p is a projective normal parameter.

§ 1. PATHS AND AFFINE CONNECTIONS.

1. Paths in Ln.
We consider an ^-dimensional manifold Ln, in which a symmet-

rical affine connection F^ is given. The coordinates of a point are
denoted by gh (h, . . . . , m = 1, .. .., n). A coordinate transformation
is given by a set of n analytic functions

(1.1) ?" = ?'(? ,t),
whose functional determinant is different from zero for all points
under consideration.

By a path we mean a curve £A = £h(t), where $h{t) is a solution of
the following system of differential equations

< L 2 ) dW + l » It I t ~ P d t '
/? being a function of t. Thus the paths are autoparallel curves. It
is possible to introduce a new parameter s = s (t) on each curve, such
that the differential equations take the form

( 1 3 ) *P + I*W*P-o
( L 3 ) ~d^ + l^~dS~d7-0-
The parameter s is called an affine parameter of the system of paths.
On each path it is determined up to an arbitrary linear transforma-
tion s' = as + b, a and b being arbitrary constants.

2. Projective transformations of an affine connection.
An affine connection defines a system of paths, but a system of

paths (1.2) does not define a symmetrical connection uniquely. For
the equations (1.2) remain unaltered if we put in the place of F^ the
functions
(1.4) T^^V^ + pjAi + PiAl
where pi is an arbitrary covariant vector and At denotes the unit
affinor. Such a transformation of connection is called a projective
transformation of the affine connection1. In general it changes the
parameter s.

1 H. Weyl, I. c.
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The object with components

(i.5) n» = r* - -±- [A] i% + A\ i*)

is unaltered by projective transformations of connection. These
II£., which satisfy the identity H!fh = 0 are called the Thomas para-
meters1.

By replacing V^ in (1.2) by 11^ we get the same set of curves.
The parameter s corresponding to IT ,̂ that is the parameter 5 for
which the differential equations have the form

is called the projective parameter of T. Y. Thomas. It does not change
under projective transformations of connection. But since the II£ are
not transformed under a transformation of coordinates like the com-
ponents of an affine connection, this projective parameter is not a
scalar.

3. The projective normal parameter.
The curvature affinor of the affine connection P^ is defined by

(1.7) Si}? = 2d[k 1% + 2 If* ,,, rjK>

where the square brackets mean alternation with respect to the
indices k and j (for example, 2d[kw^ = dkwi~ 8twk). Contraction gives
the affinor

(1-8) Rii=BMih.
A projective normal parameter n on the paths (1.2) is now defined by
means of a differential equation of the form

where s is an affine parameter belonging to the connection F^ and
{77, s} stands for the Schwarzian derivative

ds \ ds

1 T. Y. Thomas, "On the projective and equiprojective geometry of paths," Proc.
Nat. Acad. 8ci., U.S.A. 11 (1925), pp. 199-203; " A projective theory of affinely con-
nected manifolds," Math. Zeitschrift 25 (1926), pp. 723-733.
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106 J. HAANTJES

By (1.9) 77 is defined as function of s up to linear fractional
transformations. It can be proved that a projective normal para-
meter of a system of paths has the following properties1:

(a) It is not altered by transformations of coordinates, which means
that 77 is a scalar.

(6) It is not altered by projective transformations of the connection.

If this parameter 77 (s) is introduced in the differential equations
(1.3) these equations take the form2

where a satisfies the equation

-(£)"-£•
From this equation and (1-9) (1*10) it follows by differentiation

dir n — 1 l dir d-n

It can be shown that conversely the equations (1.11) and (1.13)
determine a projective normal parameter 77.

§2. PATHS AND PROJECTIVE CONNECTIONS.

1. Paths in Hn.
We introduce in the n-dimensional manifold homogeneous

coordinates x", (K, . . . . , T = 0, 1, n), and subject these coordin-
ates to the set of transformations

(2.1) x " = x"(x<>, . . . . , * » ) ,

where the xK' are homogeneous analytic functions of the first degree
in the xK, such that the functional determinant is different from zero
for all points under consideration. Such an ^-dimensional manifold
with homogeneous coordinates is called a generalized projective space3

and is denoted by Hn. A particular property of an Hn is that the
coordinates xK of a point transform like the components of a pro-
jective contravariant vector, for we have from (2.1) according to
Euler's condition of homogeneity

1 J . H. C. Whitehead, I. c. ; L. Berwald, I. c, p. 882.

* J . H. C. Whitehead, I. c, p. 338; L. Berwald, I. c, p. 884.
3 D. van Dantzig, I. c.
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(2.2) x" ^ ^ ^

A covariant derivative in the Hn is given by (n + I)3 functions
II£X called the coefficients of the projective connection. These coefficients
are homogeneous functions of x" of degree — 1. From the transforma-
tion formula for the coefficients II £x

(2.3) n;',x, = «f;' £, I n^ + *A? aM, <A\, •

<*: i> i = <*: « 4 ' ^ > "*i> = ̂  **;
it follows that the
(2.4) n« x a^

transform like the components of a projective affinor. Hereafter
homogeneous projective affinors will be called projectors.

In an Hn the equations xK=f"(t) and xK = p (t)f*{t) define the
same curve. From this it follows that the differentials dxK define the
same direction as pdx" + xK dp. I n other words, the vectors

dx" , dxK dp
—— and p — 1- -i- xK

dt r dt dt
define the same direction. We restrict ourselves to symmetrical con-
nections with the property that the projector (2.4) is zero, hence
(2.5) n«x=nx > i , n-x*» = o.
A result of the hypothesis Il£ x x* — 0 is that there exists a displace-
ment for a direction in its own direction. For if the homogeneous
vector v' satisfies the relation

(2.6) dz» V,, V:: V,

then it satisfies the relation, which is obtained from (2.6) by putting
pdx* + x*dp instead of dx*. Thus in this case a path can be defined
as an autoparallel curve. In a more general Hn autoparallel curves
need not exist.

If the curve xK = x" (t) is a path (autoparallel curve), then the
vector

dx" „ dx"
~dt *~dl

dx*
has the same direction as —- . Therefore, we find for the differential

at
equation of the paths

._ _> dx" „ dxK d2xK _ dx"- dxK
 K . o dx"

(2-7) -dTV»-d7=liiF + n^litliF = ax+P
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108 J. HAANTJES

In these equations a and /S depend on I. The equations (2.7) define
oo 2(n-2) paths, such that through each point in a certain region of Hn

there is a unique path in each direction.
The projector of curvature is defined by

(2.8) N-k - = 2% n;]x + 2 nf,, p i n>]x.

Transvection with z" gives

(2.9) # - , - & = ** a, n;x - X" sM n^x = - n;k + n; x = o.

2. TAe transformations of the projective connection, which leave the
system of paths invariant.

A projective connection, satisfying (2.5), defines a system of
paths, but conversely the system of paths does not define uniquely a
symmetrical projective connection. Indeed, the transformation of
connection1

(2.10) 'KK = K* + Z^X* + Z^K+ZK^,

where Z^ and ẑ  are arbitrary projectors, homogeneous of degree — 2
and — 1 respectively and o4j denotes the unit projector, leaves the
system of paths, defined by (2.7), invariant. The restriction (2.5)
gives

(2.11) ZILX = ZXIU ^ X ^ + Z A = 0, 2 ^ = 0.

The projectors Z^ and zx can be chosen in such a way that the con-
tracted projector of curvature 'N x = 'N-K- ^" of the new connection
'II^X vanishes. On calculation we find2

(2.12) Z^ - V ^ + z.zk = - -J—^nN-}," + #;*;"),
ft —— 1

so that

(2.13) (n + lJV^afc] = N;^^ * = Nw.

This equation is easily shown to be integrable by use of Bianchi's
identity, and determines zx but for a gradient vector. From (2.12)
and (2.13) we obtain the following theorem.

A system of paths (2.7) determines a symmetrical projective con-
nection with

*A. P. D., p. 32.
8 A P. D., p. 33.
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up to a transformation of the form (2.10), where Z^K and zk satisfy^
besides (2.11) the following equations
(2.15a) 2 / i X - V M z x + z/i2x = 0,
(2.15b) V[Mzx] = 0.

The equation (2.15b) means tha t zx is a gradient vector, zx = dKz.

3. The protective parameter p .
Let us now introduce two homogeneous parameters on the pa ths .

A path x" = x" (t) may also be given by the equations

(2.16) x" = xK (u°, u1) = x' (ua), (a g = 0, 1)

where the x' (u°, u1) are homogeneous functions of degree I1. Then
ua and oua determine the same point on the curve. A transformation
of homogeneous parameters is given by a set of functions

(2.17) ua> = ua' (u°, u1)

homogeneous of degree 1. From (2.16) and (2.17) it follows from
Euler's condition of homogeneity

(2.18) x* = Blu\ B'a=8ax\ 8a=^-a

(2.19) ua> = B% ua, Ba
a' = 8au

a'.

The vectors B% and B\ have the same direction as -=- , from
dt

which it follows that both BQ and Bl can be expressed linearly in
dxK

terms of x* and —r-
dt

dxK

(2.20) B'a = Pa-^ + qax".
dxK

These equations may be solved for xK and - , giving (c.f. 2.18),
at

(2.21) ?L = ?B'a, x<=u"B*a.
From (2.20) it follows by covariant differentiation, in consequence

dxK

of (2.7), tha t B* V,, BK
a is a linear expression in z" and -j- , and there-

fore, by (2.21), a linear expression in BQ and B\ .
Hence the differential equations of the paths take the form

\,(2.22) Bj V. Bj = dcB'b + U;, Eft = Ta
cb B'a, B%\ = h% B

1 The equations are obtainable in this form by putting t = «x/u° in x* = x* (t) and
multiplying by an arbitrary homogeneous function of degree 1.
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110 J. HAANTJES

the II*X being the coefficients of one of the projective connections,
determined by the system of paths, which satisfy the equations
(2.14). From (2.22) it follows that the functions F|?6 are homogeneous
in ua of degree — 1. When we transform the parameters ua by any
transformation (2.17) the coefficients F£6 transform according to the
equations
/O oq\ pa' J3a> c b r<a i Ra' n Do . iT>a p, ma\

The r*6 transform therefore like the coefficients of a projective
connection in an H^ Moreover we have from (2.22)

<2.24) rc
a
6tt° = o; rc% = rgc.

It is well known that a necessary and sufficient condition for the
existence of a system of parameters ua, such that all of the Fj?6 are
zero, is that

<2.25) Mt • b
 a = 2 8[d Tc% + 2 T & , . , Te

c]b

t e zero. The transvection of M^-eb
a and ud is (c.f. (2.9))

(2.26) tfMyei
 a = u*dd T«6 - ufid, T%b = 0.

The quantity M -d -e b
 a is skew symmetrical in the indices d and c.

Therefore, the rank of Md -cb
a with respect to the indices d and c must

be either 2 or 0. The equations (2.26) express that the rank is less
than 2, hence the rank is 0. Thus we have

(2.27) Md-b
a = 0.

This means that there exists a system of parameters ua for which
F"6 = 0 and from the transformation (2.23) of F"6 it follows that this
system is determined up to linear homogeneous transformations with
constant coefficients. The non-homogeneous parameter

(2.28) p = g

is then determined up to linear fractional transformations. We call
this parameter a projective parameter. In § 3 it is proved that p is a
projective normal parameter.

We have to prove first that the parameter p is unaltered by a
transformation of connection (2.10), where Z^k and zK satisfy the con-
ditions (2.11) and (2.15). From (2.15) we have

(2.29) 2M = d,,. z, Z^ = V^ zx - z^ = VM Vx 2 - {d~z) (d'^z)

and the function z is homogeneous of degree zero. By (2.22) such a

https://doi.org/10.1017/S001309150000835X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000835X


ON THE PROJECTIVE GEOMETRY OF PATHS 111

transformation of connection causes the following transformation
of rc%

(2.30) Ta
cb = Va

cb + Z^ Btf W + 2/t B$ Ba
b + Zr. B$ Ba

c

where
(2 31) ze = BSBILz = dez
v " ; Zcb = B^(dILdxz-nixdKz)-zczb = dczb-V

a
cbza-zczb.

For a preferred system of parameters (F"b = 0) we have therefore

(2.32) Ta
cb = (8e zb - zc zb) W + zc B

a
b +zbB

a
c.

The equations (2.24) hold also for T"6; from which it follows, as we
have seen above, that the projector of curvature 'M^cb

a belonging
to T ° s vanishes. There exist, therefore, systems of parameters ua>

for which T£,'6, = 0. We shall now show that one of these systems of
parameters can be obtained by a transformation of parameters of the
following form

(2 33} " 1 # = p ( M °) Ul

V " ; u0' = p (ua) u°,
where p (ua) is a homogeneous function of degree zero. From (2.33)
it follows
(2W B?±p8? (B»a+u<>da log p)

where the S£' denote the generalized Kronecker symbols1. Substitu-
tion in the transformation formula (2.23) for T°6 gives

(2.35) T«;6, =4= p - 1 K K> 8b
b' [T?6 + {- dcdb logp + Tcb de logp

- (dc logp) (8b logp)}tt« - 8b logp B%-dc log pBH

By substituting the expression (2.32) for T"6, we get

(2.36) Ta
c',b, J , p - 1 S«' S«, S», [{de zb-zc zb - 8" 8b log p - (8C log p)( 36 log p)

+zcg6 log P + zb 8Clogp} «a+(z6-S6' log p) £«+ (2c-8clogp) Ba
b]

and from this equation we see that we get

(2.37) Ta
c',b, Jz 0

by putting

(2.38) logp = 2, 8e log P = dez = ze.

1 The sign = means that the equation holds with respect to the coordinate system
or systems used in the. equation itself; it need not hold with respect to another
system.
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112 J. HAANTJES

Thus it is possible to get a preferred system of homogeneous para-
meters ua' belonging to T"6 from a preferred system of parameters
belonging to T^b by a transformation of the form (2.33). From (2.28)
and (2.33) it follows that

Hence, the projective parameter p remains unaltered under a trans-
formation (2.10) of the projective connection. It is, therefore,
determined by the system of paths up to linear fractional trans-
formations.

§ 3. THE TWO PARAMETERS p AND n.

1. Introduction of non-homogeneous coordinates in Hn.
In this paragraph we shall prove that the projective parameters

p and 77 are " identical," in other words that p is a projective normal
parameter.

In order to compare the parameters p and TT, we have to
introduce1 non-homogeneous coordinates in Hn. A system of non-
homogeneous coordinates in Hn is given by a set of n functions

(3.1) £* = f*(a°, . . . . , * " ) ,

homogeneous of degree zero, whose functional matrix

(3.2) ||£* ||, where <̂  = gA^,

has rank n. From (3.1) it follows by Euler's condition of homogeneity
that
(3.3) x» 81 = 0.

Moreover we introduce a projective covariant vector field qK of
degree — 1, such that

(3.4) S * ^ = l .
.But for this equation, qK may be chosen at will. This vector qK enables
us to define the inverse of £*. We define the quantity £j by means
of the equations

ej £* = A\ (unit affinor)
{3'5) «1«. = o.
Multiplication with 6{ gives

1 A. P. D., p. 11.
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2. The induced affine connection.

We shall now prove that the quantities

(3.7) r*, = e;}# n;x - e# d. e», (ejtf = e; £y ej)
are the coefficients of an affine connection, which gives the same
system of paths as the protective connection II*X. The system of
geodesies, defined by the projective connection II£X, is given by the
differential equations (2.7). If xK = x* (t) is the equation of a path
in homogeneous coordinates, then the non-homogeneous equation is
given by

(3.8) e = e ( x

From this equation we have

dt ~ K dt '
( 3 ' 9 ) d*?_£hd** d^d* h

d~^~&x dt2 + dt dt * C

Consequently

(310) + i & ( + n &
(3.10) ^ 2 - + i i i dt dt -t<[dt2 +1VfcMX dt dt

The transvection Il^xa;'i is zero by (2.14). Hence

(3.ii) u;ae^K = u^.

Furthermore we have from (3.6) and the definition of

Substituting these expressions in (3.10) we see from (2.7) that the
dth

right hand side is proportional to - j - . Hence the non-homogeneous

differential equations for the geodesies are _

These equations show that the F^ defined by (3.7) transform as the
coefficients of an affine connection. This connection is called the
induced affine connection. It defines the same system of paths as the
projective connection.

If we choose another projective covariant vectorfield qK, then
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(3.7) defines another affine connection, but this connection gives the
same system of paths and can, therefore, be obtained from the con-
nection F^ by a projective transformation of connection (1.4).

The curvature tensor of the affine connection F*t is defined by
formula (1.7), namely

(3.i4) Ri j ih = 2 e[k rg< + 2 rft,, i r j ] f .

When the expressions (3.7) for F^ are substituted in the above
equations, we find, after some calculation,

(3.15) Bijih= e^N-i ' - 2q[kj A\ + 2A\ftqiii,
where
(3.16) ?ii = «3ifVrgM.

The projector of curvature N^ ̂  ̂  " has according to (2.9) and (2.14)
the properties

(3.17) N-k
Kx" = 0, N^ = 0.

Contraction of (3.15) with respect to the indices k and h gives
therefore

(3.18) Bjt = - 2qUi] -f nqH - qjit

(3.19) RW) = (n-\)qm,

where the round brackets indicate symmetrization with respect to
* and j .

3. The 'parameter p as independent variable.
Let ua be a preferred system of homogeneous parameters on the

paths. Then the differential equations for the paths are (2.22)

(3.20) 8cB'b + n^B^ = 0.

If x" = x" {u°, u-) is the equation of a path in homogeneous coordinates,
then

(3.21) £* = £*(*" («°, u1)) = f» («of ui) = ? Ut ^ \ = p (p)

is the equation of the same path in non-homogeneous coordinates
with p as independent variable. Differentiation with respect to u1

gives

(322) £ ^ = ( ^ a ^ d^h=

(3.23) (d, £*) B\>{ + 6» dx B\ =
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Consequently we have

From the equation (3.7) it follows by transvection with ££*x in
consequence of (3.12)

\6.io) 1 ji C A X = &K i i ^ x — 0^ c x q^ c x — qK c^.

Substituting this expression in (3.24) we get

\o.40) ap g - j - 1 -- j ^t*« •̂'J ^ « g ) ^ ^w j L « V 1 1 i M^ 1 1 / — 2M ^ 11-*

according to (3.20). The coefficient a is a function of p and we find
by differentiation

(3.27) dpa = dp (W°q,Bi) = («0)8 A ( ^

From (3.16) it follows, by multiplication with £{'., that

(3.28) e{\q}i=SZ VF^=Vx?.-a;'ffA S-KVvq^-z-q. VX?M= VxqK+qxqK,

the components gx being homogeneous of degree — 1. Substitution
in (3.27) gives

(3.29) d, a = (M0)2 .Bji (£« Qji - ^ ^ ) ,

for which we may write according to (3.19), (3.22) and using the
definition of a(3.26),

(3.30) dp a + a2 — Bjt (dP &) (dp f ) = 0.

These equations together with the differential equations (3.26) of the
system of paths are identical with the equations (1.11) and (1.13) if
we put p = 7T. This means that the projective parameter p defined in
§ 2 is a projective normal parameter.

https://doi.org/10.1017/S001309150000835X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000835X

