On the projective geometry of paths

By J. HAANTJES, University of Edinburgh.

(Received 23rd February, 1937. Read 5th March, 1937.)

INTRODUCTION.

An affine connection in an *n*-dimensional manifold X_n defines a system of paths, but conversely a connection is not defined uniquely by a system of paths. It was shown by H. Weyl¹ that any two affine connections whose components are related by an equation of the form

(1) $\Gamma_{ii}^{h} = \Gamma_{ii}^{h} + p_i A_i^{h} + p_i A_i^{h},$

where A_i^h is the unit affinor², give the same system of paths. In the geometry of a system of paths, a particular parameter on the paths, called the *projective normal parameter*, plays an important part. This parameter, which is invariant under a transformation of connection (1), was introduced by J. H. C. Whitehead³. It can be defined by means of a Schwarzian differential equation and it is determined up to linear fractional transformations⁴. In §1 this method is briefly discussed.

In §2 another method of treating the projective geometry of paths is given, based upon the introduction of homogeneous coordinates in an *n*-dimensional manifold⁵. Instead of one parameter two homogeneous parameters u^0 , u^1 are introduced on each path. This leads to a set of coefficients of a projective connection on each path. Then a preferred system of projective parameters is obtained by putting

¹ H. Weyl, "Zur Infinitesimalgeometrie : Einordnung der projektiven und der konformen Auffassung," *Göttinger Nachrichten* (1921), pp. 99-112.

² In this paper the term "affinor" is used instead of "tensor."

³ J. H. C. Whitehead, "The representation of projective spaces," Ann. of Math., 32 (1931), pp. 327-360.

⁴ L. Berwald, "On the projective geometry of paths," Ann. of Math., 37 (1936), pp. 879-898.

⁵ D. van Dantzig, "Theorie des projektiven Zusammenhangs *n*-dimensionaler Räume," *Math. Annalen* **106** (1932), pp. 400-454. See also J. A. Schouten and J. Haantjes, "Zur allgemeinen projektiven Differentialgeometrie," *Compositio Math.* **3** (1935), pp. 1-51. This paper is referred to as A. P. D. these coefficients equal to zero. Such a preferred system is determined up to linear homogeneous transformations with constant coefficients. Hence the ratio $p = u^1/u^0$ is a non-homogeneous parameter, which is defined up to linear fractional transformations. In §3 it is shown that the parameter p is a projective normal parameter.

§1. PATHS AND AFFINE CONNECTIONS.

1. Paths in L_n .

104

We consider an *n*-dimensional manifold L_n , in which a symmetrical affine connection Γ_{ji}^h is given. The coordinates of a point are denoted by $\xi^h(h, \ldots, m = 1, \ldots, n)$. A coordinate transformation is given by a set of *n* analytic functions

(1.1)
$$\xi^{h'} = \xi^{h'} (\xi^1, \ldots, \xi^n),$$

whose functional determinant is different from zero for all points under consideration.

By a path we mean a curve $\xi^h = \xi^h(t)$, where $\xi^h(t)$ is a solution of the following system of differential equations

(1.2)
$$\frac{d^2 \xi^h}{dt^2} + \Gamma^h_{ji} \frac{d\xi^j}{dt} \frac{d\xi^i}{dt} = \beta \frac{d\xi^h}{dt},$$

 β being a function of t. Thus the paths are autoparallel curves. It is possible to introduce a new parameter s = s(t) on each curve, such that the differential equations take the form

(1.3)
$$\frac{d^2 \xi^h}{ds^2} + \Gamma^h_{ji} \frac{d\xi^j}{ds} \frac{d\xi^i}{ds} = 0.$$

The parameter s is called an *affine parameter* of the system of paths. On each path it is determined up to an arbitrary linear transformation s' = as + b, a and b being arbitrary constants.

2. Projective transformations of an affine connection.

An affine connection defines a system of paths, but a system of paths (1.2) does not define a symmetrical connection uniquely. For the equations (1.2) remain unaltered if we put in the place of Γ_{ji}^{h} the functions

(1.4)
$$\Gamma_{ji}^{h} = \Gamma_{ji}^{h} + p_{j} A_{i}^{h} + p_{i} A_{j}^{h},$$

where p_i is an arbitrary covariant vector and A_j^h denotes the unit affinor. Such a transformation of connection is called a *projective* transformation of the affine connection¹. In general it changes the parameter s.

¹ H. Weyl, *l. c.*

The object with components

(1.5)
$$\Pi_{ji}^{h} = \Gamma_{ji}^{h} - \frac{1}{n+1} (A_{j}^{h} \Gamma_{il}^{l} + A_{i}^{h} \Gamma_{jl}^{l})$$

is unaltered by projective transformations of connection. These Π_{ji}^{h} , which satisfy the identity $\Pi_{jh}^{h} = 0$ are called the *Thomas para*-*meters*¹.

By replacing Γ_{ji}^{h} in (1.2) by Π_{ji}^{h} we get the same set of curves. The parameter *s* corresponding to Π_{ji}^{h} , that is the parameter *s* for which the differential equations have the form

(1.6)
$$\frac{d^2 \xi^h}{ds^2} + \prod_{ji}^h \frac{d\xi^j}{ds} \frac{d\xi^i}{ds} = 0,$$

is called the projective parameter of T. Y. Thomas. It does not change under projective transformations of connection. But since the Π_{ji}^{h} are not transformed under a transformation of coordinates like the components of an affine connection, this projective parameter is not a scalar.

3. The projective normal parameter.

The curvature affinor of the affine connection Γ_{ii}^{h} is defined by

(1.7)
$$R_{kji}^{h} = 2\partial_{[k} \Gamma_{j]i}^{h} + 2 \Gamma_{[k|l|}^{h} \Gamma_{j]i}^{l}, \quad \left(\partial_{j} = \frac{\partial}{\partial \xi^{j}}\right)$$

where the square brackets mean alternation with respect to the indices k and j (for example, $2\partial_{[k} w_{i]} = \partial_{k} w_{i} - \partial_{i} w_{k}$). Contraction gives the affinor

A projective normal parameter π on the paths (1.2) is now defined by means of a differential equation of the form

(1.9)
$$\{\pi, s\} = \frac{2}{n-1} R_{hi} \frac{d\xi^h}{ds} \frac{d\xi^i}{ds},$$

where s is an affine parameter belonging to the connection Γ_{ji}^{h} and $\{\pi, s\}$ stands for the Schwarzian derivative

(1.10)
$$\{\pi, s\} = \frac{\frac{d^3\pi}{ds^3}}{\frac{d\pi}{ds}} - \frac{3}{2} \left(\frac{\frac{d^2\pi}{ds^2}}{\frac{d\pi}{ds}}\right)^2.$$

¹ T. Y. Thomas, "On the projective and equiprojective geometry of paths," Proc. Nat. Acad. Sci., U.S.A. 11 (1925), pp. 199-203; "A projective theory of affinely connected manifolds," Math. Zeitschrift 25 (1926), pp. 723-733. By (1.9) π is defined as function of s up to linear fractional transformations. It can be proved that a projective normal parameter of a system of paths has the following properties¹:

- (a) It is not altered by transformations of coordinates, which means that π is a scalar.
- (b) It is not altered by projective transformations of the connection.

If this parameter $\pi(s)$ is introduced in the differential equations (1.3) these equations take the form²

(1.11)
$$\frac{d^2 \xi^h}{d\pi^2} + \Gamma^h_{ji} \frac{d\xi^j}{d\pi} \frac{d\xi^i}{d\pi} + 2\alpha \frac{d\xi^h}{d\pi} = 0,$$

where α satisfies the equation

(1.12)
$$2a\left(\frac{d\pi}{ds}\right)^2 = \frac{d^2\pi}{ds^2}.$$

From this equation and (1.9)(1.10) it follows by differentiation

(1.13)
$$\frac{da}{d\pi} + a^2 - \frac{1}{n-1} R_{hi} \frac{d\xi^h}{d\pi} \frac{d\xi^i}{d\pi} = 0.$$

It can be shown that conversely the equations (1.11) and (1.13) determine a projective normal parameter π .

§2. PATHS AND PROJECTIVE CONNECTIONS.

1. Paths in H_n .

We introduce in the *n*-dimensional manifold homogeneous coordinates x^{κ} , $(\kappa, \ldots, \tau = 0, 1, \ldots, n)$, and subject these coordinates to the set of transformations

(2.1)
$$x^{\kappa'} = x^{\kappa'} (x^0, \ldots, x^n),$$

where the $x^{\kappa'}$ are homogeneous analytic functions of the first degree in the x^{κ} , such that the functional determinant is different from zero for all points under consideration. Such an *n*-dimensional manifold with homogeneous coordinates is called a *generalized projective space*³ and is denoted by H_n . A particular property of an H_n is that the coordinates x^{κ} of a point transform like the components of a projective contravariant vector, for we have from (2.1) according to Euler's condition of homogeneity

¹ J. H. C. Whitehead, *l. c.*; L. Berwald, *l. c.*, p. 882.

² J. H. C. Whitehead, *l. c.*, p. 338; L. Berwald, *l. c.*, p. 884.

³ D. van Dantzig, l. c.

(2.2)
$$x^{\kappa'} = x^{\kappa} \partial_{\kappa} x^{\kappa'} = \mathscr{A}^{\kappa'}_{\kappa} x^{\kappa}, \ \partial_{\mu} = \frac{\partial}{\partial x^{\mu}}, \ \mathscr{A}^{\kappa'}_{\kappa} = \partial_{\kappa} x^{\kappa'}.$$

A covariant derivative in the H_n is given by $(n + 1)^3$ functions $\Pi_{\mu\lambda}^*$ called the coefficients of the projective connection. These coefficients are homogeneous functions of x^* of degree -1. From the transformation formula for the coefficients $\Pi_{\mu\lambda}^*$

(2.3)
$$\Pi_{\mu'\lambda'}^{\kappa'} = \mathscr{A}_{\kappa}^{\kappa'\mu\lambda}, \Pi_{\mu\lambda}^{\kappa} + \mathscr{A}_{\kappa}^{\kappa'}\partial_{\mu'}, \mathscr{A}_{\lambda'}^{\kappa}; \\ \mathscr{A}_{\kappa}^{\kappa'\mu\lambda} = \mathscr{A}_{\kappa'}^{\kappa'} \mathscr{A}_{\mu'}^{\mu}, \mathscr{A}_{\lambda'}^{\lambda}; \quad \mathscr{A}_{\lambda}^{\lambda} = \partial_{\lambda'} x^{\lambda};$$

it follows that the

(2.4)
$$\Pi^{\kappa}_{\mu\lambda} x^{\mu}$$

transform like the components of a projective affinor. Hereafter homogeneous projective affinors will be called *projectors*.

In an H_n the equations $x^{\kappa} = f^{\kappa}(t)$ and $x^{\kappa} = \rho(t)f^{\kappa}(t)$ define the same curve. From this it follows that the differentials dx^{κ} define the same direction as $\rho dx^{\kappa} + x^{\kappa} d\rho$. In other words, the vectors

$$rac{dx^{\kappa}}{dt} \, ext{ and }
ho \, rac{dx^{\kappa}}{dt} + rac{d
ho}{dt} \, x^{\kappa}$$

define the same direction. We restrict ourselves to symmetrical connections with the property that the projector (2.4) is zero, hence

(2.5)
$$\Pi^{\kappa}_{\mu\lambda} = \Pi^{\kappa}_{\lambda\mu}, \quad \Pi^{\kappa}_{\mu\lambda} x^{\mu} = 0.$$

A result of the hypothesis $\prod_{\mu\lambda}^{\kappa} x^{\mu} = 0$ is that there exists a displacement for a direction in its own direction. For if the homogeneous vector v^{κ} satisfies the relation

$$(2.6) dx^{\mu} \nabla_{\mu} v^{\kappa} :: v^{\kappa},$$

then it satisfies the relation, which is obtained from (2.6) by putting $\rho dx^{\mu} + x^{\mu} d\rho$ instead of dx^{μ} . Thus in this case a *path* can be defined as an *autoparallel curve*. In a more general H_n autoparallel curves need not exist.

If the curve $x^{\kappa} = x^{\kappa}(t)$ is a path (autoparallel curve), then the vector

$$\frac{dx^{\mu}}{dt} \,\, \nabla_{\mu} \,\, \frac{dx^{\kappa}}{dt}$$

has the same direction as $\frac{dx^*}{dt}$. Therefore, we find for the differential equation of the paths

(2.7)
$$\frac{dx^{\mu}}{dt} \nabla_{\mu} \frac{dx^{\kappa}}{dt} = \frac{d^2 x^{\kappa}}{dt^2} + \prod_{\mu\lambda}^{\kappa} \frac{dx^{\mu}}{dt} \frac{dx^{\lambda}}{dt} = \alpha x^{\kappa} + \beta \frac{dx^{\kappa}}{dt}.$$

In these equations a and β depend on *t*. The equations (2.7) define $\infty^{2(n-2)}$ paths, such that through each point in a certain region of H_n there is a unique path in each direction.

The projector of curvature is defined by

(2.8)
$$N_{\nu\mu\lambda}^{\star} = 2\partial_{[\nu} \Pi_{\mu]\lambda}^{\star} + 2 \Pi_{[\nu|\rho|}^{\star} \Pi_{\mu]\lambda}^{\rho}.$$

Transvection with x^{ν} gives

108

$$(2.9) N_{\nu\mu\lambda}^{\prime\prime\prime}{}^{\kappa} x^{\nu} = x^{\nu} \partial_{\nu} \Pi_{\mu\lambda}^{\kappa} - x^{\nu} \partial_{\mu} \Pi_{\nu\lambda}^{\kappa} = - \Pi_{\mu\lambda}^{\kappa} + \Pi_{\mu\lambda}^{\kappa} = 0.$$

2. The transformations of the projective connection, which leave the system of paths invariant.

A projective connection, satisfying (2.5), defines a system of paths, but conversely the system of paths does not define uniquely a symmetrical projective connection. Indeed, the transformation of connection¹

(2.10)
$${}^{\prime}\Pi^{\kappa}_{\mu\lambda} = \Pi^{\kappa}_{\mu\lambda} + Z_{\mu\lambda} x^{\kappa} + z_{\mu} \mathscr{A}^{\kappa}_{\lambda} + z_{\lambda} \mathscr{A}^{\kappa}_{\mu},$$

where $Z_{\mu\lambda}$ and z_{μ} are arbitrary projectors, homogeneous of degree -2and -1 respectively and $\mathscr{A}^{\kappa}_{\lambda}$ denotes the unit projector, leaves the system of paths, defined by (2.7), invariant. The restriction (2.5) gives

(2.11)
$$Z_{\mu\lambda} = Z_{\lambda\mu}, \quad Z_{\mu\lambda} x^{\mu} + z_{\lambda} = 0, \quad z_{\mu} x^{\mu} = 0.$$

The projectors $Z_{\mu\lambda}$ and z_{λ} can be chosen in such a way that the contracted projector of curvature $N_{\mu\lambda} = N_{\kappa \ \mu \ \lambda}^{\kappa}$ of the new connection $(\Pi_{\mu\lambda}^{\kappa})$ vanishes. On calculation we find²

$$(2.12) Z_{\mu\lambda} - \nabla_{\mu} z_{\lambda} + z_{\mu} z_{\lambda} = -\frac{1}{n^2 - 1} (n \, N_{\kappa \mu \lambda}^{*} + N_{\kappa \lambda \mu}^{*}),$$

so that

$$(2.13) (n+1)\nabla_{[\mu} z_{\lambda]} = N_{\kappa [\mu \lambda]}^{\cdot} = N_{[\mu \lambda]}^{\cdot}$$

This equation is easily shown to be integrable by use of Bianchi's identity, and determines z_{λ} but for a gradient vector. From (2.12) and (2.13) we obtain the following theorem.

A system of paths (2.7) determines a symmetrical projective connection with

$$(2.14) \qquad \qquad \Pi^{\kappa}_{\mu\lambda} x^{\mu} = 0, \quad N_{\mu\lambda} = 0$$

¹ A. P. D., p. 32.

² A P. D., p. 33.

up to a transformation of the form (2.10), where $Z_{\mu\lambda}$ and z_{λ} satisfy, besides (2.11) the following equations

(2.15a)
$$Z_{\mu\lambda} - \nabla_{\mu} z_{\lambda} + z_{\mu} z_{\lambda} = 0,$$

(2.15b)
$$\nabla_{[\mu} z_{\lambda]} = 0.$$

The equation (2.15b) means that z_{λ} is a gradient vector, $z_{\lambda} = \partial_{\lambda} z$.

3. The projective parameter p.

Let us now introduce two homogeneous parameters on the paths. A path $x^{\kappa} = x^{\kappa}(t)$ may also be given by the equations

(2.16)
$$x^{\kappa} = x^{\kappa} (u^0, u^1) = x^{\kappa} (u^a), (a, \ldots, g = 0, 1)$$

where the $x^{\kappa}(u^0, u^1)$ are homogeneous functions of degree 1¹. Then u^a and σu^a determine the same point on the curve. A transformation of homogeneous parameters is given by a set of functions

$$(2.17) u^{a'} = u^{a'} (u^0, u^1)$$

homogeneous of degree 1. From (2.16) and (2.17) it follows from Euler's condition of homogeneity

(2.18)
$$x^{\kappa} = B_a^{\kappa} u^a, \quad B_a^{\kappa} = \partial_a x^{\kappa}, \quad \partial_a = \frac{\partial}{\partial u^a}$$

$$(2.19) u^{a\prime} = B^{a\prime}_a u^a, \quad B^{a\prime}_a = \partial_a u^{a\prime}.$$

The vectors B_0^{κ} and B_1^{κ} have the same direction as $\frac{dx^{\kappa}}{dt}$, from which it follows that both B_0^{κ} and B_1^{κ} can be expressed linearly in terms of x^{κ} and $\frac{dx^{\kappa}}{dt}$

$$B_a^{\kappa} = p_a \frac{dx^{\kappa}}{dt} + q_a x^{\kappa}.$$

These equations may be solved for x^{κ} and $\frac{dx^{\kappa}}{dt}$, giving (c.f. 2.18),

(2.21)
$$\frac{dx^{\kappa}}{dt} = r^a B^{\kappa}_a, \quad x^{\kappa} = u^a B^{\kappa}_a.$$

From (2.20) it follows by covariant differentiation, in consequence of (2.7), that $B_c^{\mu} \nabla_{\mu} B_a^{\kappa}$ is a linear expression in x^{κ} and $\frac{dx^{\kappa}}{dt}$, and therefore, by (2.21), a linear expression in B_0^{κ} and B_1^{κ} . Hence the differential equations of the paths take the form

(2.22)
$$B_c^{\mu} \nabla_{\mu} B_b^{\kappa} = \partial_c B_b^{\kappa} + \Pi_{\mu\lambda}^{\kappa} B_{cb}^{\mu\lambda} = \Gamma_{cb}^a B_a^{\kappa}, \quad B_{cb}^{\mu\lambda} = E_c^{\mu} B_b^{\lambda},$$

¹ The equations are obtainable in this form by putting $t = u^1/u^0$ in $x^* = x^*(t)$ and multiplying by an arbitrary homogeneous function of degree 1.

the $\Pi^{\kappa}_{\mu\lambda}$ being the coefficients of one of the projective connections, determined by the system of paths, which satisfy the equations (2.14). From (2.22) it follows that the functions Γ^{a}_{cb} are homogeneous in u^{a} of degree - 1. When we transform the parameters u^{a} by any transformation (2.17) the coefficients Γ^{a}_{cb} transform according to the equations

(2.23)
$$\Gamma_{c'b'}^{a'} = B_a^{a'cb'} \Gamma_{cb}^a + B_a^{a'} \partial_{c'} B_{b'}^a; \ (B_{b'}^a = \partial_{b'} u^a).$$

The Γ_{cb}^{a} transform therefore like the coefficients of a projective connection in an H_1 . Moreover we have from (2.22)

(2.24)
$$\Gamma^a_{cb} u^c = 0; \quad \Gamma^a_{cb} = \Gamma^a_{bc}$$

110

It is well known that a necessary and sufficient condition for the existence of a system of parameters u^a , such that all of the Γ^a_{cb} are zero, is that

$$(2.25) M_{\dot{d}\,\dot{c}\,\dot{b}}{}^{a} = 2\,\partial_{[d}\,\Gamma^{a}_{c]b} + 2\,\Gamma^{a}_{[d\,\dot{l}\,e]}\,\Gamma^{e}_{c]b}$$

be zero. The transvection of M_{dcb}^{i} and u^{d} is (c.f. (2.9))

(2.26) $u^d M_{\dot{d}c\,\dot{b}}{}^a = u^d \partial_d \Gamma^a_{c\,b} - u^d \partial_c \Gamma^a_{d\,b} = 0.$

The quantity $M_{\dot{a}\dot{c}\dot{b}}{}^{a}$ is skew symmetrical in the indices d and c. Therefore, the rank of $M_{\dot{a}\dot{c}\dot{b}}{}^{a}$ with respect to the indices d and c must be either 2 or 0. The equations (2.26) express that the rank is less than 2, hence the rank is 0. Thus we have

(2.27)
$$M_{\dot{d}\,\dot{c}\,\dot{b}}{}^{a}=0.$$

This means that there exists a system of parameters u^a for which $\Gamma^a_{cb} = 0$ and from the transformation (2.23) of Γ^a_{cb} it follows that this system is determined up to linear homogeneous transformations with constant coefficients. The non-homogeneous parameter

$$(2.28) p = \frac{u^1}{u^0}$$

is then determined up to linear fractional transformations. We call this parameter a *projective parameter*. In §3 it is proved that p is a projective normal parameter.

We have to prove first that the parameter p is unaltered by a transformation of connection (2.10), where $Z_{\mu\lambda}$ and z_{λ} satisfy the conditions (2.11) and (2.15). From (2.15) we have

(2.29)
$$z_{\mu} = \partial_{\mu} z, \ Z_{\mu\lambda} = \nabla_{\mu} z_{\lambda} - z_{\mu} z_{\lambda} = \overline{\nabla}_{\mu} \nabla_{\lambda} z - (\partial_{\mu} z) (\partial_{\lambda} z)$$

and the function z is homogeneous of degree zero. By (2.22) such a

transformation of connection causes the following transformation of Γ^a_{cb}

(2.30)
$$\Gamma^{a}_{cb} = \Gamma^{a}_{cb} + Z_{\mu\lambda} B^{\mu\lambda}_{cb} u^{a} + z_{\mu} B^{\mu}_{c} B^{a}_{b} + z_{\mu} B^{\mu}_{b} B^{a}_{c}$$
$$= \Gamma^{a}_{cb} + Z_{cb} u^{a} + z_{c} B^{a}_{b} + z_{b} B^{a}_{c}, \quad B^{a}_{b} \begin{cases} = 1, \ a = b \\ = 0, \ a \neq b \end{cases}$$

where

(2.31)
$$z_{c} = B_{c}^{\mu} \partial_{\mu} z = \partial_{c} z$$
$$Z_{cb} = B_{cb}^{\mu\lambda} (\partial_{\mu} \partial_{\lambda} z - \Pi_{\mu\lambda}^{\kappa} \partial_{\kappa} z) - z_{c} z_{b} = \partial_{c} z_{b} - \Gamma_{cb}^{a} z_{a} - z_{c} z_{b}.$$

For a preferred system of parameters ($\Gamma_{cb}^{a} = 0$) we have therefore

(2.32)
$${}^{\prime}\Gamma^a_{cb} = (\partial_c z_b - z_c z_b) u^a + z_c B^a_b + z_b B^a_c$$

The equations (2.24) hold also for Γ_{cb}^{a} ; from which it follows, as we have seen above, that the projector of curvature $M_{\dot{a}\dot{c}\dot{b}}^{a}$ belonging to Γ_{cb}^{a} vanishes. There exist, therefore, systems of parameters $u^{a'}$ for which $\Gamma_{c'b'}^{a} = 0$. We shall now show that one of these systems of parameters can be obtained by a transformation of parameters of the following form

(2.33)
$$\begin{aligned} u^{1'} &= \rho \left(u^a \right) u^1 \\ u^{0'} &= \rho \left(u^a \right) u^0, \end{aligned}$$

where $\rho(u^a)$ is a homogeneous function of degree zero. From (2.33) it follows

(2.34)
$$\begin{array}{c} B_a^{a\prime} \stackrel{*}{=} \rho \delta_b^{a\prime} \left(B_a^{\rho} + u^b \partial_a \log \rho \right) \\ B_{a\prime}^{a} \stackrel{*}{=} \rho^{-1} \delta_{a\prime}^{b\prime} \left(B_b^{\rho} - u^a \partial_b \log \rho \right) \end{array}$$

where the $\delta_b^{a'}$ denote the generalized Kronecker symbols¹. Substitution in the transformation formula (2.23) for Γ_{cb}^{a} gives

(2.35)
$$\Gamma_{c'b'}^{a'} \stackrel{*}{=} \rho^{-1} \delta_a^{a'} \delta_c^c, \delta_b^{b'} [\Gamma_{cb}^a + \{-\partial_c \partial_b \log \rho + \Gamma_{cb}^e \partial_e \log \rho - (\partial_c \log \rho) (\partial_b \log \rho)\} u^a - \partial_b \log \rho B_c^a - \partial_c \log \rho B_b^a].$$

By substituting the expression (2.32) for Γ^a_{cb} , we get

(2.36)
$$\Gamma_{c'b'}^{a'} \stackrel{*}{=} \rho^{-1} \delta_a^{a'} \delta_b^{c'} \delta_b^{b'} \left[\left\{ \partial_c z_b - z_c z_b - \partial^c \partial_b \log \rho - \left(\partial_c \log \rho \right) (\partial_b \log \rho) \right. \right. \\ \left. + z_c \partial_b \log \rho + z_b \partial_c \log \rho \right\} u^a + \left(z_b - \partial_b \log \rho \right) B_c^a + \left(z_c - \partial_c \log \rho \right) B_b^a \right]$$

and from this equation we see that we get

$$(2.37) '\Gamma_{c'b'}^{a'} \stackrel{*}{=} 0$$

by putting

(2.38) $\log \rho = z, \quad \partial_c \log \rho = \partial_c z = z_c.$

¹ The sign $\stackrel{*}{=}$ means that the equation holds with respect to the coordinate system or systems used in the equation itself; it need not hold with respect to another system.

Thus it is possible to get a preferred system of homogeneous parameters $u^{a'}$ belonging to Γ^a_{cb} from a preferred system of parameters belonging to Γ^a_{cb} by a transformation of the form (2.33). From (2.28) and (2.33) it follows that

(2.39)
$$\frac{u^{1\prime}}{u^{0\prime}} = \frac{u^1}{u^0} = p.$$

112

Hence, the projective parameter p remains unaltered under a transformation (2.10) of the projective connection. It is, therefore, determined by the system of paths up to linear fractional transformations.

§3. The two parameters p and π .

1. Introduction of non-homogeneous coordinates in H_n .

In this paragraph we shall prove that the projective parameters p and π are "identical," in other words that p is a projective normal parameter.

In order to compare the parameters p and π , we have to introduce¹ non-homogeneous coordinates in H_n . A system of non-homogeneous coordinates in H_n is given by a set of n functions

(3.1)
$$\xi^{h} = \xi^{h} (x^{0}, \ldots, x^{n}),$$

homogeneous of degree zero, whose functional matrix

(3.2)
$$\| \mathcal{E}^{\hbar}_{\lambda} \|$$
, where $\mathcal{E}^{\hbar}_{\lambda} = \partial_{\lambda} \xi^{\hbar}$,

has rank n. From (3.1) it follows by Euler's condition of homogeneity that

$$(3.3) x^{\mu} \, \mathcal{E}^{h}_{\mu} = 0.$$

Moreover we introduce a projective covariant vector field q_{λ} of degree - 1, such that

$$(3.4) q_{\lambda} x^{\lambda} = 1.$$

But for this equation, q_{λ} may be chosen at will. This vector q_{λ} enables us to define the inverse of $\mathcal{E}_{\lambda}^{h}$. We define the quantity \mathcal{E}_{i}^{κ} by means of the equations

(3.5)
$$\begin{aligned} & \mathcal{E}_i^{\kappa} \, \mathcal{E}_{\kappa}^{h} = A_i^{h} & \text{(unit affinor)} \\ & \mathcal{E}_i^{\kappa} \, q_{\kappa} = 0. \end{aligned}$$

Multiplication with \mathcal{E}^i_{λ} gives

(3.6)
$$\widehat{\mathcal{E}}^{\kappa}_{\lambda} = \widehat{\mathcal{E}}^{\kappa}_{i} \widehat{\mathcal{E}}^{i}_{\lambda} = \mathscr{A}^{\kappa}_{\lambda} - x^{\kappa} q_{\lambda}.$$

¹ A. P. D., p. 11.

2. The induced affine connection.

We shall now prove that the quantities

(3.7)
$$\Gamma_{ji}^{h} = \mathcal{E}_{\kappa j i}^{h \mu \lambda} \prod_{\mu \lambda}^{\kappa} - \mathcal{E}_{ji}^{\mu \lambda} \partial_{\mu} \mathcal{E}_{\lambda}^{h}, \quad (\mathcal{E}_{\kappa j i}^{h \mu \lambda} = \mathcal{E}_{\kappa}^{h} \mathcal{E}_{j}^{\mu} \mathcal{E}_{i}^{\lambda})$$

are the coefficients of an affine connection, which gives the same system of paths as the projective connection $\prod_{\mu\lambda}^{\kappa}$. The system of geodesics, defined by the projective connection $\prod_{\mu\lambda}^{\kappa}$, is given by the differential equations (2.7). If $x^{\kappa} = x^{\kappa}(t)$ is the equation of a path in homogeneous coordinates, then the non-homogeneous equation is given by

(3.8)
$$\xi^{h} = \xi^{h} \left(x^{\kappa} \left(t \right) \right) = \xi^{h} \left(t \right).$$

From this equation we have

(3.9)
$$\frac{d\xi^{\hbar}}{dt} = \mathcal{E}^{\hbar}_{\lambda} \frac{dx^{\lambda}}{dt}, \\ \frac{d^{2}\xi^{\hbar}}{dt^{2}} = \mathcal{E}^{\hbar}_{\lambda} \frac{d^{2}x^{\lambda}}{dt^{2}} + \frac{dx^{\mu}}{dt} \frac{dx^{\lambda}}{dt} \partial_{\mu} \mathcal{E}^{\hbar}_{\lambda}.$$

Consequently

(3.10)
$$\frac{d^2 \hat{\xi}^h}{dt^2} + \Gamma^h_{ji} \frac{d\hat{\xi}^j}{dt} \frac{d\hat{\xi}^i}{dt} = \mathcal{E}^h_{\kappa} \left(\frac{d^2 x^{\kappa}}{dt^2} + \Pi^{\kappa}_{\rho\sigma} \mathcal{E}^{\rho\sigma}_{\mu\lambda} \frac{dx^{\mu}}{dt} \frac{dx^{\lambda}}{dt} \right) \\ + \left(\partial_{\mu} \mathcal{E}^h_{\lambda} - \mathcal{E}^{\rho\sigma}_{\mu\lambda} \partial_{\rho} \mathcal{E}^h_{\sigma} \right) \frac{dx^{\mu}}{dt} \frac{dx^{\lambda}}{dt}.$$

The transvection $\prod_{\mu\lambda}^{\kappa} x^{\mu}$ is zero by (2.14). Hence

(3.11)
$$\Pi^{\kappa}_{\rho\sigma} \, \hat{\mathcal{E}}^{\rho\sigma}_{\mu\lambda} = \Pi^{\kappa}_{\mu\lambda}$$

Furthermore we have from (3.6) and the definition of \mathcal{E}^{h}_{μ}

(3.12)
$$\mathcal{E}^{\rho\sigma}_{\mu\lambda} \partial_{\rho} \mathcal{E}^{h}_{\sigma} = \partial_{\mu} \mathcal{E}^{h}_{\lambda} + q_{\mu} \mathcal{E}^{h}_{\lambda} + q_{\lambda} \mathcal{E}^{h}_{\mu}.$$

Substituting these expressions in (3.10) we see from (2.7) that the right hand side is proportional to $\frac{d\xi^h}{dt}$. Hence the non-homogeneous differential equations for the geodesics are

(3.13)
$$\frac{d^2 \xi^h}{dt^2} + \Gamma^h_{ji} \frac{d\xi^j}{dt} \frac{d\xi^i}{dt} = a \frac{d\xi^h}{dt}.$$

These equations show that the Γ_{ji}^{h} defined by (3.7) transform as the coefficients of an affine connection. This connection is called *the induced affine connection*. It defines the same system of paths as the projective connection.

If we choose another projective covariant vector field q_{λ} , then (3.7) defines another affine connection, but this connection gives the same system of paths and can, therefore, be obtained from the connection $\Gamma_{i,i}^{h}$ by a projective transformation of connection (1.4).

The curvature tensor of the affine connection Γ_{ji}^{h} is defined by formula (1.7), namely

(3.14)
$$R_{kji}^{i} = 2 \partial_{[k} \Gamma_{j]i}^{h} + 2 \Gamma_{[k+l]}^{h} \Gamma_{j]i}^{l}$$

When the expressions (3.7) for Γ_{ji}^{h} are substituted in the above equations, we find, after some calculation,

$$(3.15) R_{kji}^{\lambda} = \mathcal{E}_{\kappa kji}^{h\nu\mu\lambda} N_{\nu\mu\lambda}^{\lambda\kappa} - 2q_{[kj} A_i^h + 2A_{[k}^h q_{j]i}^h,$$

where

$$(3.16) q_{ji} = \mathcal{E}_{ji}^{\nu\,\mu} \, \nabla_{\nu} \, q_{\mu}.$$

The projector of curvature $N_{\nu \mu \lambda}^{\cdot \cdot \cdot \cdot \star}$ has according to (2.9) and (2.14) the properties

$$(3.17) N_{\nu \,\mu \,\lambda}^{\,\,\kappa} x^{\nu} = 0, \quad N_{\mu \,\lambda} = 0.$$

Contraction of (3.15) with respect to the indices k and h gives therefore

$$(3.18) R_{ji} = -2q_{[ji]} + nq_{ji} - q_{ji},$$

$$(3.19) R_{(ji)} = (n-1) q_{(ji)},$$

where the round brackets indicate symmetrization with respect to i and j.

3. The parameter p as independent variable.

Let u^{α} be a preferred system of homogeneous parameters on the paths. Then the differential equations for the paths are (2.22)

(3.20)
$$\partial_c B_b^{\kappa} + \Pi_{\mu\lambda}^{\kappa} B_{cb}^{\mu\lambda} = 0.$$

If $x^{\kappa} = x^{\kappa}(u^0, u^1)$ is the equation of a path in homogeneous coordinates, then

$$(3.21) \qquad \xi^{h} = \xi^{h} \left(x^{\kappa} \left(u^{0}, \, u^{1} \right) \right) = \xi^{h} \left(u^{0}, \, u^{1} \right) = \xi^{h} \left(1, \, \frac{u^{1}}{u^{0}} \right) = \xi^{h} \left(p \right)$$

is the equation of the same path in non-homogeneous coordinates with p as independent variable. Differentiation with respect to u^1 gives

(3.22)
$$\mathfrak{E}^{h}_{\mu} B^{\mu}_{1} = (d_{p} \,\xi^{h}) \,\frac{1}{u^{0}} \,, \quad d_{p} \,\xi^{h} = \frac{d\xi^{h}}{dp} \,,$$

(3.23)
$$(\partial_{\nu} \, \mathcal{E}^{h}_{\mu}) \, B^{\nu \, \mu}_{1\,1} + \, \mathcal{E}^{h}_{\mu} \, \partial_{1} \, B^{\mu}_{1} = (d^{2}_{p} \, \xi^{h}) \, \left(\frac{1}{u^{0}}\right)^{2}.$$

Consequently we have

(3.24) $d_p^2 \xi^h + \Gamma_{ji}^h (d_p \xi^j) (d_p \xi^i) = (u^0)^2 [\mathcal{E}_{\mu}^h \partial_1 B_1^{\mu} + (\partial_{\mu} \mathcal{E}_{\lambda}^h) B_{11}^{\mu\lambda} + \Gamma_{ji}^h \mathcal{E}_{\mu\lambda}^{ji} B_{11}^{\mu\lambda}].$ From the equation (3.7) it follows by transvection with $\mathcal{E}_{\mu\lambda}^{ji}$ in consequence of (3.12)

(3.25)
$$\Gamma_{ji}^{h} \mathcal{E}_{\mu\lambda}^{ji} = \mathcal{E}_{\kappa}^{h} \prod_{\mu\lambda}^{\kappa} - \partial_{\mu} \mathcal{E}_{\lambda}^{h} - q_{\mu} \mathcal{E}_{\lambda}^{h} - q_{\lambda} \mathcal{E}_{\mu}^{h}.$$

Substituting this expression in (3.24) we get

(3.26)
$$d_p^2 \xi^h + \Gamma_{ji}^h (d_p \xi^j) (d_p \xi^i) = (u^0)^2 [\mathcal{E}^h_{\kappa} (\partial_1 B_1^{\kappa} + \Pi_{\mu\lambda}^{\kappa} B_{11}^{\mu\lambda}) - 2q_{\mu} \mathcal{E}^h_{\lambda} B_{11}^{\mu\lambda}] \\ = -2u^0 q_{\mu} B_1^{\mu} d_p \xi^h = -2a d_p \xi^h,$$

according to (3.20). The coefficient a is a function of p and we find by differentiation

(3.27)
$$d_p a = d_p (u^0 q_\mu B_1^\mu) = (u^0)^2 \frac{\partial}{\partial u^1} (q_\mu B_1^\mu) \\ = (u^0)^2 B_{1\,1}^{\mu\,\lambda} (\partial_\mu q_\lambda - \Pi_{\mu\,\lambda}^\kappa q_\kappa) = (u^0)^2 B_{1\,1}^{\mu\,\lambda} \nabla_\mu q_\lambda.$$

From (3.16) it follows, by multiplication with $\mathcal{E}_{\lambda \kappa}^{ji}$, that

(3.28) $\mathcal{E}_{\lambda\kappa}^{ji}q_{ji} = \mathcal{E}_{\lambda\kappa}^{\nu\mu}\nabla_{\nu}q_{\mu} = \nabla_{\lambda}q_{\kappa} - x^{\nu}q_{\lambda}\mathcal{E}_{\kappa}^{\mu}\nabla_{\nu}q_{\mu} - x^{\mu}q_{\kappa}\nabla_{\lambda}q_{\mu} = \nabla_{\lambda}q_{\kappa} + q_{\lambda}q_{\kappa}$ the components q_{λ} being homogeneous of degree $\rightarrow 1$. Substitution in (3.27) gives

(3.29)
$$d_p a = (u^0)^2 B_{11}^{\mu\lambda} (\mathcal{E}_{\mu\lambda}^{ji} q_{ji} - q_{\mu} q_{\lambda}),$$

for which we may write according to (3.19), (3.22) and using the definition of $\alpha(3.26)$,

(3.30)
$$d_p a + a^2 - \frac{1}{n-1} R_{ji} (d_p \xi^j) (d_p \xi^i) = 0.$$

These equations together with the differential equations (3.26) of the system of paths are identical with the equations (1.11) and (1.13) if we put $p = \pi$. This means that the projective parameter p defined in §2 is a projective normal parameter.