ON UNIONS OF TWO CONVEX SETS

RICHARD L. MCKINNEY

1. Introduction. Valentine (3) introduced the three-point convexity property P_{3} : a set S in E_{n} satisfies P_{3} if for each triple of points x, y, z in S at least one of the closed segments $x y, y z, x z$ is in S. He proved, (3 or 1) that in the plane a closed connected set satisfying P_{3} is the union of some three convex subsets. The problem of characterizing those sets that are the union of two convex subsets was suggested. Stamey and Marr (2) have provided an answer for compact subsets of the plane. We present here a generalization of property P_{3} which characterizes closed sets in an arbitrary topological linear space which are the union of two convex subsets.
2. Preliminaries. Standard results concerning convex sets in linear topological spaces will be assumed. The reader may wish to refer to (4). We shall say that two points of a set S are visible (relative to S) if the closed line segment joining them lies entirely in S.

Definition. Let S be a closed set in a topological linear space. Then S has property P_{0} if for each finite subset x_{1}, \ldots, x_{n} of S, n odd, with the property that x_{i} and x_{i+1} are not visible ($i=1, \ldots, n-1$), it follows that x_{1} and x_{n} are visible.

Remarks. 1. A set satisfying P_{0} clearly has Valentine's property P_{3}.
2 . A set S that is the union of two convex sets must have property P_{0}.
3. P_{0} is equivalent to the property: for each finite subset x_{1}, \ldots, x_{n}, $n>2$, of S such that x_{i} and x_{i+1} are not visible ($i=1, \ldots, n-1$), it follows that x_{i} and x_{j} are visible if i and j are both even or both odd.

Recall that the convex kernel of a set S is the (convex) set of all points of S that are visible with every point of S.

3. Characterization theorem.

Theorem. Let S be a closed non-convex set in a topological linear space. Then S is the union of two convex subsets if and only if S satisfies property P_{0}.

Proof. By Remark 2 we need only consider the "if" statement.
Let K denote the convex kernel of S. Define \mathfrak{B} to be the set of all pairs of

[^0]sets (A, B) satisfying the following properties:

1. $A \cup B \subset S \sim K$.
2. Any two points of A (of B) are visible in S.
3. To each point of A (of B) there corresponds a point of B (of A) such that the pair is not visible in S.
4. Every point of S that is not visible with some point of A (of B) is in B (in A).

We show first that \mathfrak{B} is non-empty. Let a be a point of $S \sim K$. Let \mathfrak{C}_{a} be the set of all finite chains $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ consisting of points of S such that $x_{1}=a$ and such that x_{i} and x_{i+1} are not visible for all $i, 1 \leqslant i \leqslant n-1$. Define
$A=\left\{x \in S: x=x_{i}\right.$ belongs to a chain in \mathfrak{C}_{a} in which i is odd $\}$,
$B=\left\{x \in S: x=x_{i}\right.$ belongs to a chain in \mathscr{C}_{a} in which i is even $\}$.
To show that $(A, B) \in \mathfrak{P}$ we verify 1 to 4 .
Property 1 follows since clearly no point of a chain in \mathfrak{C}_{a} can be in K.
To prove 2, let a_{1} and a_{2} be distinct points of A. Then there exist chains $\left\{a, x_{2}, x_{3}, \ldots, x_{2 n}, a_{1}\right\}$ and $\left\{a, y_{2}, y_{3}, \ldots, y_{2 m}, a_{2}\right\}$ in \mathfrak{C}_{a}. But then the chain $\left\{a_{1}, x_{2 n}, \ldots, x_{2}, a, y_{2}, y_{3}, \ldots, y_{2 m}, a_{2}\right\}$ has odd length and it follows from property P_{0} that a_{1} and a_{2} are visible. The argument is similar for two points of B.

Property 3 is obvious since each point of A or B has a neighbour in some chain belonging to \mathfrak{C}_{a}. Finally, suppose that x is a point of S that is not visible with a point a_{0} of A. Since a_{0} is in A, there is some chain $\left\{a, x_{2}, \ldots, x_{2 n}, a_{0}\right\}$ in \mathfrak{C}_{a}. But then $\left\{a, x_{2}, \ldots, x_{2 n}, a_{0}, x\right\}$ is also in \mathfrak{C}_{a} and hence x is in B.

A similar argument completes the verification of 4 .
Now order the elements of \mathfrak{P} in the following manner: If $\left(A_{1}, B_{1}\right) \in \mathfrak{B}$ and $\left(A_{2}, B_{2}\right) \in \mathfrak{P}$, then

$$
\left(A_{1}, B_{1}\right)<\left(A_{2}, B_{2}\right) \Leftrightarrow A_{1} \subset A_{2} \text { and } B_{1} \subset B_{2}
$$

Let $\left\{\left(A_{\alpha}, B_{\alpha}\right)_{\alpha \in \Gamma}\right\}$ be a linearly ordered subset of \mathfrak{F}. Then it is easily verified that

$$
\left(\bigcup_{\alpha \in \Gamma} A_{\alpha}, \bigcup_{\alpha \in \Gamma} B_{\alpha}\right) \in \mathfrak{B}
$$

Hence, we may assume that there is a maximal element $\left(A_{0}, B_{0}\right)$ in $\mathfrak{ß}$.
Next we show that $A_{0} \cup B_{0}=S \sim K$. Otherwise there is a point $y \in S \sim\left(K \cup A_{0} \cup B_{0}\right)$. Define
$A_{*}=A_{0} \cup\left\{x \in S: x=x_{i}\right.$ belongs to a chain in \mathbb{C}_{y} in which i is odd $\}$,
$B_{*}=B_{0} \cup\left\{x \in S: x=x_{i}\right.$ belongs to a chain in \mathfrak{C}_{y} in which i is even $\}$.
Then $\left(A_{*}, B_{*}\right) \in \mathfrak{B}$ since 1,3 , and 4 are obviously satisfied and for 2 the only non-trivial case is $a_{1} \in A_{0}$ and s_{1} in a chain $\left\{y, x_{2}, \ldots, x_{2 m}, s_{1}\right\}$ in \mathfrak{C}_{y} (and the similar case with A_{0} replaced by B_{0}). If a_{1} and s_{1} are not visible, then $s_{1} \in B_{0}$. But then $x_{2 m} \in A_{0}, x_{2 m-1} \in B_{0}, \ldots, y \in B_{0}$ contrary to our assumption.

Since $y \notin K,\left(A_{*}, B_{*}\right)$ is an element of \mathfrak{P} strictly larger than $\left(A_{0}, B_{0}\right)$ contradicting the maximality of (A_{0}, B_{0}). Hence, $A_{0} \cup B_{0}=S \sim K$.

The proof will be completed by showing that $\operatorname{conv}\left(A_{0} \cup K\right) \subset S$ and $\operatorname{conv}\left(B_{0} \cup K\right) \subset S$. Since the proofs are symmetric, we need to consider only the first statement. It is sufficient to show that if $\left\{c_{1}, \ldots, c_{n}\right\} \subset A_{0} \cup K$ for arbitrary n, then every point of the relative interior of the simplex $T=\operatorname{conv}\left\{c_{1}, \ldots, c_{n}\right\}$ is in S. Since this is obvious for $n \leqslant 2$, we shall use induction on n assuming the result for all $m<n$. If T contains a point of K, then the desired result is immediate. Hence, assume $\left\{c_{1}, \ldots, c_{n}\right\} \subset A_{0}$ and $T \cap K=\emptyset$. Suppose there exists a point x of the relative interior of T which is not in S. Then, since S is closed, $T \sim S$ is a non-empty relatively open subset of T.

We prove that $T \sim S$ is convex. By the induction assumption the proper faces of the simplex T are all subsets of S. Let x_{1} and x_{2} be distinct points of $T \sim S$ and suppose the line segment joining them contains a point s of S. The line through x_{1} and x_{2} must intersect the boundary of T in distinct points y_{1} and y_{2} on opposite sides of x_{1} and x_{2} respectively from s. If y_{1} and y_{2} are both in A_{0} or both in B_{0}, it follows that x_{1} is in S, contrary to assumption. Hence either y_{1} and s or y_{2} and s are both in the same set A_{0} or B_{0} and it follows that x_{1} or x_{2} is in S, which is again a contradiction.

Let P be the plane spanned by $\left\{c_{1}, c_{2}, x\right\}$. Then $P \cap(T \sim S)$ is a nonempty relatively open convex subset of $P \cap T$. By the Krein-Milman theorem, $\overline{P \cap(T \sim S)}$ is the convex hull of its set of extreme points. Clearly there must be at least three such extreme points, say e_{1}, e_{2}, and e_{3}, and each of these belongs to $A_{0} \cup B_{0}$. There are two of these that belong to the same set, say e_{1} and e_{2} are in A_{0}. In the plane P, let l be the translate of the line determined by e_{1} and e_{2} that passes through x. Since x is in the relative interior of $\overline{P \cap(T \sim S)}$, there exist points s_{1} and s_{2} of S on l, on opposite sides of x and on the boundary of $T \sim S$. At least one of $\left\{s_{1}, s_{2}\right\}$ must be in A_{0}, say s_{1}. But then $\frac{1}{2}\left(e_{1}+s_{1}\right)$ and $\frac{1}{2}\left(e_{2}+s_{1}\right)$ are both in A_{0} and hence in S. Since at least one of these must also be in $P \cap(T \sim S)$, we have the desired contradiction.

Consideration of the set indicated below, where the centre of symmetry has been removed, shows that the assumption that S be closed in the theorem is essential.

The same example with the centre point inserted shows that \mathfrak{B} may contain more than one element.

References

1. H. Hadwiger, H. Debrunner, and V. L. Klee, Combinational geometry in the plane (New York, 1964), pp. 72-76.
2. W. L. Stamey and J. M. Marr, Union of two convex sets, Can. J. Math., 15 (1963), 152-156.
3. F. A. Valentine, A three point convexity property, Pacific J. Math., 7 (1957), 1227-1235.
4. - Convex sets (New York, 1964).

University of Alberta, Edmonton

[^0]: Received November 1, 1965. This work was partly supported by a Summer Research Fellowship from the Canadian Mathematical Congress, at Vancouver, 1965.

