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CHARACTERISTIC CYCLESIN
HERMITIAN SYMMETRIC SPACES

BRIAN D. BOE AND JOSEPH H. G. FU

ABsTRACT.  We give explicit combinatorial expresssions for the characteristic cy-
clesassociated to certain canonical sheaveson Schubert varieties X inthe classical Her-
mitian symmetric spaces: namely the intersection homology sheaves IHy and the con-
stant sheaves Cx. The three main cases of interest are the Hermitian symmetric spaces
for groups of type A, (the standard Grassmannian), C,, (the Lagrangian Grassmannian)
and Dy, In particular we find that CC(IHy) isirreducible for all Schubert varieties X if
and only if the associated Dynkin diagramis simply laced. Theresult for Schubert vari-
etiesin the standard Grassmannian had been established earlier by Bresder, Finkelberg
and Lunts, while the computations in the C, and Dy, cases are new.

Our approach is to compute CC(Cx) by a direct geometric method, then to use the
combinatorics of the Kazhdan-L usztig polynomials (smplified for Hermitian symmet-
ric spaces) to compute CC(IHy). The geometric method is based on the fundamental
formula

CC(Cx) = Irim CC(Cyx,),

wherethe X; | X constitute afamily of tubes around the variety X. This formulaleads
at onceto an expression for the coefficientsof CC(Cy) asthe degreesof certain singular
maps between spheres.

Introduction. In the chapter of representation theory pioneered by Kahzdan and
Lusztig [KL1, 2], Schubert varieties in generalized flag manifolds play a fundamental
role. In particular, the proof of the Kazhdan-L usztig conjecturesdueto [BB] and[BK] has
brought the inter section homology (IH) sheavesof these varieties, and the characteristic
cycles of these sheaves, to the center of the subject.

A later conjecture of Kazhdan and Lusztig [KL 3] states that the characteristic cycle
of the IH sheaf associated to any Schubert variety in the manifold of complete flagsin
C" (i.e. the flag manifold associated to the group of type A,_1), isirreducible. A special
case of this conjecture was proved by Bressler-Finkelberg-Lunts [BFL], who showed
that the statement is true when the complete flag manifold is replaced by the correspond-
ing maximally degenerate flag manifold (the Grassmannian). Tanisaki [ Tan] was ableto
compute characteristic cycles in some other low-dimensional cases, and his examples
show in particular that the conjectureisfalse for the (full) flag manifold associated to the
group of type C,. Quite recently, Kashiwaraand Saito [Ka] have constructed counterex-
amplesto the original (A) conjecture. Nevertheless, a complete determination of these
characteristic cyclesremains of serious interest to other areas of mathematics.
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In this paper we present algorithms for the characteristic cycles of the IH sheaves
associated to the Schubert varieties lying in the Hermitian symmetric spaces of the clas-
sical groups; of these, the interesting cases are the spaces associated to the pairs (A,
Am X An_m-1) (the standard Grassmannian), (Cn, An—1) (the Lagrangian Grassmannian)
and (D, An—1). Thus our really new results concern the latter two cases—it is our un-
derstanding that before now no one had succeeded in making these calculations, despite
several attempts (at least for C,)).

Our results may be summed up as follows:

THEOREM (THEOREM 7.1A). Let Hg be a Hermitian symmetric space associated to
aclassical Lie group G. The characteristic cycles of the intersection homology sheaves
associated to the Schubert varieties X C Hg are all irreducibleiff the Dynkin diagram
of Gissimply laced.

In particular the characteristic cycles of the IH sheaves for Schubert varieties in the
Hermitian symmetric space associated to the pair (Dn, An—1) areirreducible.
We also have the following positive result which includesthe C,, case:

THEOREM (COROLLARY 7.1E). Let Hg be a Hermitian symmetric space associated
to aclassical Lie group G. The multiplicities m of the characteristic cycles of theinter-
section homology sheaves associated to Schubert varietiesY C X C Hg areall either 0
or 1. Moreover, mé = O unlesscodimy Y is even.

Our approachto these problems seemsvery different from the usual one. In particular,
intersection homology and sheaf theory are pushed off-stage and only enter the scenein
the form of the Kazhdan-L usztig polynomials, which by [KL 2] are the Poincaré polyno-
mials of the IH sheaves. We work instead in terms of the normal cycle N(X) [Ful, 2, 3]
of a Schubert variety X in one of the spaces under consideration. Thiscycleis equivalent
to the characteristic cycle of the constant sheaf on X, but admits a simple geometric con-
struction (cf. Section 2.2). Our first main result (Theorem 4.2E) gives an agorithm for
the coefficients (which we call MacPherson coefficients) in the decomposition of N(X)
in terms of the normal bundles of the strata of X. The main tool used in the proof is
Theorem 2.2A, which expresses the MacPherson coefficients as the degrees of certain
(singular) mappings of spheres.

Asis well-known, the array of MacPherson coefficients (associated to pairs of sub-
varieties of X) determinesthe array of Euler obstructions associated to pairs of stratain
X. In our second main result (Theorem 6.2A) we use this relation to produce from the
algorithm of Theorem 4.2E an algorithm for the Euler obstructionsfor pairs of Schubert
stratain the classical Hermitian symmetric spaces. The combinatorial structure of these
algorithmsis compatible with that of the formulas for the Kazhdan-L usztig polynomials
(in the Hermitian symmetric cases) dueto [LS] and [Bog]. Thuswe are able (in (7.1.1)
and Theorems 7.1A and 7.1B) to produce from Theorem 6.2A asimple algorithm for the
multiplicities of the IH sheaves.
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In short, the method is to compute by geometric means the coefficients of the charac-
teristic cycleof the constant sheaf, combining thesewith the Kazhdan-L usztig polynomi-
als to produce the desired multiplicities. It would of coursein many ways be preferable
to be able to compute these multiplicities by adirect geometric procedure, bypassing the
combinatorics, aswasdonein [BFL] for the A, case. Unfortunately our method does not
seem to provide any hintsin this direction.
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1. Notation, conventionsand background.
1.1. Generalities. Let M beaRiemannian manifold. Thetangent and cotangent bundles
of M are denoted TM and T*M respectively. The sphere bundle of unit tangentsiswritten

UM:={¢eTM: ¢ =1},

and U*M isthe bundle of unit cotangents. Given asubmanifoldV C M, thevector bundle
of normalsto V is denoted 'V or vV, and the unit normal bundleis written

vV =vhV = rvyVNUM.

The corresponding conormal bundles are denoted /*V, v*V := 7*V N U*M.

Projection maps will sometimes be denoted by 7a, where A is the target of the pro-
jection. Thus the projection TM — M is written my. In the case of a product A x B
we will often write instead 1, 7, for the projections onto the first and second factors,
respectively. B

Thetopological closure of aset Ais denoted A.

If Ais afinite set then we put C* for the complex vector space of functions A — C.
We equip this space with the standard Hermitian inner product (v,w) := ZAvavT/a. If

ac

B C A we regard CB as a subspace of C* by extending x € CB by zero to all of A. If
x € CA then xB denotes the orthogonal projection of x into CB. The unit sphere of CA is
denoted S*, and the complex projective space on C* by PA.

The set of regular pointsof avariety Y is denoted Y°. If S is astratification of aspace
X and x € X then the stratum containing x is denoted .

1.2. Geometric measure theory. Many constructions in this paper are based on the
theory of integral currentsof Federer and Fleming, [Fe, Chapter 4], and its specialization
to semialgebraic currents(that is, currents given by integration over semialgebraic chains
with Z coefficients). Formally, currents are linear operators on differential forms. The
group of integral currents of dimension k in a manifold M is denoted I, (M). If U isa
semialgebraic open subset of an oriented submanifold V C M of dimension k, then we
denote the current given by integration over U by U] € I, (M).
Some important operations in this theory are as follows.
(1) Push-forward. If f:M — Nisaproper locally Lipschitzmapand T € [,(M),
then the current f. T on N given by

(.T)(¢) :=T(f"¢)

for k-forms ¢ on N, isan integral current on N.

More generaly, if T is semialgebraic and f is a semialgebraic function (i.e.
a continuous function with semialgebraic graph) on the support of T then
the push forward may be defined asfollows. Thereis aunique semialgebraic
current I supported on the graph of f| spt T suchthat my.I" = T. Thenf, T :=
TTNx I,
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(2) Redtriction. Givenanintegral current T € (M) onM andanopensetU C M,
we denote by T|U the element of [,(U) given by restricting the domain of
the operator T to (the natural inclusion of) the space of differential forms
supported in U. Putting iy: U — M for the inclusion map, we have also

TLU = iu.(TJV).

(3) Boundary. 0T(¢) := T(d¢). Note that f.0 = of, for f asin (1) above.
(4) Sicing. Given alocally Lipschitz function f:M — R, the slice of T by f at
reRis

(T,f,r) == 0(T[ f}(—o00,r)) — (@T)| f*(—o00,1).

For T, f semialgebraic this defines a current-valued function of r that is con-
tinuous off of afinite set of jump discontinuities. If T = [V] isintegration
over asmooth oriented submanifold V andr isaregular value of f|V then the
dice (T,f,r) = [VNf=1(n].

1.3. tojasiewicz inequality. We will use the following fundamental inequality. Let
g:R" — R be an analytic function, and let x3,x%,--- — Xo in R", where g(xo) = O.
Then there are constants o € (0, 1), ¢ > 0 such that

IVa(x)| > cg(x)®, i=12....

For aproof, see [KP].
In fact we will only need thisin caseg is polynomial, and moreover we will only use
the weaker statement:
. 9(x)
lim =
=0 [Vg(%)]
provided Vg(x) # Ofori =1,2....

(1.3.1)

2. Characteristic cyclesand normal cycles.

2.1. CC(IH) and CC(C). In this subsection, we introduce the basic objects of study—
characteristic cycles, (co)normal cycles, MacPherson coefficients, Euler obstructions,
and Kazhdan-L usztig numbers—as well as the relations between them.

Associated to any constructible sheaf (or complex of sheaves) F on acomplex man-
ifold H" isits characteristic cycle CC(F ), aconic Lagrangian cycle living in the cotan-
gent bundle T*H (cf. [KS]). The operation CC factors through the Grothendieck group
K (DPH), which is isomorphic viathe map F — xg, the fiberwise Euler characteristic
of F, to the group C-Func(H) of constructible functions on H. Thus for any subvariety
X C H, the constant sheaf Cx correspondsto the characteristic function 1x € C-Func(H).
The corresponding map from C-Func(H) to the additive group Lag(H) of conic La-
grangian cycles is a homomorphism of abelian groups. However we find it more con-
venient to work directly with varieties rather than constructible functions.
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ProPOSITION 2.1A. The constructible function operation CC:C-Func(H) —
Lag(H) is the unique group homomor phism satisfying
CC(1x) = N'(X)

for all closed varieties X C H, where N* is the conormal cycle operation of [ Fu3].

ProoOF. Cf.[Fu3, 4.2]. ~ ]
Recall that the conormal cycle N*(X) decomposes as
2.1.1) N*(X) = 3 dXN*(Z)
seS

where S is any Whitney stratification of X, d¥ € Z and each current N*(2) is given by
integration over the manifold v*X of conormals to the stratum X. Note that the closure
of v*X C T*H is aclosed analytic subvariety; however, we give this variety a canoni-
cal orientation that is distinct from the orientation induced from the complex structure,
cf. [Fu2] and Section 2.2 below. We will call d¥ the MacPherson coefficient of £ in X;
abusing notation we put also dg := d¥. With this convention we have always d¥ = 1.
Since any constructible function f € C-Func(H) may be expressed as alocally finite
sumf = S xnxlx, where X ranges over the closed subvarieties of H and nx € Z, the
characteristic cycle CC(f) admits an expression
cC(f) = 3 asN* (%),
¥eS
as = Yx nxdy, for some Whitney stratification of H. If thereisastratum 5o € S such
that oz, = 1 and oz = O for X # Zo, we say that CC(f) isirreducible.
Now let H be a (possibly degenerate) flag manifold and S the Whitney stratification
of H by Schubert cells, with the usual partial order on S givenby = > 3/ & = D 5/,
The subgroups of C-Func(H) and Lag(H) generated respectively by {15 | £ € S} and
{N*(Z) | = € S} are obviously both isomorphic to 8 viathe mapsF: Z5 — C-Func(H)
and L: Z8 — Lag(H) determined by F(5%) = 15, L(6%) = N*(Z), where 5% € 75 isthe
Kronecker delta: 62, = 1if £ = 5/, and = 0 otherwise. Let ch: Z° — 75 be the induced
map
z8 IS
(2.1.2) Fl L]
C-Func(H) =, Lag(H).
If f isa constructible function in the span of {15 | £ € S} then CC(f) isirreducible iff
ch(F(f)) = 6™ for some %, € S.
For each Schubert cell = € S, define¢Z, p*, n¥ € 75 by

1, ¥ <%

0, otherwise,
s = P% (D),
m* = ch(p®),

s
G =

(2.1.3)
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where P{(q) is the Kazhdan-Lusztig polynomial of the pair (X, Y) of Schubert varieties
(cf. [KL1]). Recall that P¥ = O unlessY C X. Thus F([:_)z) is the constructible function
associated to the intersection homology sheaf IH5 of = [KL2], and m%, is the coeffi-
cient of N*(2’) in CC(IHs). Furthermore ¢* = F~*(15), with ch(¢*) = d?, the vector
of MacPherson coefficients of = (by (2.1.1)). Each of the collections {¢Z}, {d®}, {p*},
{m*} isabasisfor Z5.

Denote by e = (e£) the matrix expressing the ¢ basisin terms of the d basis:

(2.1.4) (e-d¥)s = ; e d = ¢,

(thus e, isthe Euler obstruction of 3 at ageneric point of 3/, cf. [Mac, BDK, Gin]). Now
(2.1.5) chie-d®) = ch(®) =, €8,

and therefore

(2.1.6) chfa)=e -«

forany a € Z5.In particular,

ch™1(6*) = e- 6% = €,
and similarly
(2.1.7) ch™(nm’) = e-n* = p?,

for all Schubert cells X. Thefirst relation here means; the unique constructible function
f with irreducible characteristic cycle CC(f) = N*(Z) isf =Y €15 B

Our method for computing the CC(IHx) for Schubert varieties X = X is based on
a computation of the MacPherson coefficients d. From the && we compute the Euler
obstructions e using (2.1.4). If these are equal to the Kazhdan-L usztig numbers then the
characteristic cyclesof the IH sheavesare irreducible, and we are done. If not, we solve
therelation (2.1.7) to find the coefficients m.

2.2. Thenormal cycleof a variety with conic singularities. It is convenient to work not
with the full conormal cycle N*(X) but with the unit normal cycle N(X) € [2,—1(UH),
where n = dim¢ H. Putting «: T*"H — TH for the isomorphism induced by the metric
and p: TH — R for the length function, thisis given by

(2.2.1) N(X) = (.:N*(X), p, 1).

Thus N*(X) is the cone over 7 *N(X). On the smooth part of X the normal cycle deter-
mines the standard orientation of the unit normal bundle X, locally equal to the product
of the orientation of X as a complex manifold and the orientation of the normal sphere
vy X as the sphere of the complex vector space vy X.
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The cycle N(X) admits the following geometric construction [Fu3]. Let g:H — R
be a nonnegative, locally Lipschitz, subanalytic function with g=1(0) = X; we call such
afunction g an aura for X. Let [[dg]l € lon(T*H) be the differential current of g, asin
[Ful]. Let U C H be aneighborhood of X, small enough that spt[dg]] N 7*(U) doesnot
intersect the zero-section of T*H, and denote by G the current representing the graph of
the normalized gradient of g; i.e., putting u: TH — (zero-section) — UH for the radial
projection, G = u,.,[dg]. Then

(2.2.2) N(X) = —9(G|rx V).

Wewill be particularly interested in the casewhere X C C" is an algebraic cone over
theorigin. Inthis caseit is clear that in the decomposition N(X) = >z d¥N(Z°), al of the
strata Z in the sum are themselves conic. For eachr > 0, put S; for the sphere of radius
r about the origin. From the product formula for normal cycles ([Fu3], 4.5) the normal
cyclesof the real algebraic subvarietiesX NS;, r > 0, satisfy

(2.2.3) (N(X),6 o T, 1) = Ns,(XN'Sy) = > d5Ne, (Z° NSy)
z

for al sufficiently small r > 0, where §(x) := |x| and Ns, denotes the normal cycle
relative to the ambient manifoldS;. Let g, G beasin the last paragraph, and for r > 0 let
G = (é,é omy, Iy denotethe current representing the restriction to S; of the normalized
gradient of g. Now if U, C S§; isa suitably small neighborhood of X N'S;, then slicing
therelation (2.2.2) by theradial function § o m we obtain from (2.2.3)

(2.2.4) 3(G|Ur) = —Ng (XN S).

Moreover, for cones the MacPherson coefficient of the origin may be computed by
the following theorem. This result is the foundation of our approach to the calculations
which arethe main point of this paper: the theorem may be used to compute MacPherson
coefficients of more general substrata. For if X C H is a complex analytic variety, 2 a
stratum of X, and V C H isasubmanifold transverseto = with VN Z = {Xo}, then di =
df' ™. We call VN X anormal slice for the pair (X, %) (or (X, ). Although the normal
dliceis not usually well-defined as a variety, the associated MacPherson coefficient is.
By abuse of languagewe will refer to the normal slicefor (X, Y), denoted Xy. In Section 3
we will construct natural models for normal slices of pairs of Schubert varieties.

THEOREM 2.2A. Let X C C" be an algebraic coneover 0, and let g:C" — R be a
smooth aura for X. Define ¢(x) 1= X : this map is well defined for x € B(0, ro) — X if

RTCIN
ro > Oissufficiently small. Let r € (O, ro) befixed. Then
(2.2.5) degé:= 3 sgndetD(o[S)(x) = iy,
XeSrNgpL(y)

for almost every y in the unit sphere S,

PrROOF OF 2.2A. We will prove the following more general and (from the current-
theoretic point of view) formally more natural fact, which contains Theorem 2.2A asa
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special case. Let g be a (possibly nonsmooth) aura for X, and let G, G; and § be asin
the preceding paragraphs. Let 7,: UC" ~ C" x §2"~1 — §2~1 pe the projection onto the
fiber. Then for amost al r > 0,

(2.2.6) 72.Gr = digy [S™ 1.

If gissmooth then G; isasmooth graph, and the stated form of the theorem follows from
(2.2.6) and the change of variables formula for multiple integrals.

Put 7r1: UC" ~ C" x §?*1 — C" for the projection of the bundle and B, = §7[0,r)
for the open ball of radius r about the origin. Let S be a Whitney stratification of X by
conic strata.

For amost every r > O we have by [Fe, 4.2.1]

(G| 'B) = (3G)| 1B, + G

(2.2.7) = -NX)|7'B+G: by (222)
=— > &ENE)|[ 7 'B +Gi.
seS

Projecting onto the spherical factor, the support theorem [Fe, 4.1.20] gives
T2.0(G|771B;) = 0, (G| 77'B) = 0
sincethe 2n-current under the boundary is supported onS2*~1. Therefore (2.2.7) becomes

(2.2.8) Zs d5 72 (N(Z) [ 77 1By ) = m2.G.
pAS

We claim that 2. (N(Z) | 71 *Br ) = O for each stratum = # {0}. In fact, wewill show
that the set m2(vX) NS?"* hasreal dimension at most 2n — 3, so by the support theorem
it cannot support anintegral current of dimension 2n — 1.

Each such stratum X is the cone over a projectivized stratum PZ C P!, The man-
ifold Pv*(PZ) C PT*P"! of projective conormals has a closure which is a Lagrangian
subvariety of PT*P"1, and therefore has complex dimension at most n — 1. Since the
projectivization of m(1*X) C S js equal to the projection onto the second factor
of PT*P™1 ¢ P! x PM™D* wefind that (") is the intersection with S@"* of a
cone of complex dimension at most n — 1 in C™. In particular, its real dimension is at
most 2n — 3, and »(Z) N S*"1 isits image under ¢.

Thus (2.2.8) reducesto

m2:Gr = d?o} 7o« N ({0})
— %, [s™ ). .
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3. Hermitian Symmetric Spaces. For therest of this paper we will assumethat H
is an irreducible Hermitian symmetric space of compact type. These are the manifolds
K\Go where

(1) Gpisacompact connected simple Lie group with finite center;

(2) Kisamaximal connected proper subgroup of Go;

(3) K hasnondiscrete center
(cf. [Hel, Chapter 8]). Concretely, there are five classical families and two exceptional
cases. In the present paper we restrict our attention to the classical families, which are
shownin Table 3.1.

Type Go K di m, K\Go| rank(K\Go)
[ U(n+m) S(U(n) x U(m)) 2nm min(n, m)
I F(n) uU(n) n(n+1) n
1 SO(2n) uU(n) nin—1) [n/2]
v SO(n + 2),n odd SO(n) x SO(2) 2n 2
\% SO(n+2),neven | SO(n) x SO(2) 2n 2

TABLE 3.1. Compact Classical Hermitian Symmetric Spaces.

3.1. Schubert varieties. We now give explicit descriptions of these manifolds K\Gg
and their Schubert varietiesin typesl, I, and I11, which admit aparallel treatment. These
descriptions are all well known (cf. [Tak]). We discuss the (much simpler) types |V and
V at the end of this section.

CAUTION. In the sequel, we refer often to coordinates corresponding to certain en-
tries of matrices. We view these matrices as embedded in a Cartesian plane with their
lower left corner at the origin, with (i,]) coordinate referring to the entry in column i
(counting from 1 at the left) and row j (counting from 1 at the bottom). For consistency,
we follow this same convention when using matrix notation. Thus g’ denotes the entry
of g in thei-th column from the left and the j-th row from the bottom; an n x m matrix
has n columns and m rows; etc.

We use the standard indexing scheme for matrix multiplication, which we dencte by

o: thusif y e C™"andv € C"thenyev = (i yiv, .., i ymv).
j=1 =1

1. §(U(n) x U(m))\SU(n + m). This is the familiar Grassmann manifold Gy of n-
planesin C™™. Fixing aflag C* c €% C --- C €™M, the Schubert cellsin G, are the
subsets

(3.1.1) {N e Gy | dimNCY =r}

corresponding to nondecreasing sequencesr; < --- < rn+m = N. They may be described
more economically as the subsets

(3.1.2 S=laa—Lla—2...,aa—n]={N|dmMNc* =i}
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where0<a—1<a,—2<--- <a,—n < m TheSchubertvariety Y = fisgiven by
changingthelast“="to">"in (3.1.2), and will also bedenoted[a; —1, 8,—2, ..., an—n].
Thus the Schubert cells/varieties are classified by m x n Young diagrams. n rows of
“boxes’ (left justified), with no more than m boxes in each row, each row having no
more boxes than the row below. (Note that thisis the opposite of the usual convention—
our Young diagrams are flipped, top to bottom; cf. Figure 3.1.) We view these Young
diagrams as embedded in a fixed m x n rectangle M := {1,...,m} x {1,...n}. Put
A(Z) = A(Y) for the Young diagram associated to > or Y, and denote the complementary
diagram by A(Z) = A(Y) := M — A(Z). Then an open dense subset of Y isidentified via
coordinates with CA"), and the normal slice (Gnm)y of Y in the full Grassmannian will
beidentified below with €AY =: ¢5M.

2. U(n)\Sp(n). Thisis the “Lagrangian Grassmannian” A, of n-planesin C?" totally
isotropic with respect to the symplectic form (W) = vidw, v, w € C?", where

1

A(Y)

A(Y)

FIGURE 3.1. The Young diagramof Y = [0, 2,4,4,5] in Gsg.

In particular A, is naturally embedded in G,n. The Schubert varieties Y in A, are the
intersections with A, of the Schubert varietiesin G ,. Thus they may be classified by
Young diagrams—in fact they correspond precisely to the Young diagrams which are
symmetric about the diagonal i = j inthe n x n square M. Aswe shall see below, the full
normal slice (A,)y is identified with the space C4(") of symmetric matricesin CAM.

3. U(n)\ SO(2n). This is the connected component A;; of C" x 0 in the space of
n-planes in €2, totally isotropic with respect to the quadratic form (v|w) = vKw, v,
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w € C, where
1

K =

\1
Asintypell, the Schubert varieties Y in A\;; are classified by symmetric Young diagrams,
with the additional constraint that there be an even number of boxes along the diagonal.
Wewill seethat the normal slice (A )y is represented by the space C2™) of antisymmetric
matricesin CA(M,

3.2. Schubertdlices. Thissubsection providesexplicit descriptionsof the Schubert slice
Xy associated to apair of Schubert varieties X D Yin H of typel, Il, or Il1. Put

0 intypel
s_{+ intypell
— intypelll.

Let Q(Y) denote the family of all rectangles u C E(Y) with (m,n) € p and which touch
(but do not cross) the boundary of A(Y); cf. Figure 3.2.

PrOPOSITION 3.2A.  Suppose X D Y are Schubert varietiesin H of typel, 11, or 111.
(1) Thereisafunction p§: Q(Y) — Z>o suchthat

Xy = {x € CAM | rankx, < p¥(u) for all p € Q(Y)}.

Intypes|l and I, p(u) = p¥(ut), andintypelll, p§(u) isevenif u = ut. In
fact, for . € Q(Y) theinteger p(u) isthe length of the diagonal line segment
with one endpoint at the lower left corner of u and the other endpoint on the
boundary of A(X); cf. Figure 3.2.

(2) Let X,Y be Schubert varieties of type |I. For x € Xy asin (1), the tangent
space Ty Xy is spanned by vectors of the following three types:

(i) Truncated column operations: given indices1 < i < j < m,
define si—j(X) by

s _ {xis if r=iand (r,s) € A®Y)

B 0 otherwise

(i) Truncated row operations: given indices1 < i < j < m, define
pj1i(X) by

R

oS = [x” if s=i and (r,s) € A(Y)

=10 otherwise;

(iii) Restricted tensor products: given . € Q, let j be the row immedi-
ately below p, let i be any columnintersecting rowj in E(Y), and
define7j(x) by

s [ XX if(rs) e p

b { 0 otherwise.
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(3) Thedimensionof Y is given by
{#{(i,j) | (.]) € A} intypel
dmyY =

#H(0,0) 11 <, (b)) €A} intypell
#H{i,) |1 <], (,j)) eAM} intypelll.

&) =3

FIGURE 3.2. Therank function p3.

PrROOF.  For this proof, we switch temporarily from “Young diagram cartesian” co-
ordinates back to standard matrix coordinates; that is, g will denote the entry in row i
and column j, with rows numbered from the top and columns numbered from the | eft.

Assume first that we are in type |. We may regard G, as a quotient of G :=
GL(n+m, C) in the usual way as P\G, where P is the “block lower triangular” parabolic
subgroup P = {g € G | ¢! = 0ifi < nandj > n}; the correspondence with the
geometric description aboveis g — span{g",...,g"}. Theaction of P is by row oper-
ationsong € G, whereit isillegal to move any row i > nto any other row i’ < n. Let
a Schubert cell = begivenasin (3.1.2),setY = S, andput S, := {ay < -+ < an},
S ={1,....m+n} =S =: {b; < by < --- < by}.Giveng € G, the coset Pg belongs
to X iff the rank of each submatrix [g) | i < n,j > K] isequal to #S N {k,...,m+n})
fork=1,...,m+n.

This description showsthat each point p € X admitsauniquerepresentativeg = g, €
G satisfying the conditions

1, 1<i<nj=gq

0, 1<i<nadj>agorj¢S
1, n<i<m+n,j=h_,

0, n<i<m+n,j#b_n.

g =

We call thisthetier picture of G,m, thetop tier consisting of therowsi < n of g and the
bottom tier therowsi > n. (In Figure 3.3 we show the tier picture for thecell Z C Gsg
whose Young diagram was given in Figure 3.1.) In particular 2 contains a unique point
ps = py for which this representative is a permutation matrix gs := gy, . It is clear that
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1 B A3
[ A

FIGURE 3.3. Thetier picture.

paragraph implies that the subspace T, is represented by the subspace spanned by the
set of al coordinates (i,j) € {1,...,n} x S withj < &, and the normal spacev,Z by
the set of such (i,]) with j > &. Note that the Young diagram A(Z) may be obtained
from this diagram as the concatenation of all the blocks of coordinates corresponding to
the tangent space TpZ, and A = A(Z) is obtained similarly by concatenating the blocks
corresponding to the normal space. Thusx «— g5 +x givesalinear isomorphism between
CA and V% In particular the dimension of Y is equal to the number of boxesin A(Y).

Now let ¥’ = [a; < &, < --- < &) be another Schubert cell incidentto Y; i.e.,
X := %’ D'Y. From the descriptions above it is easy to seethat gs + x € ¥’ iff x € CAM
satisfiesrank x, = p%(u) for al p € Q. Thisimplies (1) intypel.

We now wish to classify thetangent vectorsto thenormal slice Z{, intypel. Tothisend
we recall that right multiplication inducesthe standard action of G on the Grassmannian
P\G, where, putting B for the Borel subgroup of lower triangular elements of G, the
Schubert cells are precisely the B-orbits in P\G.

LEMMA 3.2B. LetBbealiegroupand o:B x M — M a smooth action of B on
amanifold M. Let p € M, Z, := Bp the orbit of p, and B, C B the isotropy subgroup
of p. Choose smooth transverse submanifoldsV € Mto X, atpandF C Bto By at e,
VNZ, = {p}, FNB, = {e}. For g € M sufficiently closeto p, let f = f(q) bethe unique
element of F suchthatf -qe V.Forb e Bandqg € V, put a(b,q) = f(b-q) - (b- q),
defined for (b, g) sufficiently closeto (e, p). Then for g € V sufficiently closeto p,

& (TeBp ® {0g}) = To(V N 2y,
where 0y isthe origin of TgV.

PrOOF. The containment C is clear, so we need only prove surjectivity. We first
observethat, for g € V closeto p, themap (a, c) — af (c- g)c providesalocal diffeomor-
phism of F x B, with aneighborhood of ein B. In fact, if 4 By — B, 14(Cc) = f(c- g)c,
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then the maps 14 vary continuously with g and approach the identity map as q tends to
p along V. This showsthat, for g closeto p, y4(Bp) istransverseto F.

Now, given b € B closeto ewithb-q € VN %y writeb = af(c - g)c asin the
previous paragraph. Then b - g = af (c - g)c - g. But by the uniqueness of f(q') applied
toq = f(c- g)c- g, we concludethat a = e. Henceb - q = a(c, g) with ¢ € By, which
implies the lemma. ]

To apply the lemma in the present situation we observe that, given apoint p = ps as
above, the stabilizer By, is given by

By = {becB|bl=0if (i,j) € S x S},
so that we may take
F={beB|b =§if(i,j) €SI x S}  (Kronecker delta).
Recalling that B is acting on row vectors ¢ € C™™ = €% @ C%, put

B1:= {be€ B, | b/C% =id},
B, := {b€ B, | b|C* = id},
C:={beBy|¢&=(¢h)S forall ¢ € €3,i =1,2};

itis clear that if b € By is sufficiently close to the identity then there are uniquec € C
andb; € B;, i = 1,2 suchthat b = byb,c = bob;c.

The B; are actually subgroups, and moreover stabilize the normal slice (Gnm)y. We
show that the B, action corresponds to downward truncated row operations on the slice
space. Letx € C2 correspondtog = gs+Xx € vpZ, and supposeweadd (viaB;) amultiple
of column g; to column a; ing (i < j). To find the corresponding element gs +x/, subtract
the same multiple of row i from row j (left P-action), and add appropriate multiples of
column g to columns by, & < b, < & (F-action). This shows that X’ is obtained from
x by subtracting a multiple of row i from row j, truncated to C2. It is left as an exercise
for the reader to check that B, gives leftward truncated column operations, and C gives
restricted tensor products.

Now assume we are in type 11. Recall that each Schubert cell is the intersection with
N, of a Schubert cell in G, . In general, a Grassmannian Schubert cell 5 will contain
no isotropic planes unless the permutation matrix representing the point p = ps hasthe
following property: ifj € S;,j < nthen2n+1—j ¢ S;. Thus, givenatypell Schubert cell
(resp. variety) Z (resp. Y), let b3 (resp. Y) denote the associated type | Schubert cell (resp.
variety) having the same Young diagram, where we may assumethat p satisfiesthe above
condition. Thus the normal slice Xy is naturally embedded in CA™. We claim that A(Y)
(and hence A(Y)) is symmetric about the diagonal . Observe that A(Y) isequivaent (in the
dicepicture) totheset {(i,b)) | by > &,1 <i,j <n}.Butg € S;iff2n+1—4a € S
Thereforely = 2n+1—ayj+1, ] = 1,...,n, 50 > & & by > anju1 &
(n—j+1,byis1) € A(Y); i.e, A(Y) issymmetric.
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1

FIGURE 3.4. §s intypell.

It is convenient to modify the permutation matrix gs by changingthe (i, a;) entry from
1to —1 whenever g > n; call the resulting matrix gs (cf. Figure 3.4). For given apoint
in the normal slice (An)s represented by a matrix §s + x, (where as before X = 0 for
i <nunlessj > g andj € $) the isotropy condition gives

O — J(Xi»,Xn—j+1,-) — Xi,bj _ Xn—j+1,bn,i+1,

1 <i,j < n. Thuswe may regard the normal slicesfor the L agrangian Grassmannian as
algebraic conesin the space C4) of symmetric elements of C2M.

Observe that the dimension of Y is equal to the number of boxes of A(Y) lying on or
abovethe line of symmetry.

Finally, assumeweareintypelll. Asintypell, it is easy to seethat the type| variety
S intersects A, iff the point ps isisotropic. Furthermore if Yo isthe minimal type | cell
(point) then an element x of thg normal slice (Gnn)s, representsan isotropic planeiff xis
antisymmetric. It follows that Y N containsthe origin C" x Oin its closureiff py, has
an even number of 1'sinthetop tier in columnsn+1,...,2n. In particular the Schubert
varietiesin A\, are parametrized by the Young diagrams which are symmetric about the
diagonal, having an even number of boxes along the line of symmetry; the dimension of
Y is equal to the number of boxes in A(Y) that lie strictly above the line of symmetry.
Finally, the subspace of (Gnn)y ~ C2M™ representing the normal slice (Ay)y is precisely
the space C2( of antisymmetric elements. .

DEFINITION. Givenapoint x € C§ ~ Hy wewill denotethe Schubert stratum of Hy
containing x by .

3.3. Aurasfor normal slices. From the descriptions in Proposition 3.2A it is now easy
to provide natural auras (in the sense of Section 2.2) for these normal slices. (Henceforth
we return to our “Young diagram cartesian coordinates.” Also, we will often drop the
subscript e to simplify the notation.) Given a Schubert pair (X, Y), abbreviate p = p¢,
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A := A(Y), and put for x € C2

2
go(®) = 3 ‘ A ﬂ(lt)+lxu‘ '
neQ
This givesthe required aurain typel. If Eissymmetric and p(p) = p(ud) foral p € Q
then g is invariant under both of the involutions
i(X) = £X,
from which we deduce that
(3.3.1) Vao(€2) c 2.

Thusintypes!l and Il wetakeg. := go|¢13§[. For x € C2 — Xy sufficiently closeto O the

gradient Vgo(X) # O; put ¢o(X) = ‘gggggl for such x. Similarly ¢.. = % = o|C4.

Thus d = deg ¢.|S2 for small r > 0, by 2.2A. Fixing such, we abbreviate S® := S2.

LEMMA 3.3A. Let Xy, X, - — X € Xy, where Xy, Xp, - - - ¢ Xy. Suppose ¢(x;) —
N € Ty, C2. Thenn € vy %y, .

PROOF. In types Il and Ill each stratum X of Xy is the intersection with C2 of a
stratum £ of the corresponding type | normal slice; moreover the rank conditions p de-
termining the slice are symmetric in the sensethat p(u') = p(u) for each u € Q. ThusZ
is stabilized by the appropriate involution i, from which it follows that if xg € 2 then
Txoi decomposes as the orthogonal direct sum of its subspaces of symmetric and anti-
symmetric elements. Therefore v, £ = C24 N7y, and by (3.3.1) it is enough to prove
thelemmain typel.

By thet ojasiewiczinequality (1.3.1) it will be enough to show that for each g € Ty, 2
thereis a sequence T, C* > 77 — 70 such that

ID,006)| = [Re(Va(x),7)| = O(g(%))

asi — oo. By Proposition 3.2A(2) each such 7o = Y(Xp) for some~y € T.Bgy, where By
is the isotropy subgroup of the special point py. Therefore we may achieve our goal by
proving that

(3.3.2) IDaxyg()| = 140(g(x))  (z€€)

asi — oo, as" ranges through the three types of infinitesimal generatorsfor Bg.
Supposefirst that 7y is of type (i) or type (ii), hence correspondsto atruncated row or
column operation: supposefor definitenessthat it correspondsto the operation of moving
rowktorowj,j < k. Wefurther supposethatj < k—if j = kthentheargumentissimpler.
Thinking of g(X) as a sum of squares |§|?> of wedge products é of partial rows of x, we
decomposeg as
9= 0k * Ok * 9 * Y-
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where gj denotes the sum of those terms corresponding to wedge products é involving
both the j-th and the k-th rows, gj, denotes the sum of the terms involving the k-th row
but not the j-th, etc. Then

g(x+ 21(9) — g9 = Gi(x + 2(%)) — Gie®)

forany x € cAandze C. Moreover, sincej < k, the description of 3.2A impliesthat to
every term |5|? of g there corresponds aterm |'|2 of g, with [5(x + 2v(x)) — 6(X)| <
|Z)|6"(x)|. Thus

9(x+2(9) — 9| = Sl (x+ ()" = |82
< 32021591150 + |26 092
< 202l(g39)* () * + 2G5 )
< (22 +|7%)9(x)

by the Schwartz inequality; putting X = X1, X, ..., (3.3.2) follows in this case.

If v is of type (iii) then the proof is similar: in this case ¥ corresponds to the tensor
product of arow w delimiting somerectangle u € Q with some columnv of ... Note that
for every rectangle ' € Q, either ' Nwisacompleterow of u/, or u’ Nvisacomplete
column of ' (but not both). Decomposeg = ¢ + g°, where d" is the sum of those terms
corresponding to rectangles of the former kind and g° is the sum of terms corresponding
to rectangles of the latter kind. Restricting our attention to g" (the required estimate for
gt issimilar), we think of g'(x) as a sum of squares of wedge productsé of partial rows
of x, then decompose further g" = g + gw, according to whether the wedge productsin
guestion do or do not contain (part of) w. Then

o (x+27(9) — o' ) = ga(X+ /(X)) — G(X),

and to each wedge product § occurringin g there correspond k wedge productséy, . . . , 6
from gy, where k = k(6) is the number of factorsin é. Therefore

k
5(x+2(9)| < |Z||V|;|5{(x)|,

and
o (x+2() — G| = 2 [5(x+ D()|* ~ 1669
k(5) k()
< 2021V S0 [6091 (X 18691) + 225 Y I8/ 012
) i=1 6 i=1
< 2nf2/(gw()? (gu()? + |22P?VPgu()
< (2n[z] + |[Z2r?v2)g(x),
and (3.3.2) follows for this case as well. ]
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3.4. TypeslVandV. Herewegivedescriptionsof themanifoldsK\ Gy and their Schubert
varietiesin the “easy” types |V and V.

4. (SO(n) x SO(2))\ SO(n +2), n odd. Thisis the complex quadric R, consisting of
all [Z € CPy+1 whose homogeneous componentsz (0 <i < n+ 1) satisfy

n+l

(3.4.1) ZZmnai = 0.
=0

Set{=n+1)/2,Pi={[ €CPu1|Zs1=2Z+2="--=2Zw1=0},0<i <n+1and
Q =Pis1NRy, (—1<i < n.Noticethat P, C Ry for0<i < (—1,andQ;_; = P,_;.
The Schubert varietiesfor Q,, are

(3.4.2) PoCPiC--CP1CQC Qi C--Ch=FR,

(where in each case the subscript equals the complex dimension).

5. (SO(n) x SO(2))\ SO(n+2), neven. Thisis again the complex quadric Ry, defined
by (3.4.1). Set ¢ = (n+2)/2, and define P;, Q; as above. Put P,_; = {[Z] € CPp1 |
Z) = Zy+p = Zy+3 = -+ = Znsa = 0}. The Schubert varieties are

PocPiC---C ProC Py
(3.4.3) N N
P, C Q CQu1C---CQn

4. MacPherson coefficients for Schubert varieties. In this section we state our
agorithm for computing the MacPherson coefficients d for pairs X O Y of Schubert
varietiesin types |, 11 and 111. In fact the algorithm yields a polynomial D¥(q), and the
MacPherson coefficients are given by d§ = D¥(1). The algorithm is stated in terms of
rooted weighted trees constructed from the Young diagrams of X and Y. Thesetrees are
in turn abstracted from a certain combinatorial diagram g inside the diagram A = A(Y)
of the slice space. This and a related diagram will be important for the linear algebra
involved in the proof of the algorithm.

4.1. Thedot configurations. We construct certain subsetslo, '+ and I of E, whichwill
becrucial for all of our subseguent constructions. They may be thought of asgeneralizing
to the deleted matrix A the diagonal of acomplete matrix.

Consider the partial order on A defined by: (i,j) >= (/,j’) iff i > i’ andj > j’. Thus
there isaunique maximal box, namely the upper right corner, and the minimal boxes are
those adjacent to the indentations of the boundary of A(Y).

To construct 'y we mark (with dots) certain entries of A by the following inductive
procedure (see Figure 4.1). As the initial step, mark all entries that are minimal with
respect to the order . For the inductive step, consider al entries of A that share neither
a row nor a column with any previously marked entry; of these, again mark all of the
minimal ones. Continue until every box of A shares either arow or a column (or both)
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Fo=Ts+ r_
FIGURE4.1. Thedot configurationsl'o =Ty andI_.

with some marked box. Now take Iy to be the set of all marked entries. It is clear that if
A is symmetric about the diagonal then soisl"o. In this casewe set '+ = I'o.

We construct I — only when A issymmetric. Consider the partial order aboverestricted
to the off-diagonal boxes, then mark the entries of A following the procedure above,
marking at each stage all those off-diagonal entries which are minimal with respect to
therestriction of >. Clearly #(I' _) iseven. Observethat one could also construct I _ from
I asfollows. If the number of diagonal elements of I. is odd, unmark the greatest of
these. Then replace each pair (i, i), (j,]) of adjacent diagonal elements by the pair (i, }),
g,1n.

A less invariant but more practical way to perform the marking process above is to
proceed from left to right in A, marking with a dot the lowest entry in each columnwhich
doesnot liein arow containing any previously placed dot. In the construction of I _ the
diagonal entriesare also excluded. If it isnot possibleto place adot in any given column,
the column is left blank and the process continues with the next column.

Wewill refer also to theresult of the marking procedure aboveasthe dot configuration
of A (or of Y). Ingeneral, Iy, I+, T~ will be used in connection with Schubert varieties
intypes| and 11, and I11 respectively; note, however, that the combinatorial construction
of Section 4.2 below isbased on Mg in all three cases.

REMARK 4.1A. The significance of the dot configurations I is illustrated by the
following observations. Let A denote the set of all subrectangles « C M containing
the lower left corner (1, 1). Consider the set U C C2 of all lementsy € C2 such that
rank y* = #(aMr.) forall « € A. ThenU isopenin C2. Moreover,if y € Utheny ¢ 7,54
for any x # 0. This may be deduced from the classification of tangent vectors to 2 at
x given in Proposition 3.2A(2). For (using notation from the proof of that proposition,
and letting * denote adjoint) it is clear that there are elementsb; € B;, i = 1,2, such that
Yo := biyb; liesin the complex torus (C*)' (if ¢ = + then by = by). Now regarding
X € 2y = Zy asanelement of the appropriatetypel Schubertslicei;(, by the construction
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of the dot configurations either there exists 3 € By for which

0 75 <ﬁb1Xb2 — b1Xb2,y0> = <b1(bI15b1X — X)bz, yo>
= (b Bo1x —x,y),

or elsethere existsy € B, for which the corresponding inegquality with right multiplica-
tion holds. But by 3.2A(2), by 1gbix — x € TXZ;,. Thisprovesthe assertionin typel, and
alsointypes!l and Il if werecall that 2;( isinvariant under the appropriate involution
ig.

REMARK 4.1B.  Thefollowing observation is easy to check, and will be useful: if I'g
has a unique maximal element then either every row or every column of A contains an
element of "y. Thereforethe sameistrue of " _ if the number of diagonal elementsof My
iseven.

4.2. Satement of the theorem. Given apair X D Y of Schubert varieties, recall the
description of Xy givenin 3.2A(1). We producethe polynomial D from the rank function
p defining the normal slice Xy, together with the dot configuration I.

Our construction is carried out in terms of certain connected rooted trees associated
to o and p. In type | we use the so-called Hasse diagram of the poset of dots I'y; i.e.,
the connected rooted tree isomorphic to it as a poset, edges corresponding to dots. (See
Figure4.2.)

Intypesll and Il we usethe Hassediagram of the sub-poset consisting of all dotsof Mg
lying on or above the diagonal . Furthermore we distinguish the edges which correspond
to the diagonal dots from the off-diagonal dots by drawing the former vertically, and
the latter obliquely. The vertical oneswill be called central edges, the oblique ones side
edges. A central edgeis odd if the number of central edgesbelow it is even.

[ ]
* .3
» X
,/

‘1 b 1 1
Y 2] ®

» .9 3

o 1 .3
~ 2
,/
] Typel Typell and Il

FIGURE4.2. Thetrees T,*.
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To each vertex v of this tree (except the top one) we now associate a hon-negative
integer capacity c(v) asfollows. Let (i, j) be the dot corresponding to the (unique) edge
directly abovev. Then

(4.2.1) c(v) ;== min{p(x) | (i,j) € n € Q}.

It is of course easy to read this off from the Young diagrams A(X), A(Y), using Propo-
sition 3.2A. The capacity of an edge is defined to be the minimum of the capacities of
all verticeslying below it. We denote the resulting tree, with the assigned capacities, by
T

REMARKS 4.2A. 1. In drawing the trees we omit all capacities (on non-minimal
vertices) which are consequencesof others.

2. Itiseasy to seethat if E(Y) is symmetric, then no diagonal element of ' is domi-
nated by an off-diagonal element. Therefore, in types|l and 111 any edge above a central
edgeisitself central.

We now construct the polynomial D¥(q) from T = TJ*. Put A = A(T ) for the set of
al labelings \: {edgese of T } — {+1} satisfying the conditions:

(1) If visavertex with capacity c, then the number of edges e above v with
A(e) = —1lislessthan or equal to c; and

4.2.2)
(2) Intypelll, thelabelson each pair of central edgesmust bethe same (where

the central edgesare numbered beginningwith 1 at the bottom, and 1 is paired
with 2, 3with 4, etc.) If there is an odd number of central edges, the label on
the top one must always be +1.

Thesign o()) is defined by
Q) Intypel, o)) := edH A(e);
gese
(2) Intypesllandlll, o(A):= TI A& - II A(®.
side odd a

edgese edggté
Theweight |A| is defined by
(1) Intypeslandll, |A|:= X (number of edgesbelow e);
AMe=-1
(2 Intypelll, |A:= X {number of sideedgesbelow €)+ number of even

Me=-1
central edgesbelow €)}.
(We make the convention that if T\* is the empty tree, then it has only the “empty”
labeling A with o(\) = 1 and |A\| = 0.) Finally, we define

(4.2.3) D¥(a) = > o(\)g*.

AEN

WhenY ¢ X we set D¥(g) = 0.

More generally, if T isany tree-with-capacities of this form (but not necessarily aris-
ing from apair of Schubert varieties Y C X), we define A(T ) by (4.2.2) and D(T ) to be
thepolynomial in g determined by therulesabove. We call two such trees-with-capacities
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equivalent if they have the same underlying trees and the same collections of allowed
labelings.

EXAMPLE 4.2B. Consider thetree T\ of Figure 4.3. Below it are all possible label-
ings A which meet condition (4.2.2(1)). (We write the labels simply as + or — instead of
+1 or —1.) Below each labeling A we write the associated monomial o(\)gP! in each of
typesl, I, or I11; intype |11 the designation “NA”" means that the labeling is not allowed

by condition (4.2.2(2)).
1
2
FIGURE4.3. A sampletree T~
+ + + + + + + + — — —
++ ++ —+ —+ +— +— —— —— ++ ++ o+
+ — + — + — + — + — +

L1 -1 -1 1 —q q g -9 - q
I 1 -1 -1 1 qg —q —q q -9 g -9
Il 1 NA -1 NA NA -1 NA 1 NA NA NA

Thus, according to (4.2.3), we obtain
g intypel
DS ={ —g* intypell
0 intypelll.
Asillustrated in the example there is a great deal of cancellation in (4.2.3). The pro-
cedure may be streamlined asfollows. Let us say that an edge e of T,* is special if eisa
minimal central edgein type Il having at least one side edge emanating from its upper

vertex. Similarly, avertex v is special if it is the lower vertex of a special edge. An edge
(resp. vertex) is called ordinary if it is not special.

LEMMA 4.2C.  D¥(q) may be computed by the formula (4.2.3), where the summation
isover theset Ag C A of all labelings A satisfying, in addition to (4.2.2), the conditions:
(3) A(e) = 1for everyordinary minimal edgee; and
(4) ifvisanordinary minimal vertexwith capacity ¢, the number of edgeseabove
vwith A\(e) = —1isequal to c.

In the example above, only the very last labeling satisfies (3) and (4) (and thereisno
such labeling in type I11, so DS = 0).
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ProOOF. Let A € A and suppose A(e;) = —1 for some minimal edge e;. If e; isnot
atypelll central edge, then we obtain another allowed labeling A~ by

(4.2.4) A(e) = {i(f%e), gi 211_

If e; isan ordinary central edgein typelll, then thereis a central edge e, directly above
e (recall Remark 4.2A), and we define A~ by

.y [XEe), e#e,e
(4.2.5) A (e)_{_/\(e), e=ege ore.

In either case, |\~ = |A| while c(\™) = —a()), sothat c(A\)g*! + o(A7)g | = 0.
Suppose e; is aminima edge whose lower vertex v has capacity ¢, A is an alowed
labeling with A(e;) = +1, and there are fewer than ¢ edges e above e; with A(e) = —1.
If e; isnot atypelll central edge, then we obtain another allowed labeling A~ by (4.2.4).
If e isan ordinary central edgein type Il1, then ¢ must be even, and because the |abels
—1 above e; occur in pairs (by (4.2.2(2)) and Remark 4.2A), there can be at most ¢ — 2
edgese above e; with A(e) = —1. Thus (4.2.5) definesan allowed labeling A~. In either
case, thetermsin D coming from A and A\~ again cancel. L]

REMARK 4.2D. If DY # 0, thenitis not difficult to seethat thereisauniquelabeling
Amax having maximal weight, and hence DY has leading coefficient £1. (In fact, Amax iS
obtained by proceeding from top to bottom in the tree, labeling each edge with —1 if
this is permitted by (4.2.2).) Other properties of the D polynomials are more elusive.
For example, the signs of the coefficients need not all be the same, nor do they usually
alternate, and coefficientsother than 0, -1 do occur. Since (as the theorem below implies)
the D polynomials are a sort of “quantized” version of the MacPherson coefficients, itis
natural to seek a geometric interpretation of the polynomials themselves. However we
have been unable to find such an interpretation.

Now we may state our result on the MacPherson coefficientsin types|, Il and l11.

THEOREM 4.2E. Given a Schubert variety X in a Hermitian symmetric space of
typel, Il or I11, the normal cycle of X is given by

N(X) = > DY(DN(Y?),
YcX

where the sum is over all Schubert varieties Y C X, and D¥(q) are the polynomials
constructed in this subsection. In particular, & = D(1).

5. Proof of the main algorithm. This section is devoted to the Proof of Theo-
rem 4.2E. Theideaisto conform as closely as possible to the following outline, which,
sadly, we were unable to execute in its full simplicity. For clarity we restrict the discus-
sion to the A, case, the standard Grassmannian. We make the hypothesis that deg ¢ =
deg(¢|S™°), where [y C A is the dot configuration defined in Section 4. (Our inability
to prove this hypothesis accounts entirely for the failure of the present account to yield
arigorous proof.) The hypothesis holds if there is an open subset U C S' such that
¢~XU) c U. Put I, C S'° for the curved simplex consisting of all points in the sphere
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with all coordinates real and nonnegative. Then ¢ is well-defined on the interior of 2.
and it is easy to prove that deg(¢|S'°) = deg(¢|Z+) =: d.

Toevaluate (inductively) thislast degreewedistinguishtwo cases. Let vy, ...,V € o
denote the maximal elements of o. If k > 1 then we are in the so-called decomposable
case. Inthiscase %, isthejoin of thefaces %, .. ., Z corresponding to the subsets of g
dominated by the respective v, and the map ¢|Z. isthejoin of the maps ¢|%: Z; — Z,

k
i =1,...,k Inthissituation it is clear that d = TT deg(¢|Z;), where these last factors
i=1

are equal to the MacPherson coefficients of simpl er Schubert si ngularities.
In the complementary indecomposable case we use the elementary equation of cur-
rents

(5.0.1) d[ex.] = do[=.] = dd[=.] = 96.[=-].

If ¢ were defined throughout 9. then this would tell usthat d is equal to the degree
of the restriction of ¢ to the boundary of X,. Asit is, ¢ isin all cases of interest well-
defined on the faces 2; of codimension 1, and even stabilizes these faces, but may not
be defined on faces of higher codimension. Let v* denote the distinguished vertex of
>, associated to the maximal coordinate ¥ = 1. The face * opposite v* has special
properties: if ¢(x) — Z* then either x; — Z* or x; — V*. It turns out that we may think
of the preimage of Z* under ¢ asconsisting of >* itself together with avirtual copy of >*,
with the opposite orientation, at v*. Thusthe multiplicity of * in (5.0.1)—and therefore
the degree d that we seek—is the difference of the degrees of these two self maps of Z*,
and we again obtain a recurrence relation for the desired MacPherson coefficient.

Itisnot difficult to prove the hypothesisaboveif X and Y are* determinantal” Schubert
varieties (i.e. varieties for which the defining sequences(3.1.2) assume only two distinct
values). The computation of the array of these MacPherson coefficients by the method
aboveis auseful exercise. B

In the honest proof of the formula given below, the subsphere S* (defined in Sec-
tion 5.3) corresponds to the face 2* and Zy (defined in Section 5.2) corresponds to the
vertex v*. The vestiges of the idea of the virtual face at v* appear in the blowing up
process used in Section 5.3.

5.1. The decomposablecase. Let usnow begin the formal proof. We use induction on
the number of edgesin thetree T,*. If the tree is empty then both X and Y coincide with
the ambient Hermitian symmetric space and D§ = 1 = d¥, asrequired.

For the inductive step, note first that we may assume that some maximal edge of T}
has positive capacity. Otherwise, the description 3.2A of the normal slice Xy impliesthat
by shavingthe Young diagramsof X and Y appropriately we may produceanew Schubert
pair (X', Y') suchthat (X')y: ~ Xy and wherethetree T, isequal to T;X with one or more
maximal edges of capacity zero deleted.

Asinthediscussion above, if Iy contains a unique maximal element then we say that
the pair (X, Y) isindecomposable, otherwise decomposable. Thus (X, Y) isindecompos-
ableiff TX hasaunique maximal edge, whichin types|l and 111 is required additionally
to be central.

Suppose first that (X, Y) is decomposable. If, in type Il or 111, the tree TJ* consists
entirely of side edges, then we will identify a type | Schubert pair (X1, Y1) such that
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o X\, 3 2 3 \/ 2

X X, Xo
Ty TYl TYz

FIGURE5.1. Decomposable case, type .

D% = D§ and d§ = d". If on the other hand T, has more than one maximal edge we
will find Schubert pairs (X', Y'), (X", Y”) suchthat i) d = d - o andii) T,X isthejoin
of T and TX" at their top vertex. Condition ii) clearly implies that D§ = DY - D%

Thecondition that (X, Y) be decomposableis equivalent to the existence of arectangle
po € Qwith oMo = peNT_ = (. Define the modified aura

G0 = (L+ [x"[*)g(x),

with
V) = (1+[x°[) V() +2g(x)x".
Sincefor any . € Q therectangle oMy isablock either of complete rows or of complete
columnsof p, fort > 0 we have
2

gix+ o)y = >° ‘ A PUDFL (it 4 o
HeEQ

> Z‘/\ p(u)+lyp
It

= g(x).

Therefore Re(Vg(x), x*°) = Dy g(x) > 0, whence (Vg(x))“0 = 0iff X" =0o0rg(x) =
0. If y € C2~*+° belongsto the open set U defined in Remark 4.1A, theny does not occur
asanormal to any nontrivial Schubert stratum. Therefore, by Lemma3.3A,y # lim ¢(x)
for any sequence of points x; converging to a nonzero point of Xy. Moreover, if X/ = 0
and x ¢ Xy then the restriction to C* of the Hessian form D?g(X) is positive definite. It
follows that if we put ¢o 1= % thenin type |

2

o = deg(Bo|S”) = deg(4|S> ).

Itisalso easy to deducethat if A and the rank function p are both symmetric then, putting
8. := 9|C4 and ¢.. for the corresponding normalized gradients,

dX = deg(g&ﬂgﬁ) = deg(¢i|gi*(uko,o)).
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In type | we now proceed as follows. Denote the components of A — g by A1, Ao
Then ¢|SP#o isthe join of the maps ¢; := ¢|SY, i = 1,2. Thus the degree of ¢ is the
product of the degrees of the ¢;. But ¢|C* is the normalized gradient of g|C*, whichin
turn is an aurafor a Schubert slice (X;)y, such that the weighted tree T is equivalent to
thejoin of the weighted trees T )_(i at their top vertex (see Figure 5.1). Therefore

o = o - o
= Déi (1)-D{(1) by induction
= D{().

Intypeslil and 11l the argumentis similar. In thiscase A — (10 U p§) hastwo symmet-

rically related components A1, A}, and possibly athird component A, with A, = 5. We

express ¢, |SA (ko) o the j join of ¢i|§1wl and $..|S’? (see Figure 5.2). The former

map correspondsto a Schubert pair (X1, Y1) which isisomorphic to the type | Schubert
pair (X{,Y;) determined by A(X7) = A(X) N A1, ACY;) = A(Y) N Aq. In the associated
subtree T,/ Xl of Ty* al of the edges are side edges. Therefore the (logically prior) analy-

sis of typel yields dx1 = d 1 =D 1(1) Dxl(l) The latter map correspondsto a pair
(X2, Y>) of typell or III for wh|ch the result holds by induction. The proof now proceeds
asintypel.

5.2. The indecomposable case: combinatorial part. Suppose now that (X, Y) is inde-
composable, andlet n := #(I'g). Let Mg denote the rectangle spanned by A(Y). Intypesl|
and 11, Mg is a square. By Remark 4.1B, either every row or every column of Mg con-
tains an element of My. Suppose for definiteness that every row does, and let * denote
the union of all the columns which do not; it is clear that * € Q. Consider the modi-
fied aurag(x) := g(x) + [x* |2 Putting ¢ := |Vg|~1Vg, an argument similar to that of
Section 5.1 shows that d = deg$ = deg(5|S*~#"). This shows that d¥ depends only
on the combinatorial data (Mg — 1*) N A(Y), (Mg — i) NA(X). Asthe sameis true of
the weighted tree T\X (up to equivalence), we may assume even in type | that Mo is a
square of side n. We change coordinates so that the lower left corner of Mg is (1, 1) and
the upper right corner is (n, n) (see Figure 5.3).

L et ey denote the unique maximal edge of T.X, which (as noted in the introduction to
Section 5) we may assume to have positive capacity. Suppose W is a Schubert variety
with X D W D Y and such that the weighted tree TV is equivalent to T.* with e
removed. If in type 1l the number of central edgesis odd, then obviously DY = DY'. We
therefore assumein type 111 that n is even. Suppose Z is a Schubert variety, X D Z D Y,

such that:
intypes| and 1, T isequivalent to T{* with ey removed and the capacities of all
remaining edges diminished by 1;

in type 11, letting e; denote the central edge directly below ey, T is equivalent

to TX with both ey and e; removed and the capacity of each remaining edge e

diminished by 1if e < ey bute £ e; and by 2 if e < both ey and ;.

Put k for the cardinality of the set of diagonal elementsof 'y (= the number of central
edges of T\X). Thusin types Il and |11 the cardinality of the set of side edges of T\ is
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110

A2

FIGURE 5.2. Decomposable case, types Il and I11.

FIGURE 5.3. My, typel.

'%"; in particular, n and k must have the same parity. In type Il put ¢ for the number of
side edgese < e;. Using (4.2.3) it is straightforward to verify that

DY(0) — g"'DZ (@) intype|
(5.2.1) DY(q) = § DY(a) + (—1)*q= ~*D3(q) intypell

DY(0) — q¥*"2D¥(@) intypelll,
where the first (resp. second) term arises from those labelings with A(ey) = +1 (resp.
—1). To complete the proof of the theorem it will therefore be enough to construct such
Z and W and to show that
x [V —d intypes| and 11

(5.2.2) dy = dY +(—1)"dé intypell
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(where we have exploited the fact that (—1) = (—1)" in type ).
We now identify the varieties W, Z. Put

_ [{n} x{1,...,n}, €
YT nkx {4, npu{L,...onk x {n}, ¢

Then W is determined by the relation (cf. Figure 5.5)

0
+.

A(\/V)ﬁMo = A(X)ﬂMo—w.

Assuming in type Il that k is even, we describe the variety Z by means of the rank
function p% defining the normal slice Zy. Let 7o = 7+ = {(n,n)} denote the singleton
consisting of the maximal dot of o, and Y- = {(r,n),(n,r)} the symmetric pair of
maximal dotsin I'_. Then Z is determined by the relation

pS(w) =#0.Np), peQ.

It is straightforward to check that the Young diagram A(Z) is constructed asfollows. In
typesl| and 1, adjointo A(Y) the“ribbon” consisting of all boxesadjacent to the boundary
of A(Y), beginning at (1, n) and ending at (n, 1); see Figure 5.4. Therefore the dimension

formulae 3.2A(3) gives
. . L _[2n—1 intypel,

(5.2.3) dim(Zy) = dim(2) — dim(Y) = { intypell.

n * *

A2)
A@2) ; *
s I
A(Y) A(Y)7
1
n S
Types| and Il Typelll

FIGURE 5.4. The Young diagram A(Z).

Intypelll, observefirst that by indecomposability (r,r) € A(Y). Let(r,s), (s,r) denote
theminimal elements of A lying in columnr and row r of A, respectively; thuss <r. To
obtain A(Z), first adjoin to A(Y) the short ribbon extending from (s, r) to (r, s), then adjoin
to the resulting diagram the ribbon from (1, n) to (n, 1) (see Figure 5.4). The dimension
formula now gives

(5.2.9 dmZy)=n—1+r—s.
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This expression is necessarily odd, i.e. r — sis even. For, columns sthroughr — 1 of A
cannot contain any dots on or aboverow r: thisis guaranteed by the placement of the dot
at (r,n)in_. Similarly, rows sthrough r — 1 of A cannot contain any elementsof I'_ on
or to theright of columnr. Thus all of the dots in these rows and columns, which must
be even in number, must lie within the square {(i, ) | (s,s) < (i,j) < (r—1,r—1)},and
since every row or column of A contains an element of I'_ (Remark 4.1B), thesizer —s
of this squareis even.

It is straightforward to verify that TX and TV are as stated.

We will need also the following result. Suppose that m = n (i.e. Mg is square), and
in type 111 that k is even. Let det. denote the cone of all y € €2 c CMo such that
dety = 0. Let PZy C P2 denote the projective variety corresponding to the cone Zy, and
(PZy)* C P2 its dual variety, where we have identified the dual projective space (P2)*
with P2 viathe standard Hermitian metric. Put ™’ :=I'. — w..

LEMMA 5.2A.
(PZy)* = Pdet..

Moreover, there is a nonempty Zariski open subset U’, P™ ¢ U’ C Pdet. such that
(1) UN@PZ)* = 0 for all SchubertvarietiesZ’ # Z,Z' >'Y, and
(2) for eachn € U’ thereisaunique & € PZy suchthat i € PvPZy.

PROOF. Givenany x € C® andy € v3,, the classification 3.2A(2) of the tangent
vectors to the stratum %, shows that the matrix producty ¢ X* = 0. Thusif x* # 0 then
dety = 0. Since the set of such pointsxisdensein Zy, it followsthat (PZy)* C Pdet.

Conversely, the classification 3.2A(2) implies that (C*)Er' C w2y forx € S!. LetA
denotethe set of all lower-left justified rectangles o C Mo, i.e. the set of all « of theform
a={1,....k} x{1,...,1},1 <k, | < n. Putting

U = {y € C® | ranky” = #(" N o) foral a € A}

(see Figure 5.5), the lemma now follows by an argument similar to that given in Re-
mark 4.1A. n

REMARKS5.2B. 1. Denoting by H the ambient Hermitian symmetric space, thefirst
statement of the lemmaimplies that the conormal varieties*Z, v*Y C T *H intersect in
asubvariety of codimension one. In fact, in types| and 11 the poset of Schubert varieties
Z dominating Y with this property isisomorphic to the poset of edges of the tree TX: if
ae C I corresponds to the edge e then the corresponding Schubert variety Z = Zg is
determined by the rank function pZ(u) = #(1 N ae) (cf. Proposition 3.2A).

2. Conclusion (2) of 5.2A implies that the correspondencePdet «— Pv*Zy is almost
a birational equivalence—this becomes precisely true if we replace Pdet by Pdet*, the
subvariety of the dual projective space (P*)* corresponding to P* under the diffeomor-
phism induced by the standard Hermitian structure.

3. Itisnot difficult to generalize 5.2A and its proof to obtain acharacterization of the
dual variety of any projectivized Schubert slice.

5.3. Theindecomposable case: analytic part. We can now complete the Proof of The-
orem 4.2E. We begin by stating the following lemma. Theideais that the map ¢ almost
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a2 D>E

n r
Typel Typelll
FIGURE 5.5. Various subsets of A(Y).

enjoys the properties (3) and (4) below of the map : ¢ is good enough that it may be
perturbed to ¥ without altering the degree. These properties are sufficient to provethere-
cursiveformula (5.2.2), aswewill show presently. The proof of the lemmais postponed
to the next section.

We define

and, fory € GEE — det put

o) md;‘—&)' intypes| and Il
' %(YL)' intypelll,
where Pf is the Pfaffian (the algebraic square root of the determinant).

_LEMMA 5.3A. Thereisacontinuoussemialgebraic map W: [0, 1] x graph ¢ — S? x
S2 with the following properties.

(1) For eacht € [0,1], thereis a continuous semialgebraic map : S — Xy —
S* suchthat Wi(x,y) = W(t,x,y) = (X, 1x(¥)) for x € S* — Xy.

(2) ft=00rxe Xythen¥(t, x,y) = (X.y). B B

(3) Puty := 1. Then y|SE = ¢|S~ and ¢ 1(S) € S¥. If x € S — Xy then
the transverse Jacobian (w, Dy(x) - v) is a positive definite formon v,w €
C¥ = (T&)F C TSP,

(4) ThereareopensetsV,Q C S2 withV 5 S! and QNS # ), such that if
x € v~HQ) NV then dety(x) # 0 and

(5.3.1) (1) = 0(xX" +¥(x).
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CONCLUSION OF THE PROOF OF THEOREM 4.2E.  Put G for the current representing
the graph of ¢. Then

Om2 W.([s 1] x G) = m2,W.0([s,t] x G)
= 2. W.(([t] — [s]) x G— [s1] x 9G)
= (i — ¥s)[S"] - 0

—here the second term vanishes since it is an integral current of dimension 2#A — 1
supported on the set 7, o W([s, t] X sptaG) = m o Wo(spt dG), which has dimension at
most 2#A — 2 by the Proof of Theorem 2.2A. Similarly, the current under the boundary
on the left-hand side has dimension 2#A, hence vanishes, 0 (Vs — ¢:)[S*] = (V1 —
¥0:)[SP] = O. Thusthe degree of v iswell-defined, with deg+) = deg¢ = . Thuswe
must show that degy) = d¥ + d¥, asin (5.2.2).

By 5.2A, given any element y € SI' N U’ we have M ¢~1(B(y,1)) — ¢ () C S..
r>0
Therefore 5.3A (2) and (3) imply that M ¢~1(B(y,r)) C S* US’. Thusgiven any open
r>0

setU D Sf_/, disoint from V, the open set Q of 5.3A (4) above may be taken so small
that v ~1(Q) C U U V. For such Q we have

KIQD = (- [S*DIQ = (¢.IUN)IQ + (- IVI)IQ =: [ Q] + [ Q]

for somedy, d, € Z. Itisclear that d; = d¥ since by (3) any regular value of ¢.|S% isa
regular value of v|U, and the local degrees of these two maps coincide on Sf'.

To evaluate dy, observe that by 5.3A (2) and the basic relations (2.2.3), (2.2.4), the
current H representing the graph of « has a nonzero boundary satisfying

(5.3.2) (OH)|V x Q = (0G)|V x Q = —~d¥Ns(Zy NSD)|V x Q.

Itis clear that ¥.[V]|Q = 7 (H|V x Q). We wish to exploit the fact that 0H # 0 by
using the fact that if f:M — N is a map between manifolds with f(OM) C ON then
the degree of f is equal to the degree of f|0M. The problem is of course that the target
submanifold Q hasno boundary and that 7, takesdH to zero—indeed thisfactiscentral to
our method, guaranteeing that the degree of 1 iswell-defined. However we canintroduce
additional boundary by “blowing up” Q over the codimension 2 submanifold det N Q.
More precisely, consider the “ blow-up”

&= {(y0y) |yt —det} c &2 x &

of the image sphere. Put 9:S — S? for the projection and A := ¢~*(A) for A C S2. We
now show that m,|(graphy NV x Q) lifts and extendsto amap @: graphy NV x Q — S,
and examine the boundary behavior of ©.

Put 6 := 6 o m,|S® x (S* — det). Condition (5.3.1) may be restated as

(5.3.3) 0(x,y) = 6(x +y) for (x,y) € graphy NV x Q.

Thus6 admitsaL.i pschitz extension, again denoted 9, toall of graphyN(VxQ), satisfying
the same relation (5.3.3). Therefore o lom also extendsto a Lipschitz map ©: sptH N
(VxQ) —S, givenby ©(x,y) = (y,0(x,y)) €S C S® xS for (x,y) € sptHN(V x Q).
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The natural orientation on det induces a natural or~i entation on the circle bundle det,
oppositeto the orientation of det as the boundary of Q:

(5.3.4) d[QI = —[det]|Q.
Therefore N N
dx[[det] = —d.0[Q]
= —00,(H|V x Q)
= —0,(0H|V x Q)

= BO,[1Zy NS N (V x Q]

by (5.3.2). Hence
dp = d7 deg(©),

where we regard © as a map from v(Zy NS?) to det.

To evaluate this degree, let Pdet C P* denote the projective variety corresponding to
det, so det isaprincipa S! bundle over Pdet. Thusdet isan St x St bundle over Pdet.
Similarly we may regard v(Zy NS?) asan S x St bundle over the projectivized normal
bundle PvPZy C P? x P? over PZy, and © covers the natural projection ro:

v(Zyns?) -2 det

| !

2

PvPZy — Pdet

The degree of the map on the bottom may be evaluated by factoring through the dual
projective space (P2)*:

T2

P2 x (PY)* S Pv'PZy -2 Pdet* C (PR)*

l l

2

P2 x P2 S PuPZ, -2 Pdet C PA

where Pdet* is the subvariety corresponding to Pdet under the antiholomorphic isomor-
phism P2 — (P*)* induced by the Hermitian metric. By Lemma5.2A, the top lineis a
birational equivalence of algebraic varieties, hence has degree +1, while the two verti-
ca maps have degrees (_l)codim PZy—1 _ (_1)#(A)fdim|P’Zy and (_1)dim[P>da — (_l)#(A)fZ
respectively. Therefore the degree of the bottom map is (—1)4™FZv,

We complete the computation by evaluating the degree of the induced map on the
fiber St x S'. The orientation of S* x S induced by the canonical orientations of det
and Pdet is suchthat thefirst factor comprisesthefiber of the Hopf fibration det — Pdet
and the second factor the fiber of the blowup det — det. The orientation of S* x St
induced by the canonical orientation of PvPZy is given in a similar way, the first factor
comprising the fiber of the Hopf fibration Zy — PZy and the second factor giving the
fibration of the normal bundle. Now if (x,y) € vZy and (z,w) € S* x S, with O(x,y) =
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(v,8(x,y)) € det C det x S, then using 5.3A (4) we obtain

O((zw) - (xY)) = O(2x wy)
= (wy, O(zx, wy))
= (wy, 62 +wy))
= (wy, 20" 10(X" +Y))
= (w, 20" 1) - O(x, Y).
Therefore the degree of the induced map on the fibersis —1, so the total degreeis
(—1)dmP2el _ (q)dimzy

:[—1 ?ntypeslandlll

(=1)" intypell
(by (5.2.3) and (5.2.4)) asrequired. n

5.4. Proof of Lemma 5.3A. To complete the proof we establish the existence of the
deformation v of the lemma. Givenx € C* ¢ CMo ~ ¢™", |et

(x™)*, e=0o0r+
xNE X)L, =

Given vectorsv,w € C", let v® w denotethe n x n matrix [Viw];j. Thus

V.(X) = and  Up(x) := (x")*.

(Ve w)eu= (w,uv.

Putvow:= %(v@ w+weVv)andvow:= (Vvew—wao V). Itisclear that if x € CMo
is sufficiently closeto S? then Vg(x) (or indeed any element of CMo) may be expressed

uniquely as
)X IX" @ X" +v(X) @ X" +x" @ u(x) + R(x) intypel
(5.4.1) Vg = { c()(X™)~IX" O X +v(X) © X" + R(X) intypell
c(X)(X™M) X" 2 X" + v(X) @ X" + R(X) intypelll

where c(x) € C, v(X) € V.(X), u(x) € Ug(x), and
Vo(X) @ Up(X) intypel

R(X) € {V+(x) OV.(X) intypell
Uo(X) @ Up(X) intypelll.

SteEP 1.
(5.4.2) |in§1 c()g(X)* = 2,
(5.4.3) Iirg g(x) " v(x) = Iir’g g(¥)~tu(x) = 0.

ProOOF OF STEP 1. We abbreviate v(x) as v, etc. Since x — §7, the decomposition
(5.4.1) gives
Vg(x) @ X" = cen + 0(C) + X" |2,
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whereey, ..., &, isthe standard basisof C", |xX"| — 1 and (v,e,) — 0. Intypel, thereis
asimilar formula involving u arising from left multiplication. It is enough therefore to
prove that

(5.4.4) g(x)1Vg(x) e X" — 2e,

(in type | there is a symmetric argument for the estimate on u).
We may think of each term | A 700*1x|2, 1, € Q, asasum of squares of wedge prod-
ucts 6(x) of partial columns of x. In type 1, note that by symmetry we may write

2

(5.4.5) g(x) = ‘/\ Plrio)+Lygio 2, 2y ‘/\ i)y |2,
neQq

where g isthe unique squarein Q and Q1 C Q consistsof all rectangleswith lower left
corner below the diagonal. The indecomposability hypothesisimpliesthat (n,r) € u for
every pu € Q1 U {uo}. Thusin each type the n-th column of each x* entering in the sum
is bounded away from zeroasx — S’.

Write g = gn + gr, where g, is the sum of all such wedge products involving the n-th
column. We claim that

(5.4.6) ga(X)gn(¥) " — O.

For, given a nonzero wedge product 6(X) occurring in ga(X), by replacing each factor in
turn by the (partial) n-th column, we obtain p(u) + 1 wedge products 6 (x) occurring in
On(X). Since XX — Ofor (j,k) € 7. and X' £ 0, the last paragraph implies that there is
i(X) € {1,..., p(u) + 1} such that 5(X)8i (X)~* — 0. Thisimplies (5.4.6).

Recalling the classification 3.2A(2), let x; € TeB> denotetheinfinitesimal isotropy el-
ement corresponding to the operation of moving the n-th columnto thej-th,j = 1,...,n.
Thenfor eachz € C andx € C* thevector of directional derivativesof ginthedirections
zxj(X) may be obtained by matrix multiplication of the matrix Vg(x) € €* c €M with
the complex conjugate of the column vector zx":

(D2s009(); - - - Das,909(x)) = Re[Z( V() o X" |.

Forj < n, anargument similar to the Proof of Lemma3.3A showsthat thereis a constant
C such that

D250 909 < ClZlgn()2gr(9)?,
while

Din99(X) = 2gn(X),

Dy=.,00909 = 0.
Thus (5.4.6) implies (5.4.4). ]
REMARK. Fromthese estimatesand thet ojasiewiczinequality it followsthat asx —
S” most of Vg(X) is contained in R(x), with a secondary contribution from the first term
of (5.4.1). In particular, if ¢(x) convergesto somepoint yp € det® thenrank R(X) = n—1

eventually, and det ¢(x) is close to the determinant of the sum of thefirst and last terms.
Thefirst estimate above implies that the first term is almost a positive multiple of x.
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Therefore, in order to achieve the deformation « of the lemma, and in particular the
key relation (5.3.1), we would like to suppressthe middle termsin (5.4.1). However we
cannot do this directly since in general the sum of the remaining terms belongs only to
the full matrix space CMo: we cannot ensure that the My — A components are all zero.
This problem is addressed in Step 2.

STeP 2. Let A = ). denote the nearest point projection onto det., well-defined
on a neighborhood of det® in C2. Suppose X1, Xp,--- — X € S and ¢(x) =
V()| 7+ Vg(x) — yo € (C*)L". Then

IM(604)) — IR TRO6)| = o(a(x)| Vo))
asi — oo.
PROOF OF STEP2. We estimate
IA(604)) — RGO TROG)| < [A(604)) — [Va04)|RG)|
+ [ROO)|[ V0| ™ — [Reo)[ .

The second term is o(g(xi)|Vg(x;)|*1) by Step 1, since the first and last terms of (5.4.1)
are orthogonal. Thefirst term is dominated by

Y _ y Mo—7 — —y
5.4.7)  [A(606) — VIR |+ [A(606) ™ — [Vg06)| RO

Obviously each R(x;) belongsto the full determinant variety det=*(0) C CMe. Therefore
the first term of (5.4.7) is small compared to the second, since ¢(x;), R(x;) € det=%(0) are
closetoyo and Ty, det™2(0) = CMo.

On the other hand the second term of (5.4.7) is dominated by

((o60) = 960) |+ (Vg0 Rex) — 606))""
= o([A(606)) = 904)] ) + (g Vg0e)| ),

where the estimate on the second term follows from Step 1. To estimate the first term
here, note that vy,det = vy, det"(0) = C, so det™*(0) meets C* orthogonally at yo.

Therefore dist(y, det) = O(dist(y, det’l(O))) fory € C2 near yo and we may estimate

IA(604)) — o(x)| = dist(¢(x), det)
- o(dist(qs(x),derl(O)))
< O(|IVg(x)| ~*R(x) — 6(x)])
= O(|Vg(%)| ™ a(x)).-
We now construct 1. We extend the function |Vg(x)|~1g(x) to all of sb by setting

it equal to O for x € Xy; so the Lojasiewicz inequality implies that this extension is a
continuous semialgebraic function.
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Sterp3. Fixyp € (C*)E' N'S® and an openset Qo C g such that the projection A is
well-defined on Qq. Definem: [0, 1] x [0,1] x S* x Qo — C* by

m(t,h,x,y) = (1 — h)(y +t|Vg()|""g(x)x)
+h[(1 =y +t(IVg|~'gx" + AY)) .

Let there be given open sets V, Q,V', Q" C & such that Sl cVccV,ypeQcCc
Q' C Qo.Leth:S2xSE — [0, 1] beacontinuous semialgebraic function suchthath = 1
onV x Qand = 0 outside V' x Q’, and put

u(y +t|Va()| tg)x) for (x,y) ¢ V' x @

Y, x,y) = {u(m(t, h(x, y),x’y)) for (x,y) e V' x Q/,

X0 ife=0
(x +x%) /2 ife=+
ization map. Then W iswell-defined for t € [0, 1] and (X,y) € graph ¢, and satisfiesthe
conditions (1)—(4) of the lemma.

where X 1= mea(X) = { and u(x) := |x|"*x is the normal-

ProOF OF STEP 3.  We provefirst that if V/, Q' are small enough then
(5.4.8) detm(t,h,x,¢(x)) #0, 0<ht<1

whenever x € V/ and ¢(x) € Q'. To this end we expand m(t, h, X, ¢(x)) asin (5.4.1). Let
us denote c(x)~* times the first term of (5.4.1) by x* = x*. Observethat asx — S, both
X' —x* and x* — x* — 0. Now astraightforward computation using Steps 1 and 2 gives

m(t, h,x, $(9) = AKXV ~g(x)x" + BKIRE)| T RE) +0(g()| V()| ™)

as (X, ¢(X)) approachesS’ x {yo}, where A, B > 1 and the bound on the last term is
independent of t and h. Thereforeif V/, Q are chosen small enough then the determinant
(respectively the Pfaffian, in type I11) of the sum of the first two terms is clearly of the
order g(x)| Vg(x)| *, and as all terms are bounded it follows that detm(t, h, x, ¢(x)) (or
Pf m(t, h, x, ¢(x))) is of the same order. In particular (5.4.8) holds.

Thusfor v/, Q’ small enoughit isclear that W(t, x, ¢(x)) iswell-definedfor (x, (X)) €
V' x Q. Ontheother hand, if (x, (x)) ¢ V' x Q' then thefirst expressionfor W applies.
But

Re(¢(X), X7) = [Vg(X)| " Dxo 9(¥)
(5.4.9) = |Vg(x)|*1dE g(x + tx=0)
tl—o

ZO!

asin Section 5.1. In particular ¢(x) + tx* # Ofor t # 0so W is well-defined here too.
Now 5.3A(1) is immediate. To prove (2) we only need to check the case (x,y) €
(V'NXy) x Q. Take Q to liewithin the open subset U of Remark 4.1A. By Lemma3.3A,
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(xYy) € (V' NXy) x Qonly if y € det. Thus A(y) =y, and it is now straightforward to
check (2).

To prove (3) we observethat sinceS"NSY = (J, wemay chooseV’ sothat V/NS? = (.
SinceSY C det the relation (5.4.8) impliesthat if (x, $(x)) € V' x Q' theny(x) ¢ S~
Now (3) follows from (5.4.9).

The first assertion of (4) is contained in (5.4.8). To prove the remaining assertion
(5.3.1) wenotethat if (X, (X)) € V x Qthen y(x) = V()| 1g()x" + A((¥)). If Qis
small enoughthen A(¢(x)) € det®; i.e., rank A(¢(X)) = n—Lintypes| and Il andn— 2
intypelll. Sincerankx’ = n — rank A(¢(x)), (5.3.1) is clear. n

This completes the proof of Lemma5.3A and hence Theorem 4.2E.

6. Inversion: Euler Obstruction Algorithms. For most of this section we con-
tinue to assume that Y C X are Schubert varieties in a Hermitian wmmetric space
of type I, II or 11l. We will define “Euler obstruction polynomials’ E¥(q) such that

EX(1) = € (the Euler obstruction numbers of (2.1.4)), and also satisfying the inver-
sion rel ation
(6.0.1) > EY@D7(@) =1

YczcX

analogousto (2.1.4). In the final subsection, we treat types |V and V.
For this section, we revert to cartesian coordinates based on the original rectangle M,
rather than on Mg = spanA(Y).

6.1. The E polynomials. Given Schubert varieties Y C X, we define a new tree-with-
capacities TX Let Io(X) be the dot conflguratlon as defined in Section 4.1, but con-
structed using A(X) instead of A(Y) Thetree T is then constructed from Mo(X) asin
Section4.2. Thatis, T isthe Hasse diagram of the full poset of dotsin typel; in types||
and Il it is the Hasse diagram of the subposet of dots lying on or above the diagonal,
with diagonal dots corresponding to vertical “central” edges and above-diagonal dots
corresponding to oblique “side” edges. In type 11l we make the following additional
convention: if (i1,j1), (i2,j2) € Fo(X) correspond to edges e; and e, having the same
parent in the tree, and if i; < iz, then e; must be positioned to the left of &, in the tree.
In this case we say that e, is alittle brother of e;. (See Figure 6.1, in which e; isalittle
brother of both eg and ey, and eg is alittle brother of ey, but e5 and e; are only “cousins’,
etc.)

We next define a capacity for each minimal vertex of the tree. We refer to the minimal
elementsof A(X) asindentations of A(X). Thuseach indentation of A(X) correspondsto a
minimal edge(a, b) € I'o(X). Denotethelower vertex of thisedgeby v. Let (a—c, b—c) €
A(Y) be the corresponding box adjacent to the boundary of A(Y). Then the capacity of v
is defined to be c. (More generally, we define the capacity of any vertex of the tree to be
the smallest of the capacities of the minimal vertices below it.) The tree endowed with
these capacitiesis denoted T\*.

Now consider the set A = A(T,X) of all labelings \: {edgese of T} — Z subject
to these conditions:

(1) Thelabelsare non-increasing from bottom to top of the tree;
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FIGURE6.1. T* fortypes!l andlll.

(2) If vis avertex with capacity c, then the label on any edge above v must be
<g;
(3) Intypelll, the labelson each pair of central edges must be equal and even; if
thereis an odd number of central edges, the label on the top one must always
be O;
(6.1.12)
(4) Intypelll, if
(@) eisaside edge,
(b) eismaximal among the set of side edges of the tree, and
(c) thenumber of central edgesbelow the top vertex of eiseven (pos-
sibly 0), then \(e) must be either
(i) evenor _
(i) greater than \(¢/) for somelittle brother € of e.
(In particular, if e satisfies (a), (b) and (c), but e has no little brother—there
can be at most one such edge in the entire tree—then \(€) must be even.)

(In the example of Figure 6.1, rule (4) appliesto edgeseg, ey, and “in particular” to es;
but not to e5.)
Thesign o()\) is defined by

(1) Intypeslandlll, o()) =1;

2 Intypell, o(\) = (—1)°, whereb= ¥ X(e).

St

Theweight || is defined by

(1) Intypeslandll, |}l :%X(e);
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@ Intypelll, A= ¥ MO+ ¥ A@).
side even central
edgese edgese . .
(Asbeforeif T\ isthe empty tree, then it has only the “empty” labeling A with o()\) = 1

and |A| = 0.) Finally, we define

(6.1.2) E¥) = 3 o).

AEA

WhenY ¢ X we set E¥(q) = 0.

EXAMPLE 6.1A. Supposethe tree T{X isthe same asin Figure 4.3. Below we give
all possiblelabelings A of this tree which satisfy conditions (6.1.1(1), (2)). Beneath each
labeling X we write the associated monomial a(S\)q‘A| in of each types|, I, or Ill; in
typelll the notation “NA” meansthat the labeling is not allowed according to conditions
(6.1.1(3), (4)).

0O 0 O 0O 0 O 1 0 O 0 0O 1 0 O 1
00 00 10 10 01 11 11 00 10 01 11 11 02 12 12
0O 1 O 1 1 1 1 2 2 2 2 2 2 2 2

L 1 g a ¢ q
I: 1 —q g - ¢
N: 1 NA g NA NA NA NA NA NA NA NA NA ¢ NA NA

Thus, according to (6.1.2), we obtain

1+?+q®—g*+20° — f intypell

y {1+2q+3q2+3q3+3q4+2q5+q6 intypel
EY:
1+q+0° intypelll.

REMARK 6.1B. We note that, in types| and I, the algorithm for E is equivalent
to the algorithm for the Kazhdan-L usztig polynomialsP§ = Q% givenin [LS] and [Boe,
(3.10) and (4.1)], respectively. In type |, the two algorithms are literally identical. In
typelll, some of our present conventionsare different than they werein [Boeg], but these
differences are only cosmetic; the two algorithms do produce the same polynomials. In
other words, EX = P§ intypes| and I11.

Intypell, however, the Euler obstruction polynomialsare different from the Kazhdan-
Lusztig polynomials. The simplest example occursaready in A, with X = [1,2], Y =
[0, 0] (notation from Section 3.1). The reader might find it instructive to check that EX =
1—qwhileP§ = 1 (so (1) = 0, while P{(1) = 1).

6.2. The fundamental inversion theoremfor typesl, Il, and Il1.

THEOREM 6.2A. Fix Schubert varieties Y C X in a compact Hermitian symmetric
spaceof typel, I, or 111. Define polynomials DS asin (4.2.3), and E asin (6.1.2). Then

> EY(@)DX(a) = 1.
YczZcX
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Before beginning the proof, we need some further notation and two lemmas. Set N =
n+mintypel, N = nintypesll and Ill. Following [LS] and [Boe€], we associate to
any Young diagram A(Z) € M aword z of length N in two symbols « and 3. Beginning
at the upper left corner (1, n), follow the boundary of A(Z), and write « for each length
one vertical segment on the boundary and 3 for each length one horizontal segment.
In type I, continue to the lower right corner (m, 1); in types Il and IlI, stop when the
boundary reaches the diagonal. For example, the word associated to the Young diagram
of Figure 3.1is aBBaBBaaBab. (Similarly, the word associated to any Young diagram
A(X), A(Y), ... will be denoted by the corresponding lower case letter X, y, . ... We will
henceforth freely interchange upper and lower case letters without further comment.)
We may view z as representing an element of the Weyl group of G (cf. [LS], [Bog]). Let
£(2) be thelength of z, s0 £(2) = dimZ. In particular, if s = 5 isa“simple reflection”
A<i<N-1lintypel,1<i < Nintypesll and Ill), sactson zon theright. Then
zsis obtained from z as follows: for 1 < i < N — 1, interchangethe i-th and (i + 1)-st
symboals; fori = Nintypell, “reverse” the last symbol (where 3 isthe reverse of o and
viceversa); for i = N in type lll, interchange the last 2 symbols, and then reverse each
of them.

The words inherit a partial order < corresponding to the inclusion order of the asso-
ciated varieties and their Young diagrams (and to the restriction of the Bruhat order on
the Wey!| group). In particular, the following ordering relations hold (for appropriates as
above):

Z=21002% < 2S= 71502
(6.2.1) z=za<z5=12z0
Z= 710000 < 2S= 71303.

It will be useful to have a description of the action of the simple reflections in terms
of Young diagrams. Supposez < zs =: Z, and let Z, Z’ be the corresponding Schubert
varieties. Then A(Z') is formed by adjoining to A(Z) an indentation (a, b) of A(2). In
types |l and 111, if the new box is above the diagonal, a corresponding box is also added
below the diagonal to preservethe symmetry. Thereflections = s, intypelll isaspecial
case: herea = band a2 x 2 block of boxes[a,a+ 1] x [a,a+ 1] is added (ensuring that
A(Z') has an even number of boxeson the diagonal). In any case, (a, b) will beaminimal
element of "y(Z). We call the corresponding minimal edgein the tree associated to Z the
edge correspondingto s.

Thusit is easy to see that if Y C X are Schubert varieties in type I, II, or Ill, cor-

f
responding to words y < X, then there exists at least one simple reflection s such that
y<ys<Xx

LEMMA 6.2B. Lety < xcorrespondto Y C X, and assumethereisa simple reflec-
tion ssuch thaty < ysbut x £ xs. Then Dj(q) = 0.

PrROOF. Excludefor the moment thecases = s, intypelll. Theninterms of Young
diagrams, the condition of thelemmaisthat there existsan indentation (a, b) of A(Y), such
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that the corresponding point (a+ ¢,b + ¢) € A(X) adjacent to A(X) is not an indentation
of A(X) (see Figure 6.2). Thus at least oneof (a+c,b+c—1)or(a+c— 1, b+c)
belongs to A(X). Assume the former, for definiteness. Let e be the minimal edge of T,X
correspondingto (a, b), andlet vo and v, bethelower and upper verticesof e, respectively.
Then vy has capacity c. Therectangle 1 € Q indicated in Figure 6.2 with p(u) = c— 1
showsthat the capacity of v, isat most ¢ — 1.

X| (a+c,b+c)

7

m c/’/ (a+c,b+c—-1) Vi
/// 7 € Sc_l
// /// C
(a!b/)/ 7 C—l
Y| @
s \i 7777777777777777 TYX

FIGURE 6.2. Portions of Y, X, and TJX (generic case).

Thereforeif A € A is any labeling of T)X with A\(€) = +1, there is a corresponding
(allowed) labeling A, identical to A except that A~(€) = —1. Clearly o(A™) = —a(})
while [A\~| = |\, so that the monomialsin Dj(g) coming from A and A~ cancel. Since
al labelings pair up in thisway, Dj = 0.

Now if s = s, in type Ill, the above argument is correct except wheny = yiao
and x = X33a. In this case both A(Y) and A(X) have indentations on the diagonal (see
Figure 6.3). Recall from Section 3.1(3) that ¢ must be even. Thus the tree has a minimal
central edge e; whose parent is a central edge e, and e; is the only child of e,. The
capacity of the minimal central vertex is ¢, while the capacity of the upper vertex of &
is < ¢ — 1 (viathe submatrix . indicated in the figure). By Remark 4.2A(2), (4.2.2(3))
and the fact that ¢ — 1 is odd, there can be at most ¢ — 2 labels “—1" above &. Thus
for any labeling A with A(e1) = A(e) = +1, there is a corresponding labeling A~ with
A7 (e1) = A7 (e2) = —1. Now the argument proceeds as before. ]

LEMMA 6.2C. Lety < xcorrespondto Y C X, and assumethat sisa simple reflec-
tion such that x £ xs. Then E = Ej.

PrOOF. Intypes| and 11, E] = P (Remark 6.1B), so the lemmafollows from [LS,
(7.2.3)] and [Boe, (3.5)], respectively.

Intypell, wemay assumethaty < ys. Thenwe haveanindentation (a, b) of A(Y) such
that the corresponding point (a+c, b+ c) of A(X) isnot an indentation of A(X). Changing
y to ys simply adjoins the box (a, b) to A(Y), and this does not affect the capacity of any
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(a+c,a+c)

X <c—-1
€

FIGURE 6.3. Portions of Y, X, and TY>< (typelll, s= s)).

minimal vertex of T\%: recall that to compute EX we use the dot configuration o(X), and
only the capacities of the minimal vertices are relevant. Thus Ej = Ej,. ]

PROOF OF THEOREM 6.2A. Assumeinductively that theresult istruefor all Schubert
varietiesin the Grassmannian G,_1,m-1 (respectively, An—1, \;,_;), and that the result is
truefor al Y suchthat Y C Y’ C X. Theinitial cases Gno ~ Gon, A1, A7, and Y = X

7/.

are easy.
Fix y < x and asimple reflection ssuchthat y < ys < x. Set
(6.2.2) § = > E(aD;(a).

y<z<x

The plan isto show that

(6.2.3) S-8=0,

where §; = 1 by induction.
Decomposetheleft side of (6.2.3) into several terms, the first and fourth of which are
equal, by Lemma6.2C:

§—Ss
— Y EDi+ Y EDi+ Y EDI- Y EDi— Y ELD}
ys<z<x ys<z<x y<z<x ys<z<x YS<Z<X
2428 <zs ys#z 2478 <78
= > (E-EQYD;+ } ED;.
ys<z<X y<z<x
<78 ys£z

Noticethat y < z, ys £ zimplies that z < zs; this is easy to see by considering the
corresponding Young diagrams. This, together with the fact that E; = 0 whenys £ z,
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means that we can combine the two terms. Therefore (6.2.3) is equivalent to proving:

(6.2.4) > (B —E)D; =
y<z<x
z<7s
Now if x £ xsthen D} = Ofor z < zsby Lemma6.2B, and wearedone. Soit remains
to prove (6.2.4) in the casex < xs. We digressto prove two more lemmas, which contain
the important “recursion on rank” relations satisfied by the E and D polynomials.

LEMMA 6.2D. Let H = K\Ggp be a Hermitian symmetric space of type, I1, or IlI.
Fix a simplereflection s, and supposethat y < ys, z < zs. Let ¢ = c(y, Z) be the capacity
of the minimal vertex of T.Z corresponding to s. Then there are parametersyy, z for a
Hermitian symmetric space K\Go of the same type but lower rank, such that

5~ = (CUdE
where
c, fors=g,intypell

r=rly.g = 0, otherwise.

Moreover, the map z — Zis an order-preserving bijection from the set of parameters z
for K\ Gy satisfying z < zs, onto the set of all parametersfor K\ Go.

PrOOF. Givenz < zs, definezasfollows: if s= 5,1 < N, sothat z= z;a82, then
Z= 212, if s= s,intypell, sothat z = z, thenz = z;; and if s = s, in type lll,
sothat z = zzaar, thenz = z. (Wheni < nintypelll, the map z — Zztakes the set of
parameters having an even number of 3’s, to a set of parameters having an odd number
of §’s. But we may equally well use either set of parameters.) Now the validity of the
last sentence of the lemmaiis clear.

Intypes| and 1, since our E polynomials are the same as the Kazhdan-L usztig poly-
nomials (Remark 6.1B), the desired recursionsfollow from [LS, Lemma 6.6] and [Boe,
Proposition 3.14]. (Note that, wheni = n— 1 or nintypelll, ¢ = c(y, 2) must be even.)

There remains the case of type Il. Let e be the minimal edge of Tyz corresponding to
s. Thelabelings X € A of T.Z split up into two families A= and A<, according to whether
Ae) = cor A(e) < ¢, and EZ is the sum of the two corresponding polynomials. The
polynomial associated to A< is precisely Ejs- (Whenc = 0,ys £ z E}; = 0, and there
are no labelings in 7\<.) L et's examine the polynomial associated to A=.1f i < n, this
is g° times the E polynomial associated to the tree obtained from TZ by removing the
minimal (side!) edge e, and assigning the capacity of the new mlnlmal vertex to bec. But
thistreeis TZ If i = n, then the above description of the polynomial associated to A=
istill correct except that we need to introduce an additional factor of (—1)°, to account
for the fact that e is now acentral edge; cf. the definition of o()\) in Section 6.1. L]

LEMMA 6.2E. Let H = K\Gg be a Hermitian symmetric space of type I, I1, or I11.
Fix a simple reflection s, and supposethat z < x, z < zs, X < xs, and let ¢ = ¢(z,X) be
the capacity of the minimal vertex of T,* correspondingto s. Then

D} = (~1)'o’(D} — D)
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where )
c, fors=gintypell

r=rzx = 0, otherwise,

X is a parameter for K\Gg such that z < x’ (when c > 0; if c = 0 theterm D’Z—‘_’ isto be
interpreted as 0), and ~ is defined in Lemma 6.2D.

PROOF.  Let e be the minimal edge of T,* corresponding to s, and let v be the upper
vertex of e. Note that e must be ordinary (in the language of Lemma 4.2C): if eis a
minimal central edge in type lll, then s = s, and z = zaa, which implies that the
central edge immediately above e has no children other than e. According to the cited
lemma, in computing D we may restrict our attention to thelabelings A € Ag; thusevery
such labeling A has \(e) = 1 and exactly c edges € above ewith A\(¢/) = —1.

Assume first that e is not a central edge, and let T’ be the tree obtained from T,¢ by
removing e (and leaving all capacities unchanged). When ¢ > 0, define T ” similarly
except with the capacity of v reduced to ¢ — 1 (we ignore terms involving T ” if ¢ =
0). There is an obvious bijection between Ag and A(T /) — A(T /), which implies the
identity DX = g*{D(T ") — D(T ”)}. Next assume e is a central edge in type I, and
define T/ and T as above. For A € Ay, let A\’ be the restriction of A to T’. If there
are, say, k odd central edges with label —1in A, then there are ¢ — k odd central edges
with label —1in ). Hence o(\') = {(=1)°*/(=D)*}o(\) = (=1)°a()). Therefore
D% = (—1)°g*{D(T ") — D(T ") }. Findlly, assumeeisacentra edgeintypelll, and let &
be the central edge immediately above e. Denote by v’ the upper vertex of €. Let T/ be
thetree obtained by removing both eand € from T,X. Whenc > 0 (i.e., ¢ > 2), define T ”
similarly except with the capacity of V' reduced to ¢ — 2. It follows from the definitions
in Section 4.2 that D¥ = g*{D(T ") — D(T ")}.

Itisclearin each casethat T/ = T,X. Thusit remains only to show, in the casesc > 0,

that
(6.2.5) D(T") = Dg for some parameter X' > z.
First, assumethat s= s, i < N, sothat x = xya8% with |x;| =i — 1. Intypell, if X,

contains no «'s (including the case where x; is empty), define X’ by changing the last 8
of x; to « (and leaving all other symbols of x unchanged). In type lll, if X, is a sequence
of one or more 3's, define X' by changing the last 5 of x; to o and the last 3 of x, to «;
whereas if x, is empty, changethe last two 8’'s of x; to «'s. In all other cases, we define
X' by changing the last 3 of x; to o and thefirst « of x; to 5.

Next, assumes = sy. (Recall that thisonly occursintypes!l and 11, whereN = n.) In
typell wehavex = x;«; definex’ by changingthelast 3 of x; to a. Intypelll, x = xya«;
define x’ by changing the last two 3's of x; to &’s. (Notice that in type 11, the parities of
the number of o’s and of the number of 3's are preserved. Also, the existence of X’ relies
in each case heavily on the fact that ¢ > 0; i.e., x isnot minimal in the ordering.)

We leave to the reader the details of checking that (6.2.5) holds in each case. In so
doing it should be kept in mind that there may be some vertex v; # v with capacity ¢+ ¢
in T and capacity c+ ¢ — 1in D¥. But in this case there will also be a vertex v, above
both v and v, separated from v, by at most ¢ edges. Since at most ¢ labels —1 can be put
on edges between v, and v, and at most ¢ — 1 labels —1 above v, decreasing the capacity
of v; from c+ ¢ to ¢+ ¢ — 1 does not change the set of allowed labelings. ]
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COMPLETION OF PROOF OF THEOREM 6.2A. Recall that we had reduced to showing
(6.2.4), in the case where x < xsandy < ys < x. By Lemmas 6.2D and 6.2E, the left
hand side of (6.2.4) is equal to

> (12qVIE. (~1y g (D - DY)

y<z<Xx
<78
= (-0 3 EDI- 3 EjDY |
y<z<X V<z<x'
— (1O (SE - )
= (=10 {1 — 1} by induction on rank
= O,
as claimed. ]

6.3. TypesIVandV. Finaly, weattendtothe"“easy” cases (SO(n) X SO(Z))\ SO(n+2).

We first compute the MacPherson coefficients. We adopt the notation of Section 3.4;
the casesof odd and even n admit aparallel treatment. From the given descriptions of the
Schubert varieties it is easy to compute that each variety Q;, i = £,...,nisisomorphic
to the complex join of Py_j—31 and Ryj—n. In particular the normal slice (Qj)p, ;_, isequal
to the cone X C €3~™2 over Ryj_p. Putting k := 2j — n we may take the function

k+1 2
920, ..., 2w1) = ‘

> ZiZwa
i=1

asan aurafor X, and compute

k+1 _ _
Vo, ... zw1) = 4(_721&2“14)(2«1,2% oy 20)-

Therefore the restriction ¢ to S**3 of the normalized gradient map \%%I covers the map

[0, ..., Zw1] — [Z1,--.,20] of CP¥*L to itself, and ¢ clearly preserves the orientation
of the circles of the Hopf fibration. Thus the degree of ¢ is (—1)¥! = (—=1)™!, so by
Theorem 2.2A

(6.3.1) dSLH = (—D™L,

Next we define polynomial versions of the MacPherson coefficientsand “invert” via
(6.0.1) to obtain “Euler obstruction polynomials.” Begin with type IV (n odd). Set ¢ =
(n+1)/2, and label the Schubert varieties 1,2, ..., 2¢ from smallest to largest (so that

dim(i) =i — 1; recall (3.4.2)). Define
(A =20
(6.3.2) D/=01, =]
0, otherwise.

(The Hermitian symmetric space of type IV with n = 3 isisomorphic to the Hermitian
symmetric space of type Il with n = 2. This definition of D} is chosen so that these two
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isomorphic cases agree.) Comparing (6.3.2) with (6.3.1), and taking the index shift into
account, we have D}(1) = d/. Next we set

(6.3.3)

o (1-df 20— =i
El={1, j>i>20—jor2t—j>j>i
0, P> .

It isroutine to check that, for i <j, Mi<k<j E}‘DE< =1 Henceeij = Eij(l). In particular,
e=0#1=p forj>20(—j>i,

(see, e.g., [Bog, (5.13)]).

Now consider typeV (neven). Set ¢ = (n+2)/2, andlabel the Schubert varietiesfrom
1to2¢,with1,..., ¢ correspondingto Py, ...,P,_1,and ¢ +1,...,2¢ corresponding to
P)_1. Q¢. ..., Qn, respectively (recall (3.4.3)). Define

_ —qi=1, r+2<j<20—1,i=20—]
(6.3.4) Dijz{l, i=]
0, otherwise,
, 149~ (+2<j<20-1,i<20—]
(6.3.5) Eﬁz{o, i>jori=(j=1(+1
1, otherwise.

Again, comparing (6.3.4) with (6.3.1) gives D)(1) = d/. Also the fundamental relation
(6.0.1) holds; therefore E/ (1) = €. However, inthiscase E} = P/ forall i andj, by [Boe,
(5.1b)].

7. Multiplicitiesin Characteristic Cyclesof | nter section Homology Sheaves. In
this section we use the results of Section 6 to decompose the characteristic cycles of
intersection homology sheaves on Schubert varieties in the compact classical Hermitian
Ssymmetric spaces.

(7.0.1) CC(IHx) = 3~ mN(Y?).

YcX
Recall from (2.1.7) the relation
(7.0.2) p=e-m,

where p = (X)) is the matrix of Kazhdan-Lusztig numbers, and e is the matrix of Euler
obstruction numbers. Knowing e and p, we can now solvefor m.

7.1. Multiplicity formulas. Recall that a Dynkin diagram is said to be simply laced if it
contains no multiple edges.
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THEOREM 7.1A. Let Hg be a Hermitian symmetric space associated to a classical
Lie group G. The characteristic cycles of the intersection homology sheaves associated
to the Schubertvarieties X C Hg areall irreducibleiff the Dynkin diagramof G issimply
laced.

ProOF. The Dynkin diagram of G is simply laced in types I, IIl, and V. We have
seen that in each of these types, EX = P for all Schubert varieties Y, X; on the other
hand, in types Il and IV we have given examples where e # pS (cf. Remark 6.1B
and Section 6.3). But by (7.0.2), the condition e = p is equivalent to the irreducibility
of all the characteristic cycles associated to the Schubert variety intersection homology
sheaves. n

It remains to find formulas for the multiplicities min the non-simply-laced types. In
typelV, itiswell-knownthatp = ¢;i.e, p§ = Liff Y C X (cf. [Bog, (5.1a)]). Comparing
the fundamental relation (2.1.4) e- d = ( to (7.0.2), it is clear that m = d. Thus (using
the classification of Section 6.3),

, 1, i=j
(7.1.2) mlz{l, i=20—j<j
0, otherwise.

In particular, each CC(IHx) has at most two summands N(Y°).

Finally, we treat type |I. Recall from Section 6.2 the parametrization of Schubert va-
rieties by Weyl group elements; sequencesof n symbols chosen from {«, 3}; recall also
from (6.2.1) the action of the simple reflections sy, . . ., S,. The following theorem gives
quick recursions for the multiplicities my.

THEOREM 7.1B. LetY C X beSchubertvarietiesin a compact Hermitian symmetric
space of type Il. Let y < x be the corresponding Weyl group words in « and 3. The
multiplicity my of KI(YO) in CC(IHy) is given recursively as follows.

(@) If, for somesimplereflections,y < ysbut x £ xs, then mj = 0.
(b) Ify = y1a8y2, X = x1a8% With |y1| = [x¢], then mij = m2.
() Ify = yiaa, x = x00, 0 € {a, 3}, then njf = mji.
REMARKs 7.1C. (1) Of coursethe recursion endswith therulesm; = 1, iy = O if

y£x
(2) The effectiveness of the recursion also depends on the following facts. Given any

Y which is not the whole manifold A, there existsasimplereflection ssuch that y < ys.
If the only such siss = s, and none of (a), (b), or (c) applies, theny = x = 33 - - - Ba,
and hencen = 1.

PROOF OF THEOREM 7.1B. We prove each of (&), (b), and (c) in turn by downward
induction ony; the casey = x istrivial. So assumey < X.
(8 Assumey < ys, x £ xs. Then

XZ: &M, = Pls by (7.0.2)
=p by [Boe, (3.5)]
= ; gm by (7.0.2)
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=2 gm+ 2 gm

<78 7475

= > gm+ > gnm  bylLemma6.2C

<78 228

and therefore

> (& —eg)m =0.

7<7s

But by induction, m{ = Ofor y < z < zs. Hence

0= (¢ — &), = (10 = n¥,
(b) Seti =|y1]+1lands= s sothaty <ys= yi8ay,, and similarly for x. For any
z=zafz with |z| =i — 1putZ= 22, asin Lemma6.2D. Then

> e+ ; Emi=pi=ps+p  by[Boe (3.14a)]

KZZSG;Z/”?+Z¢ZZSE§SW§ = ;ef,snﬁ+;e§m§ by Lemma 6.2C
Kzzjs(ef, — I = ; ey
m+ > emi=mi+> et by Lemma6.2D and induction.
y<z<zs v<z

Clearly the map z — Zis a bijection between the parameters z in the summation on the
left, and the parameters Z in the summation on the right. Therefore nt = m¢ as claimed.

() Fixy < xasin the statement of (c), and let s = s,. For any z let |z; denote
the number of symbols 3 in z. Put ¢ = |z|3 — |yls, the capacity betweeny and z“on
the diagonal,” and similarly c;. Set 6, = 0if ¢ isodd, = 1if ¢} is even. For z = zi7
(r €{,B}) putz= z7 asin Lemma6.2D. Proceeding asin (8) and (b), we have

p;s + 5yp§1 = p§ = KZBe)Z,nﬁ +3 e;n’é by [Boe, (3.14b)]

zZ£7s

oyp = D (6 — Iy by Lemma 6.2C

(7.1.2)  §p =3 (-1)%m by Lemma6.2D
<78

> (CDSgam+ 3 (-15€S

=718 =700
= 2 COFegmt 3 DN CDTem;

by Lemma6.2D, and since ¢!, = Cloo

S (-)¥E mE+ Y ém¥ by Lemma6.2C

7<7s =710

Puty’ = yi6a and observethat ¢, = ¢ — 1. Then

by = — KZB(—l)%%nw > e

=00
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Now substitute the analog of (7.1.2) with y’ in place of y:
byPly = —Oy P+ >0 &My

=
pl= > &m  sincedy+éy =1
=00
M+ D0 e =+ > ey by induction
1<z y<z=z o
;= g
This proves (c). i

Thetheorem admitsat least two useful reformulations, thefirst of which givesaclosed
form for the non-zero multiplicities, and the second being a geometric restatement of the
first.

THEOREM 7.1D. LetY C X be Schubertvarietiesin acompact Hermitian symmetric
space of type II. Lety < x be the corresponding Weyl group words in o and 3. The
multiplicity mi; of N(reg Y) in CC(IHx) is either O or 1.

(1) mj = 1iff the following conditions hold:

(a) yisobtained from x by changing certain 3'sto «’s;

(b) each 3 in (@) occursan even number of symbols from the end of
the word x;

(c) every subword of x beginning with any 3 in (a) contains at most
onemore 3 than « (where a subword is a sequence of consecutive
symbols).

(2) mj = 1iff the following conditions hold:

(a) thereis a sequence of Schubert varietiesX = Xg D X3 D -+ D
Xr = Y such that

(b) dmX;_; —dimX; isevenfor each1 <i <r, and

(c) the Schubert strata correspondingto X;_; and X; have conormal
varieties whose closures meet in codimension one, for each 1 <
i <r.

In particular, the number of summands in CC(IHy) is equal to the number of 3’sin x
satisfying the conditionsin (1)(b) and (c).

ProoF. (1) follows from Theorem 7.1B by a straightforward induction on the rank
n. The details are |eft to the reader.

(2) is shown to be equivalent to (1) as follows. Assuming Y is obtained from x by
changing r g8'sto a’s asin (1), define X to be the word obtained from x by reversing
only the first i of these §’s. Put X; to be the associated Schubert variety. One checks
easily that if X = g1 --- 0y With oj € {a, 3} thendimX = ((X) = 5—(N+1—]).
This immediately implies the equivalence of (1)(b) and (2)(b). The condition in (2)(c)
(recall Remark 5.2B(1)) amountsto thefollowing: A(X)\ A(Xi—1) isa(connected) ribbon
which, when followed from upper left to lower right, always remains no wider than it is
tall. (See Figure 5.4, where theribbon in the left diagram and the short ribbon in the right
diagram are of thistype, while the long ribbon in the right diagram is not.) But it's easy
to see that thisis equivalent to the statement that x; is obtained from x,_; by reversing a
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single 3 satisfying the condition in (1)(c). Thus (1) implies (2), and the converseis now
also clear. ]

CoROLLARY 7.1E. The characteristic cycles of the intersection homology sheaves
on Schubert varieties for classical Hermitian symmetric spaces are multiplicity-free.
Moreover, the multiplicity m§ = 0 unless ((xX) — £(y) = codimy Y is even.

ProoF. Thisfollows from Theorem 7.1A, (7.1.1), and Theorem 7.1D. ]
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