HYPERNORMALIZING GROUPS

HERMANN HEINEKEN

(Received 16 November 1987)

Communicated by H. Lausch
Dedicated to Professor B. H. Neumann on the occasion of his eightieth birthday

Abstract

All subnormal subgroups of hypernormalizing groups have by definition subnormal normalizers. It is shown that finite soluble HN -groups belong to the class of groups of Fitting length three. Finite HN -groups are considered including those with subnormal quotient isomorphic to $S L(2,5)$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 35, 20 D 10.
A. Camina [1, 2, 3] considered the class of groups satisfying the following condition: normalizers of subnormal subgroups of G are subnormal in G. We adapt his notation and call these groups HN -groups.

We will consider finite HN-groups here, using Camina's results as a foundation. The consideration of join-irreducible subnormal subgroups of soluble HN-groups leads to a bound to the Fitting length. More precisely, if $\mathfrak{A}, \mathfrak{N}_{2}$, $\mathfrak{R}, \mathfrak{N}$ denote the classes of abelian, nilpotent of class 2 , nilpotent of squarefree exponent, nilpotent, groups respectively and we use P. Hall's product notation for group classes, we can show

Main Theorem. If G is a soluble HN -group, then

$$
G \in \mathfrak{N N R} \cap \mathfrak{N} \mathfrak{N}_{2} \mathfrak{N} \cap \mathfrak{N A N A} \cap \mathfrak{A N A} .
$$

The second part of the paper deals with the role that quotients isomorphic to $S L(2,5)$ play in HN-groups. We see in Section 4 that the quotient $S L(2,5)$
© 1989 Australian Mathematical Society 0263-6115/89 \$A2.00 +0.00
may lead to perfect subnormal subgroups T in a HN-group such that $T / Z(T)$ is no longer the direct product of simple groups (Theorem 4.1); in this case, however, the HN-group G can be described as a subdirect product of two HN-groups in which one factor does not contain a subnormal subgroup as described in Theorem 4.1, while the commutator subgroup of the other factor is a direct product of such groups (Corollary 4.4). An example at the end shows that the Fitting length of the soluble quotient of a directly irreducible nonsoluble HN -group is not more reduced than the Main Theorem indicates.

1. Subnormal hulls of primary elements

In this section we will consider finite soluble HN -groups. If G is such a group, then every subnormal subgroup of it is again a soluble HN -group. We apply this to smallest subnormal subgroups containing a given element x of prime power order. The more complete information we obtain for involutions s is needed later; we treat this case separately.

Lemma 1.1. If x is an element of order 2 of a soluble HN -group, the smallest subnormal subgroup of G containing x is always metabelian.

Proof. If V is the smallest subnormal subgroup of G that contains x, then V / V^{\prime} is cyclic of order 2.

We choose a chief factor R / S of V. There is a cyclic $x S$-invariant subgroup $T / S \neq 1$ of R / S in V / S, and since V / S is a HN-group, T / S is normal in V / S. But R / S is a chief factor and so $T=R$ and all chief factors of V are cyclic. This shows that V is supersoluble. Therefore V^{\prime} is nilpotent, and if $V^{\prime} \neq 1$, the construction of V yields that V^{\prime} is the Fitting subgroup of V. We apply Theorem 6 of Camina [2] and obtain that $V / Z\left(V^{\prime}\right)$ is nilpotent. Since V is defined as the smallest subnormal subgroup containing the element x, the commutator subgroup V^{\prime} is the intersection of all normal subgroups K of V with nilpotent quotient group V / K. So $Z\left(V^{\prime}\right)=V^{\prime}$ and V is metabelian.

The general case is much more complicated.
Lemma 1.2. Assume that G is a finite soluble HN -group possessing an element x of order a prime power p^{n} such that x is not contained in any proper subnormal subgroup of G. If $M=G^{\prime} G^{p}$ and H / K is a chief factor of G, then $\left(M^{\prime}\right)^{2}\left[M^{\prime}, G\right] K / K$ is contained in $C_{G / K}(H / K)$.

Proof. By Camina [1, Proposition 2], G is of p-length 1 . So the order of G^{\prime} is prime to p and we have $C=\left\langle x, G^{\prime}\right\rangle$ and $G^{\prime} \cap\langle x\rangle=1$.

We consider a chief factor H / K such that $(G / K) / C_{G /: i}(H / K)$ is nonabelian. For brevity we denote by U^{*} the subgroup $U K / K$ of $G^{*}=G / K$. We distinguish several cases.

Case I. The rank of H^{*} is not divisible by p. Now H^{*} is a minimal normal subgroup of the HN-group G^{*} possessing an element $z(=x K)$ of order a prime power p^{r} which is not contained in any proper subnormal subgroup of G^{*}. If T is a z-invariant subgroup of H^{*}, then z is contained in the normalizer of the subnormal subgroup T of G^{*}, and so T is normal in G^{*}. So there are no proper z-invariant subgroups of H^{*}, and we have
the rank of H^{*} is a divisor of $p-1$.
Consider now an abelian normal subgroup $A / C\left(H^{*}\right)$ of $G^{*} / C\left(H^{*}\right)$. If $A / C\left(H^{*}\right)$ is noncyclic, then H^{*} splits into proper A-invariant subgroups R_{i} such that $A / C\left(R_{i}\right)$ is cyclic for every i. We collect all elements in H^{*} with the same centralizer, and in this way we obtain a description of H^{*} as a direct product of homogeneous components $R F_{i}$. Conjugation by z permutes these components, and therefore their number must be divisible by p, while the rank of H^{*} is smaller than p. This is a contradiction, and we obtain abelian normal subgroups of $G^{*} / C\left(H^{*}\right)$ are cyclic.

Assume now $A=\left\langle a, C\left(H^{*}\right)\right\rangle$. Conjugation by a induces in H^{*} a linear mapping. If this linear mapping has a minimal polynomial which is not irreducible, then H^{*} is the direct product of some homogeneous components which again are permuted by conjugation with z, a contradiction.

We have derived that the minimal polynomial of the liner mapping induced by a is irreducible. Assume now that $a C\left(h^{*}\right)$ is different from $z^{-1} a z C\left(H^{*}\right)$. Then $z^{\prime} a z C\left(H^{*}\right)=a^{k} C\left(H^{*}\right)$ for some k, and a and a^{k} induce liner mappings with the same irreducible minimal polynomial on H^{*}. Since z is of order a power of p, this minimal polynomial is of degree a multiple of p and so the rank of H^{*} is a multiple of p, contradicting ($\mathrm{I}, 1$). We derive

> abelian normal subgroups of $G^{*} / C\left(H^{*}\right)$ belong to the centre of $G^{*} / C\left(H^{*}\right)$.

If B is the Fitting subgroup of $G^{*} / C\left(H^{*}\right)$, then the subgroup $Z\left(B^{\prime}\right)$ is obviously an abelian normal subgroup of $C^{*} / C\left(H^{*}\right)$. Now $(\mathrm{I}, 3)$ yields

$$
\begin{equation*}
Z_{2}(B) \cap B^{\prime} \subseteq Z\left(B^{\prime}\right) \subseteq Z(B) \cap B^{\prime}, B^{\prime} \subseteq Z(B) \text { and } B_{3}=1 \tag{I,4}
\end{equation*}
$$

The Fitting subgroup of $G^{*} / C\left(H^{*}\right)$ is of class two at most.

We consider now a nonabelian q-Sylow subgroup S of the Fitting subgroup B of $G^{*} / C\left(H^{*}\right)$. Since H^{*} is a minimal normal subgroup of G^{*}, we have by Schur's Lemma that $Z\left(G^{*} / C\left(H^{*}\right)\right)$ is cyclic and so its subgroup $Z(S)$ is also cyclic. If the order of $S^{\prime} \subseteq Z(S)$ is equal to q^{s}, then $S^{q^{k}}$ is abelian for all k satisfying $2 k \geq s$. Using (I,3) again we obtain $s=1$.

Choose a maximal abelian normal subgroup T of S. Except for $S \cong Q_{8}$ we may choose a noncyclic normal subgroup T, and H^{*} will split into homogeneous T-invariant components. Their centralizers in T are permuted by conjugation with elements of S which are not in T. The rank of H^{*} must therefore be multiple of $|S / T|=q^{m}$, and we have furthermore $|S / Z(S)|=q^{2 m}$.

Now y permutes all $q^{m}+1$ maximal abelian normal subgroups of S by conjugation, leaving none fixed. So p divides $q^{m}+1$. These two numerical statements lead to $q^{m} \leq p-1$ and $p \leq q^{m}+1$, leaving equality in both cases as the only possibility. So $q=2$ and p is a Fermat prime $2^{m}+1$. In particular, $\left|S^{\prime}\right|=2$ and H^{*} is not a 2-group. The case of $S \cong Q_{8}$ is similar to $q=3$.

The Fitting subgroup B of $G^{*} / C\left(H^{*}\right)$ is now the direct product of a cyclic group of odd order contained in $Z\left(G^{*} / C\left(H^{*}\right)\right)$ and the group S just described. Now $B / B^{\prime}=S / S^{\prime}$ is a chief factor of $G^{*} / C\left(H^{*}\right)$; it is a factor of order a power of 2 and of rank smaller than p. Using the previous deduction, we obtain that $\left(\left(G^{*} / C\left(H^{*}\right)\right) / B^{\prime}\right) / C\left(B / B^{\prime}\right)$ cannot be nonabelian, as such a case occurs only for chief factors of odd order. Since B is the Fitting subgroup of $G^{*} / C\left(H^{*}\right), C\left(B / B^{\prime}\right)=B / B^{\prime}$, and $G^{*} / C\left(H^{*}\right)$ is the extension of the Fitting subgroup B by an abelian group (generated by $z C\left(H^{*}\right)$). Thus the statement of Lemma 1 is proved for Case I.

Case II. The rank of H^{*} is not 2 and is divisible by p. We can see at once that every element of H^{*} is contained in a proper y^{p}-invariant subgroup of H^{*} and obtain

$$
\begin{equation*}
y^{p} C\left(H^{*}\right) \in Z\left(G^{*} / C\left(H^{*}\right)\right) \tag{II,1}
\end{equation*}
$$

Assume that p^{m} is the order of $y C\left(H^{*}\right)$ in $G^{*} / C\left(H^{*}\right)$, and $\left(H^{*}\right)^{t}=1$ for some prime t. If K is the splitting field of $s^{p^{m-1}}-1$ over the field F of order t, we have that H^{*} can be considered as a vector space of dimension p over K. Assume for the moment that the Fitting subgroup B of $G^{*} / C\left(H^{*}\right)$ is nonabelian. Since B is a normal subgroup of $G^{*} / C\left(H^{*}\right)$ which contains $y C\left(H^{*}\right)$, the minimal normal subgroup H^{*} will split into the direct product of K-subspaces of equal dimension. These spaces cannot be of K-dimension 1 since B is nonabelian. So H^{*} does not split nontrivially as a B-module. Now every nonabelian Sylow subgroup S of B is or order prime to p. Choose some maximal abelian subgroup T of S and some element a contained in $N(T) \cap S$ not in T. Now $\langle a, T\rangle$ is subnormal in S, and by induction on the
defect we deduce that H^{*} is an irreducible $\langle a, T\rangle$-module, since the number of constituents is at the same time p or 1 and has a common divisor with $|S|$. Since T is abelian and a operates nontrivially on t, H^{*} can no longer be an irreducible T-module, leading to a contradiction which proves the Fitting subgroup of $G^{*} / C\left(H^{*}\right)$ is abelian.
If U / V is any chief factor of $G^{*} / C\left(H^{*}\right), y^{p} C\left(H^{*}\right)$ induces the identity on U / V by conjugation. So the rank of U / V divides $p-1$. Assume now that $p \neq 2$ and that there is a 2-group in $\left(G^{*} / C\left(H^{*}\right)\right) / V$ which is not contained in $C(U / V)$. The 2-Sylow subgroup A of $G / C\left(H^{*}\right)$ operates irreducibly only on subgroups of 2-power rank of H^{*}. The normalizer of such a proper subgroup of H^{*} will lead to a contradiction to G being a HN-group. This shows from Case I for U / V, that $C(U / V) \supseteq\left(\left(G^{*} / C\left(H^{*}\right)\right) / V\right)^{\prime}$ and, in particular, that $\left(G^{*} / C\left(H^{*}\right)\right) / C(B)$ is abelian.
We deduce
$G^{*} / C\left(H^{*}\right)$ is metabelian.
This shows slightly more than wanted in the statement of the lemma.
Case III. The rank of H^{*} is 2 , and $p=2$. If there are no proper z^{2} invariant subgroups of H^{*}, then $G^{*} / C\left(H^{*}\right)=\left\langle z C\left(H^{*}\right)\right\rangle$ and nothing is to be shown. If there are proper z^{2}-invariant subgroups of H^{*}, the argument follows along the lines of Case II. Lemma 1 is shown.

Remark. The two cases mentioned in the proof of Lemma 1.2 lead to examples of HN-groups. For Case II is Camina's Example 2; see [3, page 63]. For Case I, matters are slightly more involved. We begin with a Fermat prime $p=2^{m}+1$ and another prime r, where r is not a square modulo p and is of the form $4 t+1$. We choose a 2 -group T such that $Z(T)=T^{\prime}$ is of order $2, T$ itself is of order $2^{2 m+1}$ and admits an automorphism of order p. Such groups T exist; see Hall and Higman [5, page 33]. There is, up to operator isomorphism, only one faithful irreducible \mathbf{Z}_{r} module of T (cf. [5, page 17]), and the group ring $\mathbf{Z}_{r}[T]$ is the direct sum $A \oplus B$, where A is the direct sum of $w^{2 m}$ fields of order r, while B is the full matrix ring of $2^{m} \times 2^{m}$ matrices over \mathbf{Z}_{r}. We extend B by T in the obvious manner and extend $B T$ by a group P of automorphisms of T which is of order p. Assume that D is a minimal T-invariant subgroup of B and that D is also invariant under P. Then DTP is an illustration of our Case I. We have to show that such a minimal T-invariant subgroup D of B exists.

Assume, to the contrary, that all minimal T-invariant subgroups of B are moved by the nonidentity elements of P. Choose such a minimal T-invariant
subgroup U of B, an element $x \neq 1$ of P and an element y of order 4 of T. We have

$$
u u^{x} \cdots u^{x^{p-1}}=1 \quad \text { for all } u \text { in } U
$$

and

$$
B=U^{x} \times U^{x^{2}} \times \cdots \times U^{x^{p-1}} .
$$

Now from

$$
u^{y} u^{y x} \cdots u^{y x^{p-1}}=1 \quad \text { and } \quad\left(u u^{x} \cdots u^{x^{p-1}}\right)^{y}-1
$$

we obtain

$$
\prod_{i=1}^{p-1} u^{x^{i} y-y x^{i}}=1
$$

where by construction $u^{x^{i} y-y x^{i}}$ belongs to $U^{x^{i}}$, and so $u^{x^{i} y}=u^{y x^{i}}$ for all i. This is impossible since y does not belong to $Z(T)$. This contradiction shows the existence of our group DTP outlined before. (This construction for Case I is probably well known, the details are included for the convenience of the reader.)

Lemma 1.3. If G is a finite soluble HN-group possessing an element x of order a prime power p^{n} such that x is not contained in any proper subnormal subgroup of G, and if $M=G^{\prime} G^{p}$, then $\left(M^{\prime}\right)^{2}\left[M^{\prime}, C\right] \subseteq F(G)$.

Proof. For every chief factor H / K of G define $C(H ; K)$ such that

$$
C(H ; K) / K=C_{G / K}(H / K)
$$

According to Lemma 1.2 we know $\left(M^{\prime}\right)^{2}\left[M^{\prime}, C\right] \subseteq C(H ; K)$. The statement of the lemma now follows from

$$
F(G)=\bigcap\{C(H ; K): H / K \text { is a chief factor of } G\} .
$$

Now we can deduce two statements on soluble HN-groups in general.
Lemma 1.4. If G is a soluble HN -group and $H=G / F(G)$, then $H / F(H)$ is nilpotent of squarefree exponent.

Proof. If x is an element of order a power of the prime p and S is the smallest subnormal subgroup of G containing x, then, by Lemma $1.2, x^{p}$ is contained in a metanilpotent normal subgroup of S. The image of x into $H / F(H)$ by the canonical epimorphism mapping G onto $H / F(H)$ is therefore an element of order dividing p generating a cyclic subnormal subgroup of $H / F(H)$. This proves Lemma 1.4.

Lemma 1.5. If G is a soluble HN -group and $H=G / F(G)$, then $H / Z_{2}(F(H))$ is nilpotent.

Proof. Choose again an element x of order a power of a prime p and denote by S the smallest subnormal subgroup of G containing it. So the smallest subnormal subgroup of H containing $x F(G)=x^{*}$ is $S F(G) / F(G) \cong$ $S /(S \cap F(G))=S / F(S)$. By Lemma 1.3, this is the extension of a nilpotent p^{\prime}-group of nilpotency class 2 by a cyclic p-group. Denote the maximal p^{\prime} subgroup of $F(M)$ by Q. We have $\left\langle x^{*}, Q\right\rangle$ is subnormal in H. Now $Q=$ $\left[x^{*}, Q\right]\left(C\left(x^{*}\right) \cap Q\right)$, and both factors are normal subgroups of Q. We obtain $\left[x^{*}, Q\right]=(S F(G) / F(G))^{\prime}$ and so it is nilpotent of class 2.

Since Q and x^{*} are of relatively prime orders, we find that x^{*} operates without fixed points on $\left[x^{*}, Q\right] /\left[x^{*}, Q\right]^{\prime}$. We deduce

$$
\left[x^{*}, Q\right] \cap\left(C\left(x^{*}\right) \cap Q\right) \subseteq\left[x^{*}, Q\right]^{\prime} \subseteq Z\left(\left[x^{*}, Q\right]\right)
$$

We consider any two elements a and b of $\left[x^{*}, Q\right]$. The commutator $[a, b]$ is contained in $Z\left(\left[x^{*}, Q\right]\right)$. On the other hand, if t is some element of $C\left(x^{*}\right) \cap Q$, we have $t^{-1} a t=a c$ and $t^{-1} b t=b d$, where c and d are also contained in $Z\left(\left[x^{*}, Q\right]\right)$. Now $t^{-1}[a, b] t=[a c, b d]=[a, b]$, and we obtain $\left[x^{*}, Q\right] \cap\left(C\left(x^{*}\right) \cap Q\right) \subseteq Z(Q)$, and considering all commutators of length three with one entry from $\left[x^{*}, Q\right]$ we obtain $\left[x^{*}, Q\right] \subseteq Z_{2}(Q)$. Now $x^{*} Z_{2}(Q)$ generated a cyclic subnormal subgroup in $H / Z_{2}(Q)$ and it follows that $x^{*} F(H)$ generates a cyclic subnormal subgroup in $H / Z_{2}(F(H))$. Now Lemma 1.5 follows: $H / Z_{2}(F(H))$ is generated by cyclic subnormal subgroups.

2. Metanilpotent HN-groups with small nonabelian Fitting quotient

We begin by considering the smallest case of all.
Lemma 2.1. Assume that G is a HN -group such that $G / F(G)$ is nonabelian of exponent p and of order p^{3}. If P is a p-Sylow subgroup of G and Q is the maximal p^{\prime}-subgroup of G, then $Q=\left[Q, P^{\prime}\right] \times C\left(P^{\prime}\right) \cap Q$ and $\left[Q, P^{\prime}\right]$ is abelian.

Proof. Since G is a HN-group, the subgroups $\left[Q, P^{\prime}\right]$ and $C\left(P^{\prime}\right) \cap Q$ of the normal subgroup Q are normal in G. We will show first that $\left[Q, P^{\prime}\right]$ is abelian.

By assumption we know that $P=\langle x, y, P \cap F(G)\rangle$ such that $z=[x, y]$ is not contained in $P \cap F(G)$ but $x^{p}, y^{p},[[x, y], y]$ and $[[x, y], x]$ belong to $P \cap F(G)$. First we assume that G is "minimal" in the following sense: $L=\left[Q, P^{\prime}\right]=$
[$Q, z]$ is nonabelian and $[Q, z] / M$ is abelian for all proper normal subgroups M of G which are contained in G. We deduce that L^{\prime} is the only minimal normal subgroup of G which is contained in L, and L is a q-group for some prime $q \neq p$. Now $L / L^{\prime} L^{q}$ is the direct product of quotient groups which can be considered as irreducible faithful $\langle x, y\rangle$ modules. Some elements of these modules are centralized by x, so $C(x) \cap L \nsubseteq L^{\prime}$. Since $C(x) \cap L$ is subnormal in C, so is $N(C(x) \cap L)$, which contains x. Using $L=(C(x) \cap L)[L, x]$ we obtain that $[L, x]$ must be contained in $N(C(x) \cap L)$, and we find

$$
\begin{equation*}
C(x) \cap \text { is normal in } L . \tag{i}
\end{equation*}
$$

We want to show that L^{\prime} must be trivial, We assume first that L^{\prime} is not centralized by z. In this case $C(x) \cap L$ and $C\left(y^{-1} x y\right) \cap L$ are normal subgroups of L intersecting each other trivially. Now $\left\langle u y^{-1} u y \mid u \in C(x) \cap L\right\rangle$ is normalized by z but not by L, a contradiction to G being a HN-group. So the two normal subgroups have a nontrivial intersection, and

$$
\begin{equation*}
\left[z, L^{\prime}\right]=1 \tag{ii}
\end{equation*}
$$

We know that L is the product of $C(x) \cap L$ and its conjugates by powers of y, since this is true for L / L^{\prime}. Since $y^{-i} x y^{i}=x z^{i}$ we find

$$
\begin{equation*}
\left[x, L^{\prime}\right]=1 \tag{iii}
\end{equation*}
$$

and, arguing in the same way for y instead of x, we have

$$
\begin{equation*}
\left[y, L^{\prime}\right]=1, \quad L^{\prime} \subseteq Z(G) \tag{iv}
\end{equation*}
$$

Now the minimality condition yields
L^{\prime} is cyclic.
We choose a normal subgroup R of G such that $L^{\prime} \varsubsetneqq R \subseteq L$ and R / L^{\prime} is a minimal normal subgroup of G / L^{\prime}. By minimality of $G, R=[R, z]$ is nonabelian. In analogy to (i) we obtain

$$
\begin{equation*}
C(x) \cap R \text { is normal in } R, \tag{vi}
\end{equation*}
$$

and since the conjugates of $C(x) \cap R$ generate R, we have

$$
\begin{equation*}
C(x) \cap R \text { is nonabelian. } \tag{vii}
\end{equation*}
$$

The minimality of R also yields

$$
\begin{equation*}
Z(C(x) \cap R)=L^{\prime} \tag{viii}
\end{equation*}
$$

Now we find furthermore

$$
\begin{equation*}
R=(C(x) \cap R)[R, x]=(C(x) \cap R)(C(C(x) \cap R) \cap R) \tag{ix}
\end{equation*}
$$

where in both cases the intersection of the factors is L^{\prime}, and all factors are x-invariant. Since no element of $[R, x] / L^{\prime}$ is left invariant by x and R / L^{\prime} is
therefore described in two ways as direct product of factors without operator isomorphic parts, we have

$$
\begin{equation*}
[R, x]=C(C(x) \cap R) \cap R \tag{x}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(C(x) \cap R),\left(C\left(y^{-1} x y^{i} \cap R\right)\right)\right]=1 \quad \text { for } i=1, \ldots, p-1 . \tag{xi}
\end{equation*}
$$

It is well known, that there are integers a, b depending on q such that $1+a^{2}+b^{2} \equiv 0 \bmod q$, and we deduce that

$$
T=\left\langle u y^{-1} u^{a} y y^{-2} y^{b} y^{2} \mid u \in C(x) \cap R\right\rangle L^{\prime}
$$

is an abelian normal subgroup of R.Also [T, z] is an abelian normal subgroup of R, and $L^{\prime} \cap[T, z]=1$. So $[T, z]$ centralizes its conjugates, and L^{\prime} is not contained in the smallest normal subgroup of G which contains [T, z]. This contradicts the minimal choice of G, and so the minimal counterexample G does not exist. We find that $L=[Q, z]$ must be abelian.

We obtained this result for the case that G was "minimal" in the sense indicated. it is however easy to see that there is a normal subgroup K of G which is contained in $[Q, z]$ such that G / K is "minimal", whenever [Q, z] is nonabelian, and we obtain a contradiction. So now the commutativity of [$\left.Q, P^{\prime}\right]$ is proved in general.

Since Q and P^{\prime} have relatively prime orders and $\left[Q, P^{\prime}\right]$ is abelian, we have

$$
\left[Q, P^{\prime}\right] \cap\left(C\left(P^{\prime}\right) \cap Q\right)=\left[Q, P^{\prime}\right] \cap C\left(P^{\prime}\right)=1 .
$$

Lemma 2.1 is proved. Now we are able to come to the general case.
Lemma 2.2. If G is a HN-group and $G / F(G)$ is of exponent p, then $(G / Z(F(G)))^{\prime}$ is nilpotent.

Proof. We proceed by induction on the order of $G^{\prime} F(G) / F(G)$. If

$$
G^{\prime} F(G) / F(G)=1,
$$

nothing is to be shown. We assume that the lemma is shown for all groups H satisfying the hypotheses and satisfying

$$
\left|H^{\prime} F(H) / F(H)\right|<\left|G^{\prime} F(G) / F(G)\right| \neq 1 .
$$

We fix a p-Sylow subgroup P of G and choose an element x of P with the following property: if $x F(G) \notin Z(G / F(G))$, then $x F(G) \notin Z_{2}(G / F(G))$. Depending on this element x there is an element y in P such that $[x, y]$ is not contained in $F(G)$. It follows that $[x, y] F(G) \in Z(G / F(G)$), and the subnormal subgroup $\langle x, y, F(G)\rangle$ of G satisfies the hypotheses of Lemma 2.1. So, if Q is the maximal p^{\prime}-subgroup of G, we have $\left.Q=[Q,[x, y]] \times(C[x, y]) \cap Q\right)$
and $[Q,[x, y]]$ is an abelian normal subgroup of $\langle x, y, F(G)\rangle$. By construction, $\langle[x, y], P \cap F(G)\rangle$ is normal in P, and therefore we have that P is contained in the normalizer of $[Q,\langle[x, y], P \cap F(G)\rangle]=[Q,[x, y]]$ and in the normalizer of $C(\langle[x, y], P \cap F(G)\rangle) \cap Q=C([x, y]) \cap Q$. The quotient group $G /[Q,[x, y]] \cong(C([x, y]) \cap Q) P$ satisfies the hypotheses of Lemma 2.2 and the induction hypothesis. We obtain that $((C([x, y]) \cap Q) P / Z(F(C([x, y]) \cap Q)))^{\prime}$ is nilpotent, and under the hypotheses of the lemma this is equivalent to the statement

$$
\left[C([x, y]) \cap Q, P^{\prime}\right] \subseteq Z(C([x, y]) \cap Q) .
$$

Now $Z(Q)=[Q,[x, y]] \times Z(C([x, y]) \cap Q)$ and therefore $\left[Q, P^{\prime}\right] \subseteq Z(Q)$. Lemma 2.2 now follows from the nilpotency of $P^{\prime} Q / Z(Q)$.

Lemma 2.3. Assume that G is a soluble HN -group with Fitting subgroup R. Then $(G / R) / Z(F(G / R))$ has nilpotent commutator subgroup.

Proof. Let $K=G / R$. By Lemma 1.4 we know that $K / F(K)$ is nilpotent of squarefree exponent. Choose a p-Sylow subgroup P of K. Then $F(K) P$ is a normal subgroup of K satisfying the hypotheses of Theorem 2.2 , and we obtain that $P^{\prime} F(K) / Z(F(K))$ is nilpotent. Since this is true for all primes p dividing the order of K, we obtain $K^{\prime} F(K) / Z(F(K))$ is nilpotent, and Lemma 2.3 follows easily.

3. M-groups and HN-groups

Following Camina's definition we call a group G an M-group, if G is soluble and $G / Z(F(G))$ is nilpotent. We obtain the following first statement.

Lemma 3.1. If G is an HN -group and X and Y are two normal subgroups of G which are M-groups, then $X Y$ is also an M-group.

Proof. Consider an element t of order a power of p which is contained in X : denote by T the smallest subnormal subgroup of G which contains t, Since X is an M-group, $[t, T]$ is a abelian p^{\prime}-group. Denote the maximal p^{\prime}-subgroup of $F(X Y)$ by Q. Then $[t, T]=[t, Q]$ and $C(t) \cap Q$ are normal subgroups of Q and we have

$$
[t, Q] \cap(C() t) \cap Q)=1 \quad \text { and } \quad[t, Q](C(t) \cap Q)=Q
$$

So the nilpotent group Q is the direct product of two factors, one of which is abelian and consequently contained in $Z(Q)$. Now $\langle t\rangle Z(F(X Y))$ is subnormal in $X Y$, and the same happens for t in Y instead of X. Since $X Y$ is
generated by the elements of prime power order which are contained in X or in Y, we have that $X Y / Z(F(X Y))$ is nilpotent. This proves Lemma 3.1.

Corollary 3.2. If G is a HN -group generated by subnormal M-groups, then G is an M-group.

The proof is done by an obvious induction argument on the defects.

Lemma 3.3. If G is a HN-group with nilpotent normal subgroup N such that N is a 2-group, then G is an M-group.

Proof. We proceed by induction on the order of $G / F(G)$ which is obviously a 2-group. The lemma is true if $G / F(G)=1$. Assume that $|G / F(G)|=$ 2^{k} and the lemma is shown for all H satisfying the hypotheses and $|F / F(H)|$ $<2^{k}$.

We distinguish two cases: $G / F(G)$ is cyclic or not.
Assume first that $G / F(G)$ is noncyclic. Then G possesses two proper normal subgroups K and L containing $F(G)$ such that $K L=G$. By induction hypothesis, K and L are M-groups. Now G is an M-group by Lemma 3.1.

Assume now the second possibility and $G=\langle x, F(G)\rangle$ for some x of order 2^{r}. Denote by W the maximal subgroup of odd order of G. By construction, W is a normal subgroup of G contained in $F(G)$. By induction hypothesis we have

$$
\left[x^{2}, W\right] \subseteq Z(W) \quad \text { and } \quad W=\left[x^{2}, W\right] \times\left(C\left(x^{2}\right) \cap W\right)
$$

Again $\langle x, W\rangle$ is an abelian by nilpotent subnormal subgroup of G and therefore an HN-group. Now $\langle x, W\rangle /\left[x^{2}, W\right] \cong\left\langle x, C\left(x^{2}\right) \cap W\right\rangle$ is a HNgroup and abelian by nilpotent. We obtain

$$
C\left(x^{2}\right) \cap W=\left[x, C\left(x^{2}\right) \cap W\right] \times(C(x) \cap W) \quad \text { and } \quad W=[x, W] \times(C(x) \cap W)
$$

Since $[x, W$] is the direct product of abelian groups, it is abelian and contained in $Z(W)$. We have shown that $G / Z(W)$ is nilpotent, and Lemma 3.3 follows easily.

Lemma 3.4. If G is a soluble HN -group, then G is an extension of an M group by an M-group.

Proof. Consider the smallest subnormal subgroup T of G containing the given element t of order a power of a prime p. We denote by V the maximal normal subgroup of T containing $F(T)$ such that $V / F(T)$ is a 2-group. By Lemma 3.3, V is an M-group, and by Lemma $1.2, T / V$ is a metabelian A group and so an M-group by Camina [2, Corollary, page 364]. Let R be the
normal subgroup of G containing $F(G)$ such that $R / F(G)$ is the maximal normal 2 -subgroup of $G / F(G)$. We have that R is an M-group, and $T \cap R=$ V. Now G / R is generated by its subnormal subgroups $T R / R \cong T(R \cap T)=$ R / V which are M-groups, and G / R is an M-group by Corollary 3.2. This completes the proof.

Now the proof of the Main Theorem follows from Lemmas 1.4, 1.5, 2.3 and 3.4.

4. The factor $S L(2,5)$ in HN -groups

We begin with a construction. Assume that p is a prime such that $p+1$ is divisible by 60 . There are integers u, v, w such that, for a given power $p^{k}=q$ of p, we have

$$
u^{2}+v^{2} \equiv-1 \quad \bmod q \quad \text { and } \quad w^{2} \equiv 5 \quad \bmod q,
$$

since these congruences have solutions modulo p. The 2×2-matrices over \mathbf{Z}_{q}

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad B=\frac{1}{4}\left(\begin{array}{cc}
u(1+w)-2 & v w+v+w-1 \\
v w+v-w+1 & -u(1+w)-2
\end{array}\right)
$$

generate a group isomorphic to $S L(2,5)$ since A^{2} is central and $\langle A, B\rangle /\left\langle A^{2}\right\rangle$ yields Hamilton's representation of A_{5} (see Coexeter and Moser [4, Table 5, page 138]). Using this representation of $S L(2,5)$ in $\operatorname{Aut}\left(C_{q} \times C_{q}\right)$ we find that there is an extension of $C_{q} \times C_{q}=N$ by $S L(2,5)$ with trivial centre. Since $p-1$ is not divisible by 4,3 or 5 , no noncentral element of $S L(2,5)$ leaves invariant a subgroup of order p, and by an obvious induction argument we see that only the characteristic subgroups of N are left invariant by noncentral elements of $\operatorname{SL}(2,5)$. This shows that the extension just constructed is a HN-group. We will see that this example is in a sense typical. It shows that the condition FP on Corollaries 1-4 of Camina [1, page 67] is indispensible. The next theorem shows that condition FP can be reformulated as FP* in the form: there is no subnormal subgroup isomorphic to $S L(2,5)$ in $G / F(G)$.

Theorem 4.1. Assume that K is a HN -group with only one maximal normal subgroup, L, say, and that $K / L=P S L(2,5)$. Then one of the following is true:
(i) $L=1$;
(ii) L is of order 2 and $K=S L(2,5)$;
(iii) L is nonabelian, L / L^{\prime} is of order 2 and L^{\prime} is the direct product of two cyclic groups of order m, where all prime divisors of m are of the form $60 t-1$.

Proof. Consider a chief factor R / S of K. If R / S is nonabelian, it must be simple by Camina [1, Corollary, page 64]. Since the group of outer automorphisms Aut $(W) / \operatorname{Inn}(W)$ of a finite nonabelian simple group is (by the classification of these groups) soluble, the only nonabelian chief factor of K must be K / L, and so L is soluble. Assume now $L \supseteq R \supset S \supseteq L^{\prime}$ and choose an element $z \notin L$ with $z^{2} \in L$. There is a cyclic $z S$-invariant subgroup $\langle t, S\rangle / S$ in R / S. Since K is a HN-group, the normalizer $N(\langle t, S\rangle)$ is subnormal in K and contains the smallest subnormal subgroup of K which contains z. So, by construction, $\langle t, S\rangle$ is normal in K and R / S is cyclic. Now K is perfect, so R / S is central, that is $S \subseteq[K, R]$. We deduce $L^{\prime}=[K, L]$.

Now L / L^{\prime} is isomorphic to a subgroup of the Schur multiplier of $\operatorname{PSL}(2,5)$ which is known to be of order 2. This yields that either $L=1$ or L / L^{\prime} is of order 2. By Lemma 1, L^{\prime} must be abelian.

Consider now a p-chief factor R / S with $R \subseteq L^{\prime}$. Then R / S cannot be cyclic since it is not a central chief factor and K is perfect. The chief factor R / S must be irreducible with respect to every subgroup outside L, in particular with respect to subgroups of order 4,3 and 5 . Considering the subgroups of order 4 and 3 , we find that R / S must have rank 2 and that the prime q involved must be congruent to -1 modulo 3 and modulo 4 . Considering the subgroups of order 5 we obtain in addition that q must be congruent to -1 also modulo 5 , so we have $p \equiv 1 \bmod 60$.

Assume now that there are two different minimal normal subgroups A, B of K which are of order p^{2}, and choose elements a, b different from 1 out of A and B. If x is an element of order 4 , in K, the subnormal subgroup $\left\langle a b, x^{-1} a b x\right\rangle$ is normalized by x and so normal in K. So $A B$ is the union of $p^{2}+1$ normal subgroups of K, a contradiction. This shows that L^{\prime} has rank 2 , and (iii) holds.

Theorem 4.2. If G is $a \mathrm{HN}$-group and K and K^{+}are two different subnormal subgroups of G satisfying the hypotheses of Theorem 4.1, if L and L^{+} are their only maximal normal subgroups, then the orders of L^{\prime} and $\left(L^{+}\right)^{\prime}$ are relatively prime.

Proof. Assume to the contrary that K and K^{+}possess isomorphic minimal normal subgroups T and T^{+}. Since K and K^{+}are subnormal and perfect and possess only one maximal normal subgroup, K and K^{+}are normal in $\left\langle K, K^{*}\right\rangle$ by a famous theorem of Wieldandt [6, (20)*, page 225]. Since all normal subgroups of K and K^{+}are characteristic in K and K^{+}respectively, T and T^{+}are normal in $K K^{+}$. If $T=T^{+}$, we have that $K^{+} / C(T) \cap K K^{+}$is isomorphic to the central product of two copies of $S L(2,5)$, which is impossible since T must have rank 2.

In particular, we find that K and K^{+}intersect each other trivially. We choose an element $u \neq 1$ from T and another element $v \neq 1$ from T^{+}, also an element y of order 4 from K and another such element z from K^{+}. The subgroup $N=\left\langle u v, y^{-1} u y^{-1} v z\right\rangle$ is subnormal in $K K^{+}$and is normalized by $y z$, which is not contained in any maximal normal subgroup of $K K^{+}$. Now N must be normal in $K K^{+}$since $K K^{+}$is a HN-group, and N has trivial intersection with K and with K^{+}. So N is contained in the centre of $K K^{+}$ which is trivial. This contradiction shows that the pair T, T^{+}does not exist, and that L^{\prime} and $\left(L^{+}\right)^{\prime}$ are of coprime orders.

Theorem 4.3. Assume that G is a HN-group and that K is a subnormal subgroup of G satisfying the hypotheses of Theorem 4.1 with L nonabelian. Then K is normal in G, and G is the subdirect product of two HN -groups M and G / K, where M^{\prime} is isomorphic to K.

Proof. K is a normal subgroup of G by Theorem 4.2. From $1=Z(K)=$ $K \cap C_{G}(K)$ we see that G is a subdirect product of G / K and $G / C_{G}(K)$. The HN-group $G / C_{G}(K)=M$ is a subgroup of $\operatorname{Aut}(K)$, which in turn is an extension of $\operatorname{Inn}(K) \cong K$ by an abelian group (represented by power automorphisms of $\left.L^{\prime}\right)$. The proof is complete.

By iteration of Theorem 4.3, we obtain
Corollary 4.4. Every finite HN-group is a subdirect product of groups A_{i} whose commutator subgroups A_{i}^{\prime} are groups as described in Theorem 4.1 together with one $F P^{*}-\mathrm{HN}$-group B.

5. An example of a nonsoluble HN -group

It is easily seen that $U=G L\left(7,5^{6}\right)$ can be described as a direct product, namely $U=T \times(Z(U))^{7}$ where $Z(T) \cong T / T^{2}$ is cyclic and $T^{7} / Z(T) \cong$ $\operatorname{PSL}\left(7,5^{6}\right)$ is simple. The group T possesses outer automorphisms α, β induced by the field automorphisms of $G F\left(5^{6}\right)$ which are of orders 2 and 3 respectively. We choose two isomorphic copies T_{1}, T_{2} of T and form an extension of their direct product. Let an isomorphism τ mapping T_{1} onto T_{2} be given. We define K to be generated by $x, y, z, T_{1} \times T_{2}$ subject to the relations

$$
\begin{aligned}
& x^{3}=y^{3}=z^{4}=[x, y]=\left[x, z^{2}\right]=\left[y, z^{2}\right]=1, \\
& x^{-1} u x=u^{\beta} \text { for } u \in T_{1}, y^{-1} v y=v^{\beta} \text { for } v \in T_{2}, \\
& {[x, v]=[y, u]=1 \quad \text { for } u \in T_{1} \text { and } v \in T_{2},} \\
& z^{-1} u z=u^{\tau} \quad \text { for } u \in T_{1}, \quad z^{-1} v z=v^{\tau^{-1} \alpha} \quad \text { for } v \in T_{2} .
\end{aligned}
$$

It is a task of medium difficulty to prove that the group K is a HN-group, and we leave this to the reader.

If P is the maximal perfect normal subgroup of K, we see that $K / P C_{K}(P)$ has Fitting length 3, also $K / C_{K}(Z(P))$ has Fitting length 2. So the existence of nontrivial perfect normal subgroups in a HN-group does not lead to further restrictions on the Fitting length of the soluble quotients, and the bound in Lemma 1.4 is attained. (The reader will have noticed that K is a twisted wreath product with factors isomorphic to $\left\langle x, T_{1}\right\rangle$ and to $\langle z\rangle$.)

References

[1] A. Camina, 'Hypernormalizing groups', Math. Z. 100 (1967), 59-68.
[2] ___, 'Finite soluble hypernormalizing groups', J. Algebra 8 (1968), 362-275.
[3] __, On some problems concerning subnormality (Ph.D. Thesis, Queen Mary College, London (1965)).
[4] M. S. M. Coexeter and W. O. J. Moser, Generators and relations for discrete groups, (Springer-Verlag, Berlin, Göttingen, Heidelberg (1957)).
[5] P. Hall and G. Higman, 'On the p-length of p-soluble groups and reduction theorems for Burnside's problem', Proc. London Math. Soc. (3) 6 (1956), 1-42.
[6] H. Wielandt, 'Eine Verallgemeinerung der invarianten Untergruppen', Math. Z. 45 (1939), 209-244.

Mathematisches Institut der Universität
8700 Würzburg
Federal Republic of Germany

