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Abstract. We denote the numerical range of the normal operator T by W (T). A
characterization is given to the points in W (T) that lie on the boundary. The collection
of such boundary points together with the interior of the the convex hull of the
spectrum of T will then be the set W (T). Moreover, it is shown that such boundary
points reveal a lot of information about the normal operator. For instance, such a
boundary point always associates with an invariant (reducing) subspace of the normal
operator. It follows that a normal operator acting on a separable Hilbert space cannot
have a closed strictly convex set as its numerical range. Similar results are obtained for
the Davis-Wielandt shell of a normal operator. One can deduce additional information
of the normal operator by studying the boundary of its Davis-Wielandt shell. Further
extension of the result to the joint numerical range of commuting operators is discussed.

2000 Mathematics Subject Classification. 47A10, 47A12, 47B15.

1. Introduction. Let B(H) be the algebra of bounded linear operators acting on
the Hilbert space H. We identify B(H) with the algebra Mn of n × n complex matrices
if H has dimension n. The numerical range of T ∈ B(H) is defined by

W (T) = {〈Tx, x〉 : x ∈ H, 〈x, x〉 = 1},
which is useful for studying operators; see [5–7]. In particular, the geometrical
properties of W (T) often provide useful information about the algebraic and analytic
properties of T . For instance, W (T) = {μ} if and only if T = μI ; W (T) ⊆ � if and
only if T = T∗; W (T) has no interior point if and only if there are a, b ∈ � with
a �= 0 such that aT + bI is self-adjoint. Moreover, there are nice connections between
W (T) and the spectrum σ (T) of T . For example, the closure of W (T), denoted by
cl (W (T)), always contains σ (T). If T is normal, then cl (W (T)) = conv σ (T), where
conv S denotes the convex hull of the set S. Hence, cl (W (T)) is completely determined
by σ (T) for a normal operator T . However, one can easily find examples of normal
operators A and B with the same spectrum such that W (A) �= W (B).

EXAMPLE 1.1. Let A = diag (1, 1/2, 1/3, . . .), B = diag (0, 1, 1/2, 1/3, . . .) be two
diagonal operators acting on �2. Then, W (A) = (0, 1] �= [0, 1] = W (B) and σ (A) =
σ (B) = {1/n : n ≥ 1} ∪ {0}.
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For two normal operators A and B with the same spectrum, we have cl (W (A)) =
conv σ (A) = conv σ (B) = cl (W (B)). Thus, W (A) and W (B) can differ only by their
boundaries ∂W (A) and ∂W (B). Hence, to describe the numerical range of a normal
operator T , it suffices to determine which boundary points of W (T) actually belong
to W (T). In this paper, a characterization is given to such boundary points. Moreover,
we show that a point in W (T) ∩ ∂W (T) always leads to an orthogonal decomposition
of the Hilbert space, and a corresponding decomposition of the operator T . It follows
that a normal operator acting on a separable Hilbert space cannot have a closed strictly
convex set as its numerical range. On the contrary, the numerical range of a non-normal
matrix in M2 is always a non-degenerate elliptical disk; see [7, Theorem 1.3.6].

Motivated by theoretical study and applications, researchers considered different
generalizations of the numerical range; see for example [5, 6] and [7, Chapter 1].
One of these generalizations is the Davis-Wielandt shell of T ∈ B(H) defined by

DW (T) = {(〈Tx, x〉, 〈Tx, Tx〉) : x ∈ H, 〈x, x〉 = 1};

see [3, 4, 10]. Evidently, the projection of the set DW (T) on the first co-ordinate is the
classical numerical range. So, DW (T) captures more information about the operator
T . For a normal operator T ∈ B(H), it is known that the closure of DW (T) is the set

conv {(λ, |λ|2) : λ ∈ σ (T)};

see, for example [9, Theorem 2.1]. Thus, the interior of DW (T) can be easily determined.
However, the points in DW (T) that lie on its boundary are not so well understood. We
characterize such points and show that they lead to direct sum decomposition of T that
cannot be detected by the geometrical features of W (T). Inspired by some comments
of the referee on an early version of this paper, we include a discussion of the extension
of our results to the joint numerical range of commuting operators.

In the following discussion, we denote cl (S) and ∂S as the closure and the boundary
of a set S, respectively. Moreover, we use int (S) to denote the relative interior of S. For
instance, if cl (S) is a line segment in �, then int (S) will be the line segment obtained
from cl (S) by removing its end points, although S has no interior points in �. For
T ∈ B(H), the point spectrum of T ∈ B(H) is denoted by σp(T).

2. Numerical Ranges.

THEOREM 2.1. Let T ∈ B(H) be a normal operator. Then, μ ∈ W (T) is a boundary
point if and only if H admits an orthogonal decomposition H1 ⊕ H2 such that T =
T1 ⊕ T2 ∈ B(H1 ⊕ H2), with μ ∈ W (T1) ⊆ L for a straight line L and W (T2) ∩ L = ∅.

Proof. Let μ ∈ W (T) be a boundary point of W (T). We may replace T by aT + bI
so that μ = 0 and Re ν ≤ 0 for all ν ∈ W (T). Let T = H + iG, where H and G are self-
adjoint. Since W (H) = {Re ν : ν ∈ W (T)}, we see that 〈Hx, x〉 ≤ 0 for any unit vector
x ∈ H. Thus, H is negative semidefinite. LetH1 be the kernel of H andH2 = H⊥

1 . Then,
H = 0H1 ⊕ H2 ∈ B(H1 ⊕ H2). Since HG = GH, we see that G = G1 ⊕ G2 ∈ B(H1 ⊕
H2). Thus, T = T1 ⊕ T2 ∈ B(H1 ⊕ H2). Since T1 = iG1, W (T1) ⊆ i�, and T2 = H2 +
iG2 such that W (H2) ⊆ (−∞, 0), it follows that W (T2) ∩ i� = ∅.
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Using the fact that W (T1 ⊕ T2) = conv {W (T1) ∪ W (T2)} (see, for example, [7,
1.2.10]), one can verify the converse. �

In Theorem 2.1, W (T1) may be a point or a line segment containing none, one or
all of its end points; W (T2) may be an open set, a closed set, or neither.

EXAMPLE 2.2. We have 0 ∈ W (T) ∩ ∂W (T) if T = T1 ⊕ T2 ∈ B(�2 ⊕ �2) for any
choices of the following T1 and T2:

T1 = 0 so that W (T1) = {0},
T1 = i(−I ⊕ I) so that W (T1) = {iμ : μ ∈ [−1, 1]}, or
T1 = i[diag (1/2, 2/3, 3/4, . . .) ⊕ diag (−1/2,−2/3,−3/4, . . .)] so that

W (T1) = {iμ : μ ∈ (−1, 1)};
T2 = diag (ei2π/3, ei4π/3,−1/2) so that W (T2) = conv σ (T2),
T2 = ei2π/3D ⊕ ei4π/3D ⊕ (D − I) with D = diag (2/3, 3/4, 4/5, . . .) so that

W (T2) = int (conv σ (T2)) = int (conv {ei2π/3, ei4π/3, 0}), or
T2 = diag (ei2π/3, ei4π/3) ⊕ −diag (1/3, 1/4, 1/5, . . .) so that W (T2) = int ({ei2π/3,

ei4π/3, 0}) ∪ conv {ei2π/3, ei4π/3}.
In connection to Theorem 2.1 and the above example, we give a detailed analysis

of an operator A such that W (A) is a subset of a straight line in � in the following. In
particular, we give a description of W (A) in terms of σ (A) and σp(A) and determine
the algebraic structure of A. Note that the following proposition is valid for a general
operator A.

PROPOSITION 2.3. Let A ∈ B(H) be such that W (A) ⊆ L, where L is a straight line
in �. Then,

W (A) = int (conv σ (A)) ∪ σp(A)

and one of the following holds:
(a) A = μI and W (A) = {μ} ⊆ L.
(b) There are a, b ∈ � with a �= 0 such that cl (W (A)) = a[−1, 1] + b ⊆ a� + b. In

such case, an end point μ of the line segment a[−1, 1] + b belongs to W (A) if and
only if μ ∈ σp(A).

Proof. Suppose W (A) is a subset of a line L in �. Note that W (A) = {μ} if and
only if A = μI . Assume that it is not the case. Then, there exist a, b ∈ � with a �= 0
such that cl (W (A)) = a[−1, 1] + b ⊆ a� + b. Thus, A = aS + bI such that S = S∗

with cl (W (S)) ⊆ [−1, 1]. In particular, ‖S‖ = 1.
If the end point a + b of cl (W (A)) belongs to W (A), then 1 ∈ W (S). So, there is

a unit vector x ∈ H such that

1 = 〈Sx, x〉 ≤ ‖Sx‖‖x‖ ≤ ‖S‖ ≤ 1.

By the equality case of the Cauchy-Schwartz inequality, Sx = x, and thus Ax =
(a + b)x. Thus, a + b ∈ σp(A). Conversely, if a + b ∈ σp(A), then a + b ∈ W (A).
Similarly, −a + b ∈ W (A) if and only if −a + b ∈ σp(A). �

The following corollary is immediate.

COROLLARY 2.4. Suppose A ∈ B(H) is normal and μ ∈ W (A) is a boundary point.
Then, there is a straight line L in � such that W (A) ∩ L = {μ} if and only if H admits an
orthogonal decompositionH1 ⊕ H2 and A = μIH1 ⊕ A2 ∈ B(H1 ⊕ H2) with μ /∈ W (A2).
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We present another example to illustrate our results and show that the set W (T) ∩
∂W (T) cannot be determined by (and does not determine) σ (T) and σp(T) in general.
The following corollary is useful for presenting the example:

COROLLARY 2.5. Suppose A = d1IH1 ⊕ d2IH2 ⊕ · · · ∈ B(H) such that H is an
orthogonal sum of the closed subspaces H1,H2, . . .. Then,

W (A) = conv {dn : n ≥ 1}.
Proof. The result follows from the inclusions

int (W (A)) ⊆ conv {dn : n ≥ 1}

⊆ W (A) ⊆ cl (W (A)) = cl (conv {dn : n ≥ 1})
and the description of ∂(W (A)) ∩ W (A) in Theorem 2.1. �

We are now ready to present the promised example. In particular, we construct
normal operators A, B, C ∈ B(H) so that cl (W (A)) = cl (W (B)) = cl (W (C)); A and C
have different spectra and point spectra but ∂W (A) ∩ W (A) = ∂W (C) ∩ W (C); B and
C have the same spectrum and point spectrum but ∂W (B) ∩ W (B) �= ∂W (C) ∩ W (C).

EXAMPLE 2.6. Let {rn : n ≥ 1} be a countable dense subset of the open interval
(0, 1) and {dn : n ≥ 1} a countable dense subset of the interior of conv {0, 1, i}. Let
A = [i] ⊕ diag (r1, r2, . . .), B = [i] ⊕ diag (d1, d2, . . .) and C = B ⊕ M, where M is the
multiplication operator on L2([0, 1]) defined by M(f )(t) = t(f (t)) for t ∈ [0, 1]. Then,

cl (W (A)) = cl (W (B)) = cl (W (C)) = conv {0, 1, i}.
Using Theorem 2.1, we have ∂W (B) ∩ W (B) = {i} and

∂W (A) ∩ W (A) = {i} ∪ (0, 1) = ∂W (C) ∩ W (C)

so that

∂W (A) ∩ W (A) = ∂W (C) ∩ W (C) �= ∂W (B) ∩ W (B).

It is easy to check that

σp(A) = {i} ∪ {rn : n ≥ 1}, σp(B) = σp(C) = {i} ∪ {dn : n ≥ 1},
σ (A) = {i} ∪ [0, 1] and σ (B) = σ (C) = conv {0, 1, i}.

COROLLARY 2.7. Suppose dimH is infinite and A ∈ B(H) is normal. If A is not
unitarily reducible, then W (A) = int (W (A)). In other words, W (A) is a non-empty open
set in � or W (A) is a non-degenerate line segment without end points.

Suppose S is a closed, bounded and convex subset of �, with non-empty interior.
We say that S is strictly convex if ∂S equals the set Ext (S) of extreme points of S.

COROLLARY 2.8. Let A ∈ B(H) be normal and E = W (A) ∩ Ext (cl (W (A))) be
uncountable. Then, H is nonseparable and every point in E is an eigenvalue of A. In
particular, if W (A) = cl (W (A)) is strictly convex with non-empty interior, then H is
nonseparable and every boundary point of W (A) is an eigenvalue.
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COROLLARY 2.9. Let S be a bounded and convex subset of �. Then, there exist
a separable Hilbert space H and A ∈ B(H) such that S = W (A) if and only if S ∩
Ext (cl (S)) is countable.

Proof. Suppose S is a bounded convex set such that S ∩ Ext (cl (S)) is countable.
Let A = diag (d1, d2, . . .) such that {dn : n ≥ 1} is the union of S ∩ Ext (cl (S)) and a
countable dense set of the relative interior of S, then W (A) = S. The converse follows
from Corollary 2.8. �

3. Davis-Wielandt Shells. In this section, we characterize DW (T) ∩ ∂DW (T) for
normal T ∈ B(H). In our discussion, we always identify � × � with �3.

THEOREM 3.1. Suppose T ∈ B(H) is a normal operator. Then, DW (T) and
conv {(ξ, |ξ |2) : ξ ∈ σ (A)} have the same interior. A point (μ, r) ∈ DW (T) is a boundary
point if and only if H admits an orthogonal decomposition H1 ⊕ H2 with T =
T1 ⊕ T2 ∈ B(H1 ⊕ H2) such that (μ, r) ∈ DW (T1) ⊆ P for a plane P in � × � and
DW (T2) ∩ P = ∅.

Proof. Let T = H + iG be such that H = H∗ and G = G∗. Then, DW (T) can be
identified with the joint numerical range

W (H, G, T∗T) = {(〈Hx, x〉, 〈Gx, x〉, 〈T∗Tx, x〉) : x ∈ H, 〈x, x〉 = 1} ⊆ �3.

Let x ∈ B(H) be a unit vector such that

(μ1, μ2, r) = (〈Hx, x〉, 〈Gx, x〉, 〈T∗Tx, x〉)

is a boundary point of W (H, G, T∗T). Let P be a support plane of DW (T) passing
through (μ1, μ2, r). Then, there are real numbers a, b, c, d such that

aν1 + bν2 + cr̃ − d ≤ aμ1 + bμ2 + cr − d = 0

for all (ν1, ν2, r̃) ∈ W (H, G, T∗T). As a result, the operator T̃ = aH + bG + cT∗T − dI
is negative semidefinite with a non-zero kernel. Let H1 be the kernel of T̃ . Then,
T̃ = T̃1 ⊕ T̃2 ∈ B(H1 ⊕ H⊥

1 ) such that 〈T̃2y, y〉 < 0 for any unit vector y. Note that
T̃ commutes with H, G. It follows that H = H1 ⊕ H2 and G = G1 ⊕ G2 acting on
H1 ⊕ H⊥

1 so that T∗T = T∗
1 T1 ⊕ T∗

2 T2 for T1 = H1 + iG1 and T2 = H2 + iG2. Clearly,
W (H1, G1, T∗

1 T1) ⊆ P and W (H2, G2, T∗
2 T2) are contained in one of the half space

determined by P. Identifying DW (Tj) = W (Hj, Gj, T∗
j Tj) for j = 1, 2, we get the

desired conclusion on DW (T).
It is easy to verify the sufficiency of the theorem. �
By Theorem 3.1, the study of points in DW (T) ∩ ∂DW (T) for a normal operator

T reduces to the study of points in DW (T1) such that DW (T1) is a subset of a plane in
� × �. In the following, we give a detailed analysis of an operator A for which DW (A)
is a subset of a plane in � × �. In particular, we give a description of DW (A) in terms
of σ (A) and σp(A).

Note that DW (A) ⊆ convP for any A ∈ B(H), where

P = {(ξ, |ξ |2) : ξ ∈ �} (1)
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is a paraboloid. Also, observe that if A, A′ ∈ B(H) with A′ = αA + βI , where α, β ∈ �

with α �= 0, then

DW (A′) = {(αμ + β, |α|2r + 2Re (αβ̄μ) + |β|2) : (μ, r) ∈ DW (A)}. (2)

So, DW (A′) is the image of DW (A) under a real bijective affine transform. Clearly,
there is also a one-to-one correspondence between σp(A′) and σp(A). Moreover, the
affine transform will establish a one-to-one correspondence between the boundary
points of DW (A′) and those of DW (A). Hence, replacing A by A′ will not affect the
hypothesis and conclusion of the results in the following discussion.

THEOREM 3.2. Let A ∈ B(H) be normal. Then, DW (A) is a subset of a plane in
� × � if and only if one of the following holds:

(a) A = μI so that DW (A) = {(μ, |μ|2)} is a singleton.
(b) H has a closed subspace H1 such that A = μ1IH1 ⊕ μ2HH⊥

1
∈ B(H1 ⊕ H⊥

1 ) and
DW (A) = conv {(μ1, |μ1|2), (μ2, |μ2|2)}.

(c) σ (A) has more than two elements and there are α, β ∈ � with α �= 0 such that
αA + βI is a self-adjoint operator and DW (A) is contained in a plane parallel to
the line {(0, s) : s ∈ �} in � × �.

(d) σ (A) has more than two elements and there are α, β ∈ � with α �= 0 such that
αA + βI is a unitary operator and DW (A) is contained in a plane not parallel to
the line {(0, s) : s ∈ �} in � × �.

In all the cases (a) – (d) we have

DW (A) = int (conv {(μ, |μ|2) : μ ∈ σ (A)}) ∪ conv {(ξ, |ξ |2) : ξ ∈ σp(A)}.

Proof. Suppose (a) – (c) hold. Then,

DW (A) ⊆ cl (DW (A)) = conv {(μ,μ2) : μ ∈ σ (A)}

is a subset of a plane in � × � parallel to the line {(0, s) : s ∈ �} in � × �. Suppose
(d) holds. Then, the operator A′ = αA + βI satisfies ‖A′x‖ = 1 for all unit vectors
x ∈ B(H). Thus, DW (A′) is a subset of a plane parallel to the complex plane in � × �.
Since α �= 0 and σ (A′) = σ (αA + βI) has at least three elements not in a line, it follows
from (2) that DW (A) is a subset of a plane not parallel to the line {(0, s) : s ∈ �} in
� × �.

Suppose DW (A) is a subset of a line or DW (A) is a subset of a plane parallel to the
line {(0, s) : s ∈ �} in � × �. Then, the projection of DW (A) to the first co-ordinate
will be W (A) and is a subset of a straight line in �. Then there exist α, β ∈ � with
α �= 0 such that αA + βI is self-adjoint. It follows that (a), (b) or (c) holds depending
on σ (A) has one, two or more elements.

Now, suppose DW (A) is not a subset of a line, and DW (A) ⊆ P, where P is not
parallel to the line {(0, s) : s ∈ �} in � × �. Then there exist b, c and d ∈ � such that
for all (μ1 + iμ2, r) ∈ DW (A), we have

r + 2(bμ1 + cμ2) = d.

Since r ≥ μ2
1 + μ2

2, we have,

d + (b2 + c2) = (
r − (

μ2
1 + μ2

2

)) + (b + μ1)2 + (c + μ2)2 ≥ 0.
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If d + (b2 + c2) = 0, then DW (A′) consists of one point (−b − ic, b2 + c2) so that
A′ is a scalar operator, which is a contradiction. Hence, d + (b2 + c2) > 0. Let
α = 1/

√
d + (b2 + c2) and β = (b + ic)/

√
d + (b2 + c2). Then for every (μ1 + iμ2, r) ∈

DW (A), we have

|α|2r + 2Re (αβ̄μ) + |β|2 = 1
d + (b2 + c2)

(
r + 2(bμ1 + cμ2) + b2 + c2) = 1.

Therefore, for A′ = αA + βI , we have

DW (A′) ⊆ {(ξ, 1) : ξ ∈ �} = P′, (3)

that is, ‖A′x‖2 = 1 for all unit vector x ∈ H1. Since A is normal and so is A′, it follows
that A′ is unitary.

Finally, we consider the equality

DW (A) = int (conv {(μ, |μ|2) : μ ∈ σ (A)}) ∪ conv {(ξ, |ξ |2) : ξ ∈ σp(A)}.

Clearly, the equality is valid if (a) or (b) holds. The “⊇” inclusion is clear. To prove the
reverse inclusion, we establish the following:

Claim. If

(μ, r) ∈ DW (A) \ int (cl (DW (A))),

then

(μ, r) ∈ conv {(ξ, |ξ |2) : ξ ∈ σp(A)}.

Suppose (c) holds. We may replace A by αA + βI and assume that A is self-adjoint.
Then

DW (A) ⊆ conv {(μ, |μ|2) : μ ∈ σ (A)}

is a convex lamina in � × [0,∞). If c and d are the maximum and minimum of σ (A),
then the upper edge of the lamina equals conv {(c, |c|2), (d, |d|2)}. The points on this set
may or may not lie in DW (A) depending on whether c, d ∈ σp(A). Similarly, we have
to examine the lower edges or boundary curve of the lamina.

To establish the claim in this case, let x ∈ H be a unit vector such that
(〈Ax, x〉, ‖Ax‖2) = (μ, r) /∈ int (cl (DW (A))). If r = μ2, then by the Cauchy-Schwartz
inequality, Ax = μx and hence μ ∈ σp(A). Suppose r �= μ2. Let L be a support line
of DW (A) passing through (μ, r) and suppose L intersects the parabola P = {(s, s2) :
s ∈ �} at (μ1, |μ1|2) and (μ2, |μ2|2). Clearly, μ1, μ2, μ are all distinct. We may replace A
by A − (μ1 + μ2)I/2 and assume that μ1 + μ2 = 0. We may further assume that |μ1| =
1. Otherwise, replace A by A/|μ1|. Thus, we may assume that L = {(ξ, 1) : ξ ∈ �} is
an upper edge or a lower edge of the convex lamina DW (A) with (μ, r) = (μ, 1) ∈ L.
Consequently, 1 is either the maximum or the minimum of σ (A∗A).

Let H0 be the kernel of A∗A − I . Since (〈Ax, x〉, ‖Ax‖2) = (μ, 1), we see that
x ∈ H0. Since A is self-adjoint, we can further decompose H0 into the direct sum of
H1 and H2, which are the kernel of A − I and A + I , respectively. Note that neither H1

nor H2 can be a zero space, otherwise, we cannot have x ∈ H0 = H1 ⊕ H2 such that
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〈Ax, x〉 = μ. Thus, A can be written as IH1 ⊕ −IH2 ⊕ A0 ∈ B(H1 ⊕ H2 ⊕ H⊥
0 ). Then

(μ, r) ∈ DW (IH1 ⊕ −IH2 )

= conv {(1, 1), (−1, 1)}
⊆ conv {(ξ, |ξ |2) : ξ ∈ σp(A)}.

Finally, suppose (d) holds. We may replace A by αA + βI and assume that A is
unitary. Hence, DW (A) ⊆ {(μ, 1) : μ ∈ W (A)}, W (A) is a subset of the closed unit disk
and σ (A) is a subset of the unit circle in �. Suppose (μ, r) /∈ int (cl (DW (A))). Then,
there is a supporting line L on W (A) passing through μ. By Theorem 2.1, A = A1 ⊕ A2,
with μ ∈ W (A1). Note that DW (A1) ⊆ DW (A) ⊆ {(ν, 1) : ν ∈ W (A)}. Thus, DW (A1)
is a subset of a line segment passing through (μ, 1). From the result in (b), we see that
(μ, 1) ∈ conv {(ν, 1) : ν ∈ σp(A1)} ⊆ conv {(ξ, |ξ |2) : ξ ∈ σp(A)}. �

Similar to Corollary 2.5, we have the following corollary for the Davis-Wielandt
shell:

COROLLARY 3.3. Suppose A = d1IH1 ⊕ d2IH2 ⊕ · · · ∈ B(H) such that H is an
orthogonal sum of the closed subspaces H1,H2, . . .. Then

DW (A) = conv {(dn, |dn|2) : n ≥ 1}.

We can use the operators in Example 2.6 to illustrate our results on Davis-Wielandt
shells.

EXAMPLE 3.4. Let A, B, C be defined as in Example 2.6. Then,

∂DW (A) ∩ DW (A) = (∪n≥1conv
{
(i, 1),

(
rn, r2

n

)}) ∪ conv
{(

rn, r2
n

)
: n ≥ 1

}
,

∂DW (B) ∩ DW (B) = {(i, 1)} ∪ {(
dn, d2

n

)
: n ≥ 1

}
,

and

∂DW (C) ∩ DW (C) = {(i, 1)} ∪ {(
dn, d2

n

)
: n ≥ 1

} ∪ {(μ, r) : μ ∈ (0, 1), μ2 < r < μ}.

By Corollary 3.3, we have

DW (X) = conv {(μ, |μ|2) : μ ∈ σp(X)} for X = A, B, C,

and

DW (C)

= conv {DW (B) ∪ DW (M)}
= conv {(μ, |μ|2) : μ ∈ σp(C)} ∪ {(μ, r) : μ ∈ (0, 1), μ2 < r < μ}.

Recall that ∂W (A) ∩ W (A) = ∂W (C) ∩ W (C) = {i} ∪ (0, 1). It is clear that the
boundary structure of DW (A) can provide more information of A than W (A). In
particular, we have

σ (A) = {μ ∈ � : (μ, |μ|2) ∈ ∂DW (A)}
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and

σp(A) = {μ ∈ � : (μ, |μ|2) ∈ DW (A)}.
Note that the analog of Corollary 2.9 does not hold for the Davis-Wielandt shell.

In particular, the operator C in the above example acts on a separable Hilbert space
and (DW (C)) has uncountably many extreme point lying in DW (C).

4. Joint numerical ranges. Inspired by the comments of the referee on an early
version of the paper, we see that our results on the numerical range and the Davis-
Wielandt shell can be further extended to the joint numerical range W (A1, . . . , Am) of
mutually commuting operators A1, . . . , Am ∈ B(H) defined as the set of (a1, . . . , am) ∈
�m with

aj = 〈Ajx, x〉 for j = 1, . . . , m,

for some unit vector x ∈ H; see [2, 8, 11] and references there in. While W (A) and
DW (A) are useful for studying an operator A, the joint numerical range W (A1, . . . , Am)
is useful in studying the joint behavior of the operators A1, . . . , Am. Suppose Aj =
Hj + iGj for Hj = H∗

j and Gj = G∗
j for j = 1, . . . , m, then W (A1, . . . , Am) ⊆ �m can be

identified with W (H1, G1, . . . , Hm, Gm) ⊆ �2m. So, we can focus on the joint numerical
ranges of self-adjoint operators A1, . . . , Am ∈ B(H). Define the joint approximate point
spectrum σπ (A1, . . . , Am) to be the set of points (a1, . . . , am) such that

∑m
j=1 ‖(Aj −

ajI)xn‖ → 0 for a sequence {xn} of unit vector in H. It is known that

cl (W (A1, . . . , Am)) = conv σπ (A1, . . . , Am)

if A1, . . . , Am ∈ B(H) are mutually commuting self-adjoint operators; see [1, Corollary
36.11] and [11].

Suppose B1, . . . , Bm ∈ B(H) are mutually commuting self-adjoint operators. If the
real linear span of IH, B1, . . . , Bm has dimension k ≤ m, then W (B1, . . . , Bm) is a subset
of a (k − 1)-dimensional hyperplane in �m, that is,

W (B1, . . . , Bm) ⊆ (b1, . . . , bm) + V

for a (k − 1)-dimensional subspace V of �m. We can extend Theorem 2.1 and Theorem
3.1 (and their proofs) to the following:

THEOREM 4.1. Suppose A1, . . . , Am ∈ B(H) are mutually commuting self-adjoint
operators. Then (a1, . . . , am) ∈ W (A1, . . . , Am) ∩ ∂W (A1, . . . , Am) if and only if H
admits an orthogonal decomposition H1 ⊕ H2 and Aj = Bj ⊕ Cj for j = 1, . . . , m such
that (a1, . . . , am) ∈ W (B1, . . . , Bm) ⊆ P for a hyperplane in �m and W (C1, . . . , Cm) ∩
P = ∅.

Similar to the study in Sections 2 and 3, one may analyze the geometric structure
of W (B1, . . . , Bm) in connection to the algebraic structure of B1, . . . , Bm in Theorem
4.1. If the boundary point (a1, . . . , am) of W (A1, . . . , Am) lies in the relative interior
of W (B1, . . . , Bm), then not much can be said. Otherwise, we can apply the theorem
again to further decompose Bj into the direct sum of two operators for j = 1, . . . , m.
If this procedure can be repeated until we have (a1, . . . , am) ∈ W (B̃1, . . . , B̃m) so that
W (B̃1, . . . , B̃m) lies on a hyperplane of dimension 0 or 1, then we can apply Theorem
3.2 to conclude that each B̃j is a scalar operator, or B̃j = μjI ⊕ νjI with aj ∈ (μj, νj)
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for all j = 1, . . . , m. Of course, in the latter case, (a1, . . . , am) is again in the relative
interior of W (B̃1, . . . , B̃m). Summarizing the above discussion, we have the following:

PROPOSITION 4.2. Under the hypotheses of Theorem 4.1. If (a1, . . . , am) ∈
W (A1, . . . , Am) is a boundary point, then B1, . . . , Bm can be chosen so that one of
the following holds:

(a) (a1, . . . , am) is in the relative interior of W (B1, . . . , Bm).
(b) Bj = ajI for j = 1, . . . , m. This case holds if and only if (a1, . . . , am) is an extreme

point in W (A1, . . . , Am).

Statement (b) of the above theorem is the main theorem in [8]. Similar to Corollary
2.9, we have the following:

COROLLARY 4.3. Let S be a bounded and convex subset of �m. Then there exist a
separable Hilbert space H and mutually commuting self-adjoint operators A1, . . . , Am ∈
B(H) such that S = W (A1, . . . , Am) if and only if S ∩ Ext (cl (S)) is countable.

Note that one may sometimes use the joint numerical range to study DW (A) as in
our proof of Theorem 3.1. But one cannot just treat DW (A) as a special case of the joint
numerical range. For instance, one can extend Corollary 2.9 to the joint numerical range
(Corollary 4.3) but not to the Davis-Wielandt shell (as noted at the end of Section 3).
In this connection, it would be interesting to characterize those bounded convex sets
in �3 that can be realized as DW (A) for a normal operator A acting on a separable
Hilbert space.
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