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ABSTRACT

In this paper we present an approach to market based valuation of life insur-
ance policies, in the spirit of the NUMAT proposed by Hans Bühlmann (2002)
in an editorial in the ASTIN Bulletin. We have experienced the valuation
method for more than one decade, both as a pricing procedure applied to pol-
icy portfolios of leading insurance companies, and by including the valuation
principles into several actuarial teaching activities.

Our interest is mainly focused here on participating policies that in Italy are
characterized by contractually binding profit sharing rules. The problem of the
fair valuation of the liabilities generated to the insurer by these contracts can be
conveniently addressed using the methods of contingent claims pricing. These
allow to price correctly the options embedded into the policies and to implement
consistent plans of asset-liability management. The approach also provides a
market based measurement of the value of business in force for outstanding
policy portfolios and consistent assessments of the financial risk based capitals.

1. A NUMAT SYSTEM FROM ITALY

In line with the suggestions expressed by Hans Bühlmann in the proposal of
the NUMAT approach (Bühlmann, 2002) and also in the discussion of the arti-
cle by Aase and Persson (Bühlmann, 2003a), we describe here our experience
in applying and teaching the financial approach in valuation of life insurance
policies in Italy.

Our approach has been focused on two main issues:

– providing a mark-to-market (fair) valuation of the outstanding liabilities of
an insurance company, jointly with the appropriate measures of sensitivity
to financial risk factors, e.g. interest rate risk, that are essential for imple-
menting a consistent plan of asset-liability management;

– derive a more reliable measure of the value embedded in business in force
(VBIF), including a mark-to-market valuation of the financial options embed-
ded into the policies.

It is worth mentioning that when applied to a single policy at the issue date
the approach also provides a fair methodology for profit testing. Another
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important by-product is the derivation of the financial components of the risk
based capital of the outstanding portfolio. This is typically done by properly
stressing the risk factors of the valuation model and then repeating the pric-
ing procedure under the “worst case scenario”.

Virtually all traditional life insurance policies in Italy provide benefits which
are explicitly linked to the return of a reference fund, in which the technical
reserves must be invested. The investment fund, usually referred to as “segre-
gated fund” (“gestione separata” in Italian) is managed by the insurer under
specified accounting rules. This kind of profit sharing mechanism is not dis-
cretionary for the insurer, but rather it is one of the terms of the contract.
Using the language of the option pricing theory, the financial component of
a policy can thus be considered as a derivative contract having the reference
fund as the underlying asset. Therefore it is natural to perform the financial
valuation of both the assets (the reference fund) and the liabilities (the promised
benefits) using an appropriate stochastic pricing model based on the no-arbi-
trage principle.

In 1993-94 we applied for the first time this methodology to the valuation
of a portfolio of participating policies issued by INA (Istituto Nazionale delle
Assicurazioni), the so-called “3/N” policies. These policies were annual pre-
mium endowments having premiums and benefits linked both to the reference
fund return and to the consumer price index. The pricing of 3/N policies was
performed using an extended Cox-Ingersoll-Ross model, including both real
and nominal interest rates. As it usually happens, the indexation rule was rather
complex and Monte Carlo procedures were used to implement the no-arbitrage
valuation. One of the main goals was to verify if the amount of (inflation)
indexed bonds held by the insurer into the reference fund was properly calibrated
in order to hedge the inflation risk generated by the 3/N liabilities. We found
that the index-linked bonds were overweighted in the investment portfolio1.

The teaching activity on these issues started in 1991 at the Scuola Normale
Superiore di Pisa and at the Istituto Italiano degli Attuari2. The topics included
both the theoretical foundations of the approach and the analysis of case stud-
ies, supported by explicit software procedures. The courses have been organized
for the needs of the actuarial professionals, but a few places were offered on
a no cost basis to academic institutions.

In July 2002, we presented the approach at the Summer School of the Groupe
Consultatif Actuariel Europeen, in Milan. The lecture notes of the course (De
Felice, Moriconi, 2002b) are available on the website www.GCActuaries.org/
events.html.

The valuation methodology has been coded in a software application,
enforced by a corresponding database, forming the implementation of what
today would be called a NUMAT-based system.
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1 The results of this study were presented in the talk “Valuation of Index-Linked Life Insurance Poli-
cies with Minimum Guarantees by Stochastic Models for Real and Nominal Interest Rates” at the
Conference on Recent Advances in Mathematical Finance, Cortona, May 29-June 3, 1994.

2 Courses have been held on Interest rate risk control and CIR model (1991-92); Asset-liability manage-
ment in life insurance (1995-96); Management of pension funds (1997); Embedded value calculation
in life insurance (2001-02).
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Early versions of this system were installed at SAI in 1997, in order to
design pension plans with minimum guarantees; successively the system was
enhanced and extended to all the outstanding policy portfolios of all the
companies of the SAI Group, and finally of the Fondiaria-SAI Group. The sys-
tem is applied both to the asset-liability management and to the control of
the evolution of the embedded value and the cost of the minimum guarantees
options. In 1999 the system has also been adopted by all the companies of
Gruppo Reale Mutua Assicurazioni and by Cisalpina Previdenza and Roma
Vita (at present merged in Fineco Vita).

Alleanza Assicurazioni is also using the system since 2000. The valuation pro-
cedures are running with monthly frequency and are used for providing man-
agement indications to the investment department and for monitoring the VBIF.
The deeper understanding of the price determinants of the embedded options has
stimulated the construction of new life products having a reduced cost of the min-
imum guarantees. These new policies have been recently issued on the market.

RAS Group adopted the methodology in 2001 in order to measure the risk
based capital of the outstanding portfolios. In this case we extended the sys-
tem to non-life portfolios. The embedded value measurement and the pricing
of the embedded options were obtained as by-product of the risk capital val-
uation. Indications provided by the valuation procedures stimulated a re-styling
process of the policies.

From the point of view of NUMAT approach it is important to stress that
the system is employed in educational activities within the above companies.

In the rest of the paper we provide an illustration of our approach to the
market based valuation of life insurance policies. When financial uncertainty
(i.e. concerning capital markets) and actuarial uncertainty (e.g. concerning the
life of the individuals) can be separated, the financial component of the poli-
cies can be analyzed using the tools of contingent claims pricing in complete
markets. In this case the current prices of financial products contain sufficient
information to derive a unique market price reflecting both the prevailing
expectations and the risk premia required by the economic agents. We provide
an example of how this valuation process can be realized in practice using an
arbitrage pricing model including both interest rate and stock price risk. Since
purely actuarial products typically are not traded in organized markets, the
problem of determining a unique assessment of actuarial risk premia and hence
deriving a (unique) fair valuation of the actuarial component of the policy
remains an open issue3.

The idea of separating the financial from the actuarial uncertainty into an
insurance contract and then of pricing the first component as a purely financial
contingent claim can be traced back to Brennan-Schwartz (1976) and Boyle-
Schwartz (1977), who pioneered the application of the option pricing theory
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3 The problem is of major importance in property/casualty insurance, where actuarial risk is usually
much more relevant than financial risk. In the USA the Casualty Actuarial Society (CAS) created
a “Task Force on Fair Value Liabilities” to address fair value insurance issues raised by several
accounting proposals. In the “White Paper” published in 2000 by the Task Force (CAS Task Force,
2000) a number of alternative methods are considered for estimating adjustments for risk in fair valu-
ation of actuarial liabilities. Which of these methods should be preferred is still a matter of debate.
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to life insurance policies. Boyle (1978) nicely applied these ideas also to the
asset-liability management in insurance. These topics gained new relevance in
the early 1990’s, both for the strong financial innovation of the insurance prod-
ucts and for the decrease of interest rates experienced in the financial markets.
Papers on unit-linked contracts include Delbaen (1990), Bacinello-Ortu (1993),
Aase-Persson (1994). Applications of semi-deterministic and stochastic immu-
nization theory to the asset-liability management can be found in Castellani-
De Felice-Moriconi (1992). A stream of papers followed concerning the con-
tingent claims approach to the analysis of participating policies and to the
valuation of the interest rate options embedded in these contracts. Examples
are Persson-Aase (1997), Miltersen-Persson (1999), Grosen-Jørgensen (2000),
Bacinello (2001), De Felice-Moriconi (2002a), Miltersen-Persson (2003).

This still growing research activity is also motivated by the position recently
adopted by the international regulatory and accounting institutions, which are
paying an increasing attention to the marked based assessment of the costs and
the risks which are implicit in the insurance business. For example, the need
to value the embedded options explicitly is widely stressed in the Research
Report of the Insurer Solvency Assessment Working Party (2004) appointed
by the International Actuarial Association. In this report the importance to
have a consistent valuation approach for the options and their underlying assets
is also recognised. Moreover, the newly developing International Accounting
Standards (IAS) are clearly moving toward a fair (i.e. market consistent) val-
uation of insurance assets and liabilities. In particular, in the Phase II, which
should be effective in 2007 or 2008, the IAS will require options and guaran-
tees contained in insurance contracts to be explicitly valued and reserved for.

Fair valuation principles have pervasive effects on the organization of an
insurance company, involving not only technical problems of pricing but also
more general issues concerning accounting, capital budgeting and solvency
measurement. Since we are reporting here on our experience in the practical
application of these principles, we are mainly interested in questions concerning
the global framework of the insurance business, as general valuation principles,
reserving, embedded value and risk capital determination. More technical – though
relevant – issues, as the different performances of alternative pricing models
will not be of our major concern in this paper.

When considering a real-world policy portfolio a number of diffent prod-
ucts and contractual details has to be analyzed. To simplify the exposition we
mainly refer to the simple case of pure endowment profit sharing policies.
However the pricing model we specify is suited for providing a unified valua-
tion of both the outstanding liabilities of a general policy portfolio and the
assets of the fund where the earned premiums are invested.

2. THE VALUATION FRAMEWORK

2.1. A simplified contract

To understand the valuation framework it suffices to illustrate our procedure with
the simple case of a single premium pure endowment insurance contract, written
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at time 0 for a life with age x, with term T years and initial sum insured C0.
Assume that the policy is a participating one, or “with profit”, in which the
benefit CT that will be paid by the insurer if the policyholder is alive at time T
is determined by incrementing each year the sum insured by a fraction b of the
interest earned by the insurer on the investment of the premium4. The entire
technical reserve is invested in a properly defined reference fund, which is
directly managed by the insurance company.

Let Ft be the market value at time t of the fund where the premium is
invested. The rate of return earned by the fund in year [t – 1, t] is:

t

t
t ;I F

F
1

1

= -
-

(1)

obviously It is a random variable which can also assume negative values. Let
us assume that the basic actuarial calculations are performed at the technical
interest rate i. The Italian system for profit sharing policies then provides that
if It > i a portion of the extra earned interest is credited to the insured by an
increase of the sum insured. A typical interest crediting mechanism is obtained
by readjusting the benefit at the end of the year t with the rule:

Ct = Ct – 1 (1 + rt), t = 1,2,…,T, (2) 

where the readjustment rate is defined as:

rt :=
,

;
max

i
i ib

1
t

+

-I" ,
(3) 

here b ∈ (0,1) is the so called “participation coefficient”. Both the technical
rate i and the b coefficient are contractually specified, that is fixed at time zero.

The quantity bIt in expression (3) represents the portion of the fund return
which is credited to the policyholder (by increasing the sum assured); the
remaining portion (1 – b)It is retained by the insurer and determines his invest-
ment gain. The floor rate i guarantees to the policyholder that the sum insured
cannot decrease; thus the insurer must guarantee the readjusted benefit Ct even
if the reference fund does not realize the technical rate i in year t5.

Under this profit sharing rule, the final benefit is given by:

CT = C0FT,
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4 We refer to the case of a participating policy since this seems to provide the most challenging appli-
cation of the NUMAT method. For unit-linked and index-linked policies the market based valuation
approach appears to be natural (and probably unavoidable). A detailed example of NUMAT valuation
of a participating whole life insurance contract can be found in Pacati (2003).

5 Similar contracts have been analyzed by several authors. Persson-Aase (1997) and Miltersen-Persson
(1999), e.g. derive the price of minimum return guarantee under various interest rate models. Grosen-
Jørgensen (2000), and Miltersen-Persson (2003) are particularly concerned with the effects of the
return distribution mechanism on the price of the policy. A general framework for valuing return
distribution and bonus policies under a stochastic “second order” basis has been proposed by Norberg
(1999).
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where the readjustment factor FT is defined as:

FT := T- , .maxi I ir b1 1 1
t
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t% %^ ] ^h g h" , (4)

Let E(x,T ) denote the event “the life insured aged x is alive at time T”, and
let �E(x,T) denote the indicator function of E (x,T). The liability YT of the insurer
at time T is given by:

YT = C0 FT �E(x,T) ; (5)

hence the random payoff YT is affected by both financial and “technical” (actu-
arial) uncertainty.

For this simple policy, if surrendering is not allowed the technical uncer-
tainty is represented by survival risk. Financial uncertainty can be of a more
complex nature, depending on the financial risk factors affecting the investment
results. Given that the asset allocation of the typical reference funds is usually
characterized by an important bond component, the interest rate risk will be
of primary concern in the valuation framework.

2.2. Linear valuation

We assume that all the random variables concerning the valuation problem
are defined on a probability space (W,A,P), where P is the probability measure
we assume to describe all random movements in time (natural probability mea-
sure). In order to model financial and technical uncertainty, we also assume
that two sub-s-algebras can be defined: F, containing the financial events, and
T, which contains the technical events. Correspondingly, we also consider the
two filtrations:

F0 ⊂ F1 ⊂ ··· ⊂ Ft ⊂ ··· ⊂ F ; T0 ⊂ T1 ⊂ ··· ⊂ T t ⊂ ··· ⊂ T .

By definition, FT is FT-measurable and �E(x,T) is TT-measurable.
We are interested in assigning a value at time t to the random variable YT

payable at time T. We call this map the Valuation Functional, denoted by V(t;YT).
Again it suffices here to explain our procedure, if we show how to find V(0;YT)
(valuation at the beginning of the policy).

The functional V(0;YT) should avoid riskless arbitrage opportunities; hence
it must have the following representation:

V(0;YT) = EP[pTYT ], (6)

where EP is the conditional expectation, given A0, under the natural measure
P and pT (the “state-price deflator”) is a strictly positive AT-measurable random
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variable6. This result is a central one in the theory of arbitrage pricing (see
e.g. Duffie (1992)). It can also be derived by the Riesz representation theorem
if the linearity of the Valuation Functional V is required (see also Bühlmann
(1995)).

We assume independence between financial and technical uncertainty; more
precisely, we assume that F and T are independent and that the deflator pT can
be expressed as the product of two strictly positive random variables:

pT = fT xT, (7) 

where fT, the financial deflator, is FT-measurable and xT, the technical defla-
tor, is TT-measurable7. Under this assumption the following factorization holds:

V(0;YT) = C0EP [fT FT ] EP [xT �E(x,T) ] . (8) 

2.3. Financial component

We can interpret the readjustment factor FT as the stochastic payoff of an indexed
Zero-Coupon Bond (ZCB), called U, maturing at time T. The reference index
of U is the annual return It of the investment fund and the indexation rule is
specified by the definition (4). By the separation property (8) the value of this
indexed ZCB at time zero is equal to:

u (0,T) := V(0; FT) = EP [fT FT ]. (9) 

It is important to distinguish (9) from a usual non-indexed ZCB with deter-
ministic payoff 1T (one unit of cash at time T ), for which we have:

v (0,T) := V(0; 1T) = EP [fT]. (10) 

Assuming the financial market to be complete the payoff FT (and of course
also 1T) can be replicated by a suitable trading strategy and the price u(0,T)
must be equal to the market price of this strategy, independently of the prob-
ability assessment and the risk aversion of the insurer. It is natural to suppose
that short-term riskless (i.e. not defaultable) borrowing is allowed in the market
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6 If fT (y) is the probability density function of YT, we can also write:
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where cT(y) := pT(y) fT(y) is the so-called state-price density.
7 In more general situations the policy can be also surrendered. In this case the independence

assumption in general is too strong, since the option to early redeem the contract can be exercised
by the policyholder based on financial market events. However, for policies where early redemption
is strongly penalized it could be never optimal to exercise the surrender option. In these cases redemp-
tions seems to be essentially driven by the evolution of personal consumption plans and one can
retain the independence assumption, modelling surrenders as “technical” events, described by expe-
rience-based elimination tables. For the application of results in American option pricing theory to
the early exercise of interest rate guarantees see Grosen-Jørgensen (1997).
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at a strictly positive discount. Let dT denote the payback at time T of a unit
of money rolled over in short-term borrowing from 0 to T. It is well-known that
in this case there exists a unique equivalent probability measure Q such that:

EP [fT FT ] = EQ [zT FT], (11) 

where zT := 1/dT and EQ is the expectation taken with respect to the Q mea-
sure. In a continuous-time setting one has:

zT = re dtt
T

0
- # , (12)

where rt is the stochastic force of interest (the so-called “spot rate”) prevailing
on the market at time t for riskless investments. The Q measure is also referred
to as the risk-neutral measure, since the price V(0;FT) can be expressed as
the expectation, under Q, of the terminal payoff FT discounted with the sto-
chastic discount factor zT. In other words, one can “neutralize” the risk premia
contained in the deflator fT using the Q measure instead of the natural mea-
sure P.

2.4. Technical component

For the technical component of the valuation problem, we look at:

V (0; �E(x,T)) := EP [xT �E(x,T)], (13)

as the time zero value of �E(x,T) . It is natural to assume:

V(0;1T) = 1, (14) 

which implicitly states that no discounting effect is involved in this valuation,
the “price of time” being completely taken into account by the financial com-
ponent of the pricing procedure8. A crucial point now is that usually the tech-
nical “payoff” �E(x,T) cannot be replicated by traded contracts. Hence the com-
plete market assumption is not fulfilled and the price V(0; �E (x,T)) cannot be
determined by observing the market. However, since the assumption (14)
implies the norming condition EP[xT] = 1, we can write:

V(0; �E(x,T)) = ED[ �E(x,T)], (15)
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8 In a more formal setting we could define two different valuation functionals:

VF(0; FT) := EP[fTFT], VT(0; �E(x,T)) := EP[xT �E(x,T)],

and express the factorization property (8) as:

V(0;YT) = C0VF(0; FT)VT(0; �E(x,T)).

In this framework it would be natural to consider the discounting effect to be taken into account in
the VF component by definition. Hence condition (14), which should be written as VT(0; �W) = 1,
would follow as a consequence of the no-arbitrage assumption.
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where D is a transformed probability measure defined by dD = xT dP. The use
of an “adjusted” probability measure to preserve price additivity was suggested
by Venter (1991). The idea has been developed by Wang (1996, 2000, 2002) who
proposed a number of “distortion” functions of the P measure providing desir-
able properties of the price functional.

Once the D measure has been chosen by the insurer, the quantity:

C
0

:= C0ED[�E(x,T)]

can be considered as a definition of the certainty equivalent, at time T, of the
random amount C0�E(x,T). As the P measure represents the natural probability
assessment of the insurer, the difference:

C0{ED[�E(x,T)] – EP[�E(x,T)]}

expresses the risk loading (at time T) required for bearing the survival risk. For
the relations between this approach and the expected utility theory see Wang
(1996).

Even if the reinsurance markets can not be considered as being purely
competitive, some useful indications for a market based assessment of the D
measure, and hence for the price V(0; �E(x,T)), could be obtained by observing
the current prices of reinsurance treaties for survival/mortality risk. However,
the issue of how in general a market consensus on the value of technical payoffs
can be determined is currently an open problem. In the sequel we shall assume
the D measure simply as given.

2.5. The numeraire

Under this set of assumptions, the time zero price of the random benefit YT can
be given as:

V(0;YT) = C0EQ [ re dtt
T

0
- # FT] ED[�E(x,T)]. (16) 

The technical expectation can be expressed by the usual actuarial notation,
that is:

ED[�E(x,T)] = Tpx, (17)

where the probability Tpx is computed using suitable mortality tables. The risk-
neutral expectation provides the price of the indexed ZCB U:

u(0,T) = EQ re Fdtt
T

0
-

T
#

9 C. (18) 

Then the expression (16) can be written as:

V(0;YT) = C0 u(0,T)Tpx. (19) 
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The structure of this expression is similar to the expression of the technical
reserve R0 of the policy at time zero; in the traditional framework we have:

R0 = C0 (1 + i )–T
Tp�x , (20) 

where i is the technical rate and Tp�x is computed using “first order” mortality
tables. It is well-known that first order tables are usually based on conserva-
tive assumptions, hence Tp�x is a “distorted” probability providing an implicit
safety loading. To simplify the exposition we shall assume that the first order
probabilities are the same as those given by the D measure; i.e. we pose:

Tp�x = Tpx . (21) 

Even with this assumption it is clear that (19) and (20) represent very different
valuation approaches; in particular, u(0,T) can be interpreted as a market based
discount factor, as opposed to the contractual discount factor (1 + i ) –T.

The expression (19) makes also clear that the financial component of this
valuation approach is – using Bühlmann’s terminology – a numeraire approach;
we can consider the benefit YT provided by the participating pure endowment
policy as expressed in “units” of the indexed ZCB U ; the current price of the
benefit is given by C

0
:= C0Tpx times the current market price u(0,T) of the unit.

One can also define:

V *(0;YT) := T

,
;

u T
V Y

0
0

]

]

g

g , (22)

where V * = C
0

is the relative price of YT with respect to U, that is the price of
YT measured in units of U rather than in Euros. In financial economics, expres-
sing the price by V* instead of V is usually referred to as a “change of numeraire”.

As a particular case, one can consider a non participating policy, where
CT = C0 (i.e. FT = 1T); now one has:

V(0;YT) = C0v(0,T)Tpx , (23) 

where:

v(0,T) := EQ re dtt
T

0
- #

9 C (24)

is the risk free discount factor prevailing on the financial market at time zero
for the maturity T; that is the current price of the default free unit discount
bond maturing at time T (B0(T) in the Aase-Persson (2003) notation).

3. FAIR VALUATION, VBIF AND EMBEDDED OPTIONS

If we are able to determine the market value u(0,T) of the unit, expression (19)
provides a market based valuation of the outstanding liabilities generated by
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the policy, what is usually said a fair valuation9. Since u(0,T) must be typically
derived using an appropriate stochastic pricing model, we usually refer to
V0 := V(0;YT) as the stochastic reserve, as opposed to the traditional reserve R0
given by (20).

3.1. Value of Business in Force: the stochastic reserve approach

Under the assumption of complete financial market, the payoff CT can be
replicated by a trading strategy and the amount C0 u(0,T ) represents the mar-
ket price at time zero of the equivalent portfolio, that is of the the dynamic
portfolio of traded securities which replicates the stochastic benefit CT. There-
fore, assuming that the mortality risk can be “diversified away” in a large
portfolio, the stochastic reserve V0 represents the market price at time zero
of the portfolio which replicates the stochastic liability YT of the insurer.
It is then natural to define the time zero value E0 of the business in force
(the so called VBIF, net of expenses, administrative costs and taxes), as the
difference:

E0 := R0 – V0. (25) 

The interpretation of this expression is straightforward. The technical reserve R0
is the capital required at time zero to the insurer in order to issue the policy10,
while V0 is the investment actually needed at time zero to meet the future lia-
bilities. The difference E0 = R0 – V0, which usually should be positive, is not
immediately available to the insurer, but will be progressively delivered in the
future as profits emerging during the life of the policy; however the present
value of these profits, by arbitrage, must be equal to E0.

This method for determining E0 can be called the “stochastic reserve
approach”. Usual decompositions of VBIF, e.g. separation between investment
component and mortality component, can be recovered under this method by
using different specifications of the probability Tpx in (19) and of the proba-
bility Tp�x in (20). We considered here VBIF at time zero only for illustration;
all the definitions can be immediately extended at any time t during the life of
the policy, as illustrated in section (5.4).
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9 The International Accounting Standards Committee (IASC) in the Insurance Issues Paper (Novem-
ber 1999) defines the fair value as: “The amount for which an asset could be exchanged, or a liability
settled, between knowledgeable, willing parties in an arm’s-length transaction.” A similar definition is
adopted by the Financial Accounting Standard Board (FASB) in a Preliminary Views document
(December, 1999): “Fair value is an estimate of the price an entity would have realized if it had sold
an asset or paid if it had been relieved of a liability on the reporting date in an arm’s-length exchange
motivated by normal business considerations. That is, it is an estimate of an exit price determined by
market interactions.” By acknowledging these positions, the CAS Fair Value Task Force (CAS Task
Force, 2000) defined fair value as: “the market value, if a sufficiently active market exists, OR an esti-
mated market value, otherwise.”

10 We do not consider here the capital requirements given by the regulatory solvency margin.
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3.2. The annual profits approach

The standard method for measuring VBIF is an “annual profits approach”. The
method is based on typical recursive relations for the technical reserve which
allows to define an annual sequence of expected technical gains Gt during all
the life of the policy (a typical expression of this is known as the Homans
formula). The cash-flow Gt can be considered as the expected annual profit to
the insurer provided by the policy at the end of year t and the VBIF is obtained
as the present value of this cash-flow stream, derived under “Risk Adjusted
Discounting” (RAD), that is by using a risk adjusted discount rate appropriate
to the riskiness of the cash-flows. It is also usual a decomposition of VBIF based
on the definition of investment gains and mortality gains.

It can be easily proven (De Felice-Moriconi (2002b, p. 94)) that under the
no-arbitrage assumption in perfect markets the annual profits approach is
equivalent to the stochastic reserve approach, provided that the traditional
method is applied in a market based framework. This means that the expected
annual gains must be derived under the risk-neutral measure Q and then dis-
counted at the risk free market rate. As we know, this approach correctly takes
into account risk premia, and avoids arbitrage opportunities if the value E0 is
used as a market price. In principle, the RAD method is not inconsistent with
the no-arbitrage approach; the Capital Asset Pricing Model, for example, pre-
scribes – once the riskiness of the cash flow to be discounted has been correctly
measured –, the correct risk adjusted discount rate which provides a market
based, and arbitrage-free, valuation. However, in the applications the RAD
approach suffers of the high degree of subjectivity involved in the practical
assessment of both the expected cash-flows and the risk adjusted rate11.

One can have even more important problems with the RAD method when
option-like payoffs are considered, as it happens in our life insurance applica-
tions. Usually the RAD method is applied as a single-scenario method; that is
a single assumption is made on the future path of the returns from the invest-
ment of the reserve. This scenario of returns can be interpreted as the expected
evolution of future return; the expected investment gains are determined by
inputing these returns into the recursive equation. In typical situations the options
embedded into the life insurance policies are out-of-the-money, that is the min-
imum guaranteed annual return (usually the technical interest rate i) is below the
level of the assumed scenario returns; therefore the embedded options never
goes in-the-money and the cost of the minimum annual guarantees is zero.

90 M. DE FELICE AND F. MORICONI

11 This difficulty is explicitly recognized by many scholars. Referring to the problem of properly speci-
fying the exact evolution over time of the discounted expected value representation, Dybvig-Ross
(1987, p. 104) argue that “This difficulty is usually overlooked in capital budgeting applications,
which is probably not so bad, given the imprecision of our estimates of risk premia and future cash
flows”. Le Roy (1987, p. 948) observes that when the net present value principle is applied in incom-
plete markets under uncertainty “even if all agents agree about the probability distribution of the
returns on a project, unanimity may break down”. A comparison between a risk adjusted discount
approach and an option-like approach to the pricing and reserving of maturity guarantees embed-
ded in some life insurance policies has been made by Boyle-Hardy (1997). Their numerical results
suggest that the consistency between the two methods is still far to be settled.
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A comparison between VBIF computed on a sample portfolio by the sto-
chastic reserve approach and by the RAD method under scenario is provided
in De Felice-Moriconi (2002b, p. 106).

3.3. The embedded options

In order to measure the cost of the minimum guarantees embedded in the
insurance contract, one can compare the value of the policy with the “base
value” of the policy, that is the value of an analogous policy without any guar-
antee. Let us define the “base readjustment rate” as:

rB
t := t

i
Ib
1

1
+
-

,

and the “base readjustment factor” as:
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Obviously FB
T ≤ FT.

Under the market based approach, the “base value” of the contract is given
by:

B0 := C0V(0; FB
T ) Tpx, (26) 

where:

V(0; FB
T ) = EQ re Fdt

T
Bt

T

0
- #

9 C. (27)

Thus the value of the guarantee can be defined as:

OP
0 := V0 – B0 = C0 [V(0; FT) – V(0; FB

T )]Tpx. (28) 

The OP
0 value can be defined as the price of a put option because a contract

with payoff [FT – FB
T ]+ = FT – FB

T gives the right to the holder to exchange the
result FB

T of an unguaranteed contract with the result of the guaranteed one
if the return It realized by the reference fund will not be greater than i /b over
each year of the contract. Given that the minimum return i is guaranteed in
each year and is “consolidated” for the successive years, this kind of option is
a “ratchet-type” (or “cliquet”) option. Of course, the price OP

0 of this option
is usually much greater than the price of a corresponding “maturity option”,
that is an option with (unit) minimum guaranteed amount (1 + i )T at time T
(for some numerical examples, see De Felice-Moriconi (2002b, pp. 61-62)).

The expression:

V0 = B0 + OP
0 (29)

MARKET BASED TOOLS FOR MANAGING THE LIFE INSURANCE COMPANY 91

https://doi.org/10.2143/AST.35.1.583167 Published online by Cambridge University Press

https://doi.org/10.2143/AST.35.1.583167


can be referred to as the put decomposition of the contract. One can also
define the “call decomposition” as:

V0 = G0 + OC
0 , (30)

where G0 := C0 v(0, T)T px is the value of the minimum guaranteed terminal
benefit (which is obtained for F = 1), and:

OC
0 := V0 – G0 = C0 [u(0,T) – v(0,T)]T px (31) 

represents the price of the ratchet call option giving to the holder the right to
participate to the investment returns if the result will be greater than the min-
imum guaranteed result. We observe that in Bühlmann's terminology, G0 is the
value of the VaPo (see Bühlmann, 2003b, Baumgartner-Bühlmann-Koller, 2004).

4. DETERMINING THE VALUATION FACTOR OR “PRICING THE UNIT”

4.1. Extracting information from the market

The central problem under the NUMAT approach is the pricing of the unit U,
that is the market based determination of the price u(0,T) = V(0; FT); since:

V(0;CT) = C0u(0,T), (32) 

u(0,T) represents the appropriate valuation factor for the random benefit CT =
C0FT.

We observed that for non participating policies, that is when FT = 1, the val-
uation factor reduces to v(0,T), that is it is equal to the current price of the
default free unit ZCB with maturity T. In this case the determination of the
market price does not pose any serious problem. In fact the determination of
v(0,T) for maturity T ≤ 30 years is an ordinary job for the financial operators.
Currently swap rates wT for maturity up to 30 years are daily quoted on the
interest rate swap market (e.g. Euribor); as it is well-known, wT represents the
T-years par-yield, that is the level of the annual coupon of a unit straight bond
which is quoted at par (i.e. has price 1):

,
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Therefore, if one can observe the current values of wT for T = 1,2,…,30, one can
immediately derive the zero-coupon term structure v(0,T) for T = 1,2,…,3012.
The method is referred to as a “bootstrapping procedure”, but it consists in
nothing else than solving the linear system:
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12 The maturities effectively quoted are T = 1 to 10, 12, 15, 20, 25, 30; usually the annual sequence of
the swap rates is completed by some kind of interpolation.
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In the trivial case of FT = 1 we can directly extract from the market the infor-
mation needed for the valuation, and the explicit determination of the risk-
neutral measure Q in (24) is not required.

Things are not so simple for a participating policy since, given the complex-
ity of the interest crediting mechanism given by (2) and (3), the readjustment
factor FT represents the payoff of a security, the unit, which is not effectively
traded. However, for the complete market assumption, this unit is a redun-
dant security and can be priced via equation (18) using a suitable stochastic
model calibrated on the market data.

To illustrate this crucial point, let us assume for the moment that the ref-
erence fund F underlying the policy is composed only of interest rate sensitive
contracts (e.g. government bonds), so that the factor FT is affected only by
interest rate risk. In this case a stochastic model for interest rates is sufficient
for pricing the unit. For simplicity sake, assume a typical one-factor Markov
model having the spot rate rt as the state variable; hence, a complete identifica-
tion of the model will require the specification of a parameter vector p deter-
mining the conditional probability distribution of the spot rate process, and a
parameter vector r representing the structure of the risk premia (the “term
premia”) prevailing on the interest rate market. Clearly, the parameters p deter-
mine the (financial component of) the probability measure P; however the risk-
neutral valuation rule (18) prescribes the prices as being determined only by
the risk adjusted measure Q. This probability measure will be identified by a
new parameter vector  p whose components will be some function of the com-
ponents of p and r. In general the knowledge of p and r separately cannot be
inferred from the knowledge of the risk adjusted parameter vector p; however
only p is needed for pricing purposes.

Suppose that the model provides an explicit formula for the price of an
interest rate sensitive security, e.g. for the price v(0,T) of the unit ZCB; for
a fixed maturity T the bond price will be a function only of the risk adjusted
parameters p:

v(0,T) = v(0,T; p).

Thus we can identify the risk-neutral measure Q by a calibration procedure con-
sisting in estimating the parameters p which provide a best fitting between
model prices and observed prices. For example we can extract the information
contained in the current structure of the interest rate swap wT by minimizing
over the set of the possible values for p the sum of squared errors:

: ,W pS 1T
T

2 2

1

30

= -
=

! ^ h6 @ (34)

where:
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is the model price of a T-years unit straight bond with coupons equal to wT.

4.2. Specification of the valuation model

Typically the reference funds backing life insurance liabilities contain both
bonds and stocks (at least); thus in order to model properly the yearly returns It
which determine the readjustment of the contractual benefits we have to model
both interest rate and stock market risk13.

In many applications we adopt a two-factor diffusion model obtained by
joining a one-factor Cox-Ingersoll-Ross (CIR) model for the interest rate risk
and a Black-Scholes (BS) model for the stock market risk; the two sources
of uncertainty are correlated. For liabilities providing also inflation protection
a three-factor model, obtained by properly extending the CIR component in
order to include both real and nominal interest rates (see Moriconi 1994, 1995),
is employed.

4.2.1. Interest rate uncertainty

The single source of uncertainty is the spot rate rt, which is a diffusion process
described by the stochastic differential equation:

drt = f r(rt, t)dt + gr(rt, t)dZr
t , (35)

where Zr
t is a standard Brownian motion. In the CIR model the drift function

is chosen as:

f r(rt, t) := �(g – rt), �, g > 0,

and the diffusion function is defined by:

gr(rt, t) := r rt , r > 0.

Thus it is assumed a mean-reverting drift, with long term rate g and speed of
adjustment �, and a “square root” diffusion, with volatility parameter r. As it
is well-known, this “mean-reverting square-root” process implies a non-central
chi-squared transition density for rt (Feller, 1951).

94 M. DE FELICE AND F. MORICONI

13 As a general consistency rule, assets and liabilities must be valued under the same market model;
thus the valuation model must have at least as many risk factors as are required to price the asset
portfolio. Of course, additional factors are needed if the liabilities are also linked to some exoge-
nous market index; for example, if the policy also provides some kind of inflation protection of
benefits, the valuation model for the liabilities must include an additional source of uncertainty for
the real interest rate risk, independently of inflation linked bonds are held in the reference fund.
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The Vasicek model (and its usual extensions) is more simple than the CIR
model and is widely used for pricing interest rate derivatives. Since this model
assumes a normal transition distribution, it assigns positive probability to
negative values of the spot rate; for long maturities this can have relevant
effects, producing discount factors greater than one. Therefore the Vasicek
model appears inadequate to life insurance applications. The CIR model seems
to offer a good trade-off between economic consistency and mathematical
tractability14.

In the CIR model the preferences prevailing on the market (the market
price of interest rate risk) are specified by the function:

hr(rt, t) := p
r

r
t , p ∈ �;

hence the parameter vector for the risk premia is simply r = {p}. Under the
CIR approach – which is a general equilibrium approach – it is shown that this
form of the preference function avoids riskless arbitrage.

4.2.2. Stock price uncertainty

Also for the stock market we assume a single source of uncertainty, expressed
by the stock index St; the diffusion process for the stock index is given by the
stochastic differential equation:

dSt = f S(St, t)dt + gS(St, t)dZS
t , (36) 

where ZS
t is a standard Brownian motion with the property:

Covt [dZr
t ,dZS

t ] = jdt, j ∈ �.

Since we assume a BS-type model, we specify fS and gS as:

f S(St, t) := mSt, m ∈ �,

and:

gS(St, t) := sSt, s > 0.

Thus we have a geometric Brownian motion, with instantaneous expected
return m and volatility s, which implies a lognormal transition density for St.

To prevent arbitrage, the market price of risk for the stock market has the
classical form:

hS(St, t) :=
r

s
m t-

; (37) 
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14 For a valuation of interest rate guarantees with the Heath-Jarrow-Morton model see Miltersen-
Persson (1999).
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thus no additional parameter is needed in order to specify the preferences in
this case15.

4.2.3. The valuation equation

By the Markov property, the time t price of any security is a function of the
state variables; in particular, for the unit price we have:

u(t,T) = u(rt, St, t; T), 0 ≤ t ≤ T. (38) 

Under the usual perfect market conditions the no-arbitrage principle, via the
hedging argument, leads to the general valuation equation:
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(39)

This equation must be solved under the appropriate boundary conditions,
including, for the unit price, the terminal condition:

u(T,T) = FT. (40) 

As it is well-known, the no-arbitrage assumption requires the existence of an
equivalent martingale measure Q such that the discounted price process:

u(t,T ) re dt
t

t
0

- # , 0 ≤ t ≤ T,

is a martingale with respect to Q. Under this martingale property the solution
of the valuation equation under condition (40) has the integral expression:

u(t,T) := V(t; FT) = EQ
t

re Fdzz
t

T
-

T
#

: D, (41)

also known as Feynman-Kac representation. For t = 0 this gives expression (18).

4.2.4. Identifying the risk-neutral measure

By our choice of the functions f r, gr, fS and gS and of the correlation between
the sources of uncertainty, the parameter vector related to the P measure is:

p = {�, g, r, m, s, j}, (42) 
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15 In the usual formulations of the BS model no assumption on the risk premia is made at this stage,
since relation (37) will be obtained as a consequence of the hedging argument which leads to the
valuation equation. For the sake of exposition we prefer to state this property here.
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while the parameter vector for the risk premia is simply r = {p}. By inspection
of the valuation equation (39) one observes that the coefficients of the first
order derivatives with respect to r and S are not expressed by the “natural” drift
functions f r and fS, but are given by the modified functions:

f r := f r + hrgr = �(g – rt) + prt = �g – (� – p)rt, (43)

and:

f S := f S – hSgS = rtSt. (44)

These are the risk adjusted drifts16 which determine the form of the risk-neu-
tral measure Q; the risk adjusted parameter vector is given by:

p = {�̂, ĝ, r, s, j}, (45)

where �̂ := � – p and ĝ := �g. Any solution of the valuation equation will be
a function of this set of parameters and any calibration of the model to the
observed prices will be performed by optimally choosing these parameters.
The estimation of the effective mean reverting parameters for rt and the instan-
taneous expected return for St is not needed for pricing purposes, since their
value has no effect on the prices.

4.2.5. Measures of financial risk

Since the price u(t,T) is a function of the state variable rt and St, it is natural to
express the risk inherent to these sources of uncertainty as a sensitivity measure.
For the interest rate risk it is usual to define:

Wr (FT) := ,
,

u T r
u T
0

0
2

2
-

]

]

g

g ; (46)

for the particular case of the deterministic unit ZCB we define:

w(T) := ,
,

v T r
v T
0

0
2

2
-

]

]

g

g . (47)

The “stochastic duration” D(FT) is defined as the maturity of the determinis-
tic ZCB with the same risk of FT; hence:

D(FT) := w–1(Wr). (48)
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16 The valuation equation (39) can be easily recognized as the backward Kolmogoroff equation for the
bivariate diffusion {rt,St} with drifts f r and f S, with diffusion coefficients gr and gr, correlation j
and “killing rate function” rt (see Karlin-Taylor (1981, pp. 222-224)).
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Because of the mean reversion effect the function w(T) is bounded; hence for
high values of Wr, that is for contracts with strong interest rate risk, the sto-
chastic duration D(FT) could also not exist. Of course this is not a problem
for controlling interest rate risk since one can directly use the sensitivity Wr as
a measure of risk. In our applications the stochastic duration D(FT) usually
is well defined and is typically shorter than the maturity T of the policy17.

The sensitivity of price to stock market index has a similar definition:

: ,
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g (49) 

the derivative with respect to S is well-known as the Delta of the contract:

:
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] g (50) 

Of course, for FT = 1 one has WS = 0 since v(0,T) is independent of S.

4.2.6. Risk Based Capital

The NUMAT approach also provides a straightforward methodology for deter-
mining levels of absorbed capital, which are risk measures currently used in
strategic planning and in solvency rating problems. Consider a portfolio of
contracts with stochastic reserve V0 at time zero. For a given risk factor, the
risk based capital, or economic capital, of the portfolio is the maximum unex-
pected loss in portfolio’s value, in a time period q with probability e, caused
by an adverse movement of the risk factor. While the definition is quite simi-
lar to the well-known Value-at-Risk (VaR) definition, here the values of the
parameters q and e are essentially different. Usually in risk capital definitions
the time period q is equal to 1 year (the usual accounting horizon), which is
longer than the typical “unwinding periods”. Moreover, since the risk capital
can be interpreted as the adequate cushion for the insurance company to main-
tain a given credit rating, e is chosen as the typical figure of the one-year
default probability corresponding to this rating; for companies interested in
strong credit quality this probability can be very low.

Let us refer to a “portfolio” consisting only of our pure endowment policy
with terminal benefit CT = C0FT ; the portfolio value at time zero is:

V0 := C0V(0; FT) = C0u(0,T)Tpx.

98 M. DE FELICE AND F. MORICONI

17 Usually it turns out that the interest rate sensitivity (and the stochastic duration) of a participating
policy is considerably lower than the sensitivity of a corresponding non participating policy. This
self-immunization property is essentially similar to the analogous property displayed by floating rate
notes, having interest rate sensitivity similar to short term bonds, despite their mid/long maturity
(De Felice-Moriconi-Salvemini (1993, pp. 137-138)). This is an important result since it suggests that
the traditional duration mismatching between assets and liabilities in life insurance can be strongly
reduced (in terms of sensitivity) for portfolios of participating policies. Values of the stochastic
duration for an outstanding policy portfolio, as well as applications to asset-liability management
are reported in De Felice-Moriconi (2002b, p. 86, pp. 90-91).
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As concerning the financial risk, under the two-factor model:

u(0,T) = u(r0, S0, 0; T), (51)

and one has the risk capital Kr induced by rt (the interest rate risk capital) and
the risk capital KS induced by St (the stock price risk capital). Since the valua-
tion factor is usually monotonic both with respect to r and S, the risk capitals
Kr and KS can be directly obtained from percentiles of the probability distri-
butions of r and S (“underlying percentile method”).

The function u is usually monotonic decreasing with respect to r, hence
interest rate risk capital can be defined as:

Kr := v(0,q) qpx C0 [u(r*
q , Sq, q; T) – u(rq , Sq, q; T)] EP[T– qpx+q] ,

where rq := EP[rq] and Sq := EP[Sq] is the expected value at time zero of the spot
rate and of the stock price, respectively, at the end of the period q, and r*

q is
the “underlying percentile”, defined by P(rq ≤ r*

q | r0) = e.
Similarly, since u is monotonic increasing with respect to S, the stock mar-

ket risk capital can be given by:

KS := v(0,q) qpx C0 [u(rq, S*
q , q; T) – u(rq, Sq , q; T)] EP[T– q px+q],

where S*
q is implicitly defined by P(Sq ≤ S*

q | S0) = 1 – e.
It is worthwhile to observe that the probability measure to be used in these com-

putations is the natural measure P; thus some amount of subjectivity is necessarily
involved, since P cannot be estimated on the market and some parameters of the
distributions must be specified based on personal beliefs (or however using additional
estimations). For the stock market component the parameter m of the lognormal
distribution for S must be fixed; as concerning the interest rate component, the
most straightforward way for determining the parameters of the non-central chi-
squared distribution of r consists in fixing exogenously the value of the long term
interest rate g and then deriving the mean-reversion coefficient as � = ĝ /g.

Mortality risk capital KM can be derived by similar computations, based on
a properly defined worst case for Tpx. This requires, of course, to specify a model
for mortality risk; however, given our independence assumptions, the financial
risk capitals Kr and KS will not be affected by stressed mortality scenarios18.

5. APPLYING THE VALUATION MODEL

5.1. Some calibration details

The parameters �̂, ĝ and r of the CIR component of the valuation model can
be estimated by calibration on the market of the interest rate sensitive securities.
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18 Economic capitals for technical risks can be particularly high in non-life insurance, where the deter-
mination of the ultimate reserves and the premium rating are exposed to large estimation errors.
For an application of the stochastic chain-ladder method to the determination of the reserve risk
capital and of the premium risk capital in P&C insurance see De Felice-Moriconi (2003).
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Since the CIR model provides an explicit formula for v(t,T) (Cox-Ingersoll-
Ross (1985), p. 393), the calibration can be made on the current cross section of
swap rates by performing the nonlinear regression (34) described in section 4.1.
However under the CIR model it can happen that different sets of parameters
are found having very similar levels of S2 but different values for the volatility
parameter r. While the use of these different parameter sets produces similar
prices for linear products (that is for products which can be expressed as sta-
tic portfolios of unit ZCBs), different values of r can produce important dis-
crepancies in the valuation of contracts with non linear payoff, as the options
embedded in our life insurance liabilities. In order to overcome this difficulty,
one can extend the set of market data by including also prices of interest rate
options in the estimation procedure. In our applications we usually perform the
calibration of the CIR model using both the swap rates and a set of quoted
prices for interest rate caps and floors, that can be easily done given that explicit
formulae for the price of these derivatives are available using the CIR model.
The method usually produces values of r which explain fairly well the observed
option prices while maintaining a good fitting with the observed yield curve.

The remaining parameters s and j have in some sense a more strategic
nature and can be exogenously specified. Usually we assume for s the same
value of the historical volatility of the stock component of the reference fund.
For the correlation coefficient j we adopt figures derived by classical econo-
metric studies on the Italian market (a slightly negative value is usually
assumed); however for typical values of the other parameters the value of j
seems to have a weak influence on the valuation procedure.

5.2. Numerical computation

Given the complexity of the profit sharing rule, the valuation factor u(0,T) must
be derived by the valuation equation using numerical methods. We usually
compute the risk neutral expectation (18) using Monte Carlo simulations for
the bivariate process {rt, St}. Properly incrementing the starting values r0 and
S0 of the Monte Carlo recursions we also obtain numerical derivatives of the
price, which provide the relevant financial risk measures, and worst case valua-
tions for risk capital computations19.

5.3. Defining the underlying of the policy

A critical point for determining the price V0 of the insurance contract is the
determination of the characteristics of the stochastic process representing the
market value of the reference fund, which in turns determines the annual return It,
that is the “index” underlying the policy20.
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19 For a finite difference approach to the valuation of insurance liabilities with ratchet embedded options
see Jensen-Jørgensen-Grosen (2001).

20 As often happens in the investment industry, the insurance company should declare what kind of invest-
ment strategy will be followed in the reference fund management. The choice of the asset allocation
will have direct effects on the value of the embedded options.
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Since the fund can be composed by bonds and equities, one possibility is
to assume:

Ft := �St + (1 – �)Wt, 0 ≤ � ≤ 1, (52)

where St is a stock index, Wt is a bond index and � is here a constant fixed at
time zero21.

The stock index process is modelled as a geometric Brownian motion, as
was implicitly assumed by adopting the BS model for the stock price compo-
nent of the valuation model. The bond index Wt must be chosen as similar as
possible to the results of a trading strategy which is considered feasible by the
fund manager; hence its characterization requires additional assumptions.

A possible choice is to model Wt as the cumulated results of a buy-and-sell
strategy, with a fixed trading horizon Dt, of coupon bonds with a fixed
Macaulay duration DMC ≥ Dt. The valuation procedure is performed by sim-
ulating the trading strategy under the CIR model. The results significantly
depend on the assumptions on DMC and Dt. For a short-term roll-over strat-
egy (e.g. Dt = DMC = 3 months), Wt displays smooth sample paths with high
dispersion in the long run. On the other hand, for a buy-and-sell strategy of
coupon bonds with mid/long duration (Dt = 3 months, DMC = 4, 10 years), the
sample paths display greater local volatility, but a reduced long-run dispersion.

Even if this effect could be enhanced by the strong degree of mean reversion
displayed by the one-factor CIR model, it should be noted that this behavior
is consistent with important empirical findings, as the evidence that short-term
rates are more volatile than long-term rates.

An illustration of different investment strategies and of their effect on the
cost of the embedded put options can be found in De Felice-Moriconi (2002b,
pp. 60-62, 64-65).

5.4. Valuation during the life of the policy

In the NUMAT approach the changes in market conditions have straightfor-
ward effects on the valuation during the life of the policy. In order to illustrate
these effects we need to better specify our notation and slightly extend some
definitions. We shall denote by t the current calendar date and by T the calen-
dar date at which the policy matures; hence if t denotes the current age of the
policy, the issue date is t – t and the term of the policy at issue is n = T + t.
The current readjusted value of the sum insured is:

Ct = C0 ,r1
k t

t

t 1

+
= - +

k%^ h

where rk is the readjustment rate in year k defined by (3). Since Ct is known
at time t, we define the stochastic component of the readjustment factor as:
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21 Maintaining � constant is known as a “constant mix” investment strategy (Perold-Sharpe, 1988).
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Ft,T := .r1
k t

T

1

+
= +

k%^ h (53)

The corresponding valuation factor at time t will be given by:

u(t,T) := V(t; Ft,T) = EQ
t

re Fds
T

s
t

T
-

,t
#

9 C, (54) 

which extends the definition (18). The definition of the stochastic reserve Vt and
of the VBIF Et at time t is straightforward22.

In order to illustrate the financial market effects we simulated the valuation
during the life of a policy over an historical period starting from the beginning
of the 1990’s. An efficient secondary market for Italian government bonds (the
MTS market) was opened only on Jan 02, 1990; thus any valuation performed
at preceding dates would pose serious problems for the model calibration given
the low quality of the available data.

In our simulation we considered a single premium pure endowment con-
tract written on Dec 29, 1989 on a life aged x = 40 years, with initial sum
insured C0 = 100 and term n = 20 years (hence T = Dec 29, 2009). We chose a
technical interest rate i = 3% and a participation coefficient b = 80%. The equity
component of the reference fund was � = 10% and the volatility was s = 20%.
The investment strategy of the bond component of the reference fund was
specified as a buy-and-sell strategy of coupon bonds with Macaulay duration
DMC = 4 years with trading period Dt = 1 month.

We performed the valuation at the issue date and on each year-end until
Dec 31, 2003, calibrating the risk-neutral parameters of the CIR model on the
current market data23. The first order survival probabilities T– t p�x+t were com-
puted using the SIM81 mortality tables at all the valuation dates t24 and, under
assumption (21), they are equal to the D probabilities T– t px+t.

The results of the valuations are reported in table 1. For each valuation date t,
it is reported the technical reserve:

Rt := Ct(1 + i )– (T– t)
T– t px+t , (55)

the stochastic reserve:

Vt := Ct u(t,T) T– t px+t ,
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22 A notation more in line with the actuarial tradition would probably be given by defining u (t) (t,T )
as the valuation factor at date t of a policy with term T years (at issue) and current age t. For the
policies considered here the valuation factor is independent of the age of the policy, hence our
definitions allow to use a simplified notation. More importantly, we prefer to denote the calendar
time by t in order to stress the central role of the current date in any marked based valuation; the
resulting definitions are more consistent with the interpretation of the policy as a financial product.

23 For the valuation at the issue date we effectively used market data as of Jan 9, 1990, since prices
quoted in the first week of MTS’s operation were probably not fully reliable.

24 SIM81 are mortality tables for the general male population, published by ISTAT (Istituto Italiano
di Statistica) in 1986.

https://doi.org/10.2143/AST.35.1.583167 Published online by Cambridge University Press

https://doi.org/10.2143/AST.35.1.583167


MARKET BASED TOOLS FOR MANAGING THE LIFE INSURANCE COMPANY 103

TABLE 2

VALUATION DURING THE LIFE OF THE POLICY. CALL DECOMPOSITION

val. date T – t Rt Vt Gt OC
t OC

t %

Dec 29, 1989 20 47.88 28.54 4.85 23.69 83.02

Dec 31, 1990 19 50.13 30.89 5.99 24.90 80.62

Dec 31, 1991 18 52.40 35.35 10.25 25.10 71.01

Dec 31, 1992 17 54.70 37.25 10.93 26.32 70.66

Dec 31, 1993 16 57.04 45.40 22.62 22.78 50.18

Dec 30, 1994 15 59.41 43.33 15.39 27.94 64.48

Dec 29, 1995 14 61.81 47.57 21.52 26.05 54.76

Dec 31, 1996 13 64.25 55.88 34.82 21.07 37.70

Dec 31, 1997 12 66.71 64.06 47.79 16.27 25.40

Dec 30, 1998 11 69.21 73.13 59.23 13.90 19.01

Dec 30, 1999 10 71.75 69.42 54.56 14.86 21.41

Dec 29, 2000 9 74.33 71.34 59.76 11.58 16.23

Dec 28, 2001 8 76.96 74.15 65.04 9.11 12.29

Dec 31, 2002 7 79.64 79.87 73.94 5.93 7.42

Dec 31, 2003 6 82.38 83.00 78.00 5.00 6.02

TABLE 1

VALUATION DURING THE LIFE OF THE POLICY. PUT DECOMPOSITION

val. date T – t Rt Vt Et Et% Bt OP
t OP

t %

Dec 29, 1989 20 47.88 28.54 19.34 40.40 28.39 0.15 0.51

Dec 31, 1990 19 50.13 30.89 19.25 38.40 30.76 0.13 0.42

Dec 31, 1991 18 52.40 35.35 17.05 32.53 35.19 0.16 0.45

Dec 31, 1992 17 54.70 37.25 17.45 31.91 37.14 0.10 0.28

Dec 31, 1993 16 57.04 45.40 11.65 20.41 43.89 1.51 3.31

Dec 30, 1994 15 59.41 43.33 16.08 27.07 42.77 0.56 1.29

Dec 29, 1995 14 61.81 47.57 14.24 23.04 47.12 0.45 0.95

Dec 31, 1996 13 64.25 55.88 8.36 13.02 53.21 2.67 4.78

Dec 31, 1997 12 66.71 64.06 2.65 3.98 58.57 5.49 8.57

Dec 30, 1998 11 69.21 73.13 –3.92 –5.66 63.26 9.87 13.50

Dec 30, 1999 10 71.75 69.42 2.34 3.25 64.38 5.04 7.26

Dec 29, 2000 9 74.33 71.34 2.99 4.02 67.72 3.62 5.08

Dec 28, 2001 8 76.96 74.15 2.81 3.65 71.05 3.11 4.19

Dec 31, 2002 7 79.64 79.87 –0.22 –0.28 75.08 4.79 5.99

Dec 31, 2003 6 82.38 83.00 –0.62 –0.76 78.61 4.39 5.29

https://doi.org/10.2143/AST.35.1.583167 Published online by Cambridge University Press

https://doi.org/10.2143/AST.35.1.583167


and the corresponding VBIF Et := Rt – Vt. Since both Rt and Vt are computed
using the SIM81 mortality tables, Et does not include mortality gain and must
be thus considered here as the value of only the investment gains. The put
decomposition is also illustrated by reporting the base value Bt defined by (26)
and the value of the embedded put OP

t := Vt – Bt. Et% is the VBIF as a percentage
of the technical reserve Rt ; OP

t % is the put value in percent of the stochastic
reserve Vt. In principle, the scale of Rt and Vt should be readjusted in each year
by the current value of the insured capital Ct. Since we are mainly interested
in the difference between Rt and Vt, we maintained the initial scale of C0, thus
avoiding arbitrary and irrelevant assumptions on the Ct sample path.

Table 2 illustrates the call decomposition. The value of the minimum guar-
anteed terminal benefit:

Gt := Ctv(t,T)Tpx,

defined in section 3.3 is reported, together with the call price OC
t := Vt – Gt,

both in absolute value and in percent of the stochastic reserve.
The results are also reported in figure 1 which illustrates the evolution of Rt

(solid line), Vt (the solid line with bullets), Bt (dashed line with circles) and Gt
(dashed line with stars).

The time evolution of the stochastic reserve is strongly dependent on the
historical trend of the bond market. The yield curve was very high in the early
1990’s but during the years of the convergence to Euro the Italian bond market
experienced a continuous decrease of interest rates. Accordingly, the policy
was very profitable at the issuance, when the (financial) embedded value was
40.4% of the initial reserve and the cost of minimum guarantee was neglige-
able, the embedded put being far out-of-the-money. Due to the fall in market
rates, the put value raised at the 13.5% of the stochastic reserve at the end of
1998, causing a negative value of the VBIF25. The time evolution of the call
price is in some sense opposite to that of the put price. The call option embed-
ded in the policy was deep in-the-money in the early 1990’s and became near-
at-the-money in more recent years, as indicated by the Gt path moving closer
to the Bt path. One can observe that a model unable to capture the value of
the embedded options would have produced a value of Vt close to the base
value, so no deficit situation would have been emerged in this example. It is also
worthwhile to observe that the variability of the stochastic reserve Vt is largely
due to the variability of the option components.

5.5. Issuing policies under different market conditions

The effects of the current financial market conditions on the policy valuation can
be also illustrated by considering the issuance of the same policies at different

104 M. DE FELICE AND F. MORICONI

25 In many cases the value of the reference fund Ft is defined by accounting rules allowing assets
classified as held-to-maturity to be valued by an amortization rule which produces “off-market”
prices. This can allow the fund manager to perform some kind of intertemporal smoothing of the
returns It and to spread an annual deficit over more than one year.

https://doi.org/10.2143/AST.35.1.583167 Published online by Cambridge University Press

https://doi.org/10.2143/AST.35.1.583167


FIGURE 1. Time evolution of reserves and of their components.

calendar dates. Let us consider single premium pure endowment contracts with
term n years, technical interest rate i = 3% and participation coefficient b = 80%.
We assume again an equity component of the reference fund � = 10% with
a volatility s = 20% and a buy-and-sell strategy for the bond component with
DMC = 4 years and trading period Dt = 1 month. We assume to have issued
these policies for term n = 1,2,…,20 years, at different historical dates t. For
simplicity, we consider only the financial component of the policies, assuming
n px = 1 for all t.

For each valuation date t we calibrated the CIR model on the current mar-
ket data and then computed the valuation factors:

u(t, t + n) := V(t; Ft, t+n) = EQ
t

re F,
ds

t t n
s

t

t n
-

+

+
#

9 C, n = 1,2,…,20.

For illustration purposes, we also computed the “term structure” of the valua-
tion rates, defined by:

j (t, t+ n) := ,u t t n
1

1
n
1

+
-

] g
; E , n = 1,2,…,20.

This valuation term structure can be compared with the term structure of the
interest rates currently prevailing on the market, which is given by:

i (t, t+ n) := ,v t t n
1

1
n
1

+
-

] g
; E , n = 1,2,…,20.
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where, as usual, v(t,T) is the market price at the date t of a unit ZCB maturing
at time T.

We performed the valuation for three different dates:

• t = Jan 09, 1990, a week after the MTS market was opened;
• t = Dec 30, 1998, when the convergence process to Euro was completed;
• t = Dec 31, 2003.

In table 3 are plotted, for each of the three issue dates t, the term structure of
the valuation rates j(t, t + n) with solid line and the term structure of market
interest rates i(t, t + n) with dashed line. The flat curve corresponding to the
technical rate i = 3% is also reported with dotted line.

The results can be commented by similar arguments as in the previous
example. At the beginning of 1990 (first figure) the market yield curve was at
a very high level, ranging from 14% for n = 1 to 15.5% for n = 20 years; as
compared with these market returns, the 3% technical rate was decidedly low,
implying an high level of the investment gains and a low cost of the embed-
ded put options. These effects are summarized by the difference between the
j curve and the 3% flat line; this gap is the counterpart, in the interest rate lan-
guage, of the VBIF, given by Et = Rt – Vt : the higher the difference j(t,t + n) – i
for a currently issued policy with term n, the higher the corresponding Et.

In the years 1995-98 the decrease of interest rates was quite dramatic. As
illustrated in the second figure of table 3, at the end of 1998 the market rates
were ranging from 3% for n = 1 to 5.4% for n = 20 years. Issuing the policies
in this market environment would imply a negative value of Et, since the embed-
ded put options would be near at-the-money and the valuation rates would
result to be lower than the 3% level for all the maturities.

The market yield curve was not very different at the end of 2003 (see the
third figure). However the situation for the policies as issued at this date would
be slightly better; this is essentially due to a volatility effect, since the volatility
curve estimated on the market resulted to be lower than the corresponding
curve estimated at the end of 1998.

5.6. Portfolio valuations

When a real portfolio of outstanding policies has to be analyzed, the situation
is obviously much more complex than in the simple examples just considered.
An important portion of the policies in force is usually given by participating
contracts with constant annual premiums. In these cases the readjustment rule
(2) for the benefits must be only partially applied since only the excess return
on the investment of the saving premium can be credited to the policyholder.
Therefore, the valuation factors at time t will be functions u (x,t)(t,T) also depen-
ding on the age x of the life insured and on the current age t of the policy.
Moreover, in many policies benefits payable in case of death are different from
benefits payable if the insured is alive; this requires the computation of sepa-
rated streams of valuation factors.
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TABLE 3. Term structures of valuation rates at different issue dates.

MARKET BASED TOOLS FOR MANAGING THE LIFE INSURANCE COMPANY 107

https://doi.org/10.2143/AST.35.1.583167 Published online by Cambridge University Press

https://doi.org/10.2143/AST.35.1.583167


However, like for the simple pure endowment policy we can pursue the
same approach for any policy of life assurance. It is sufficient to decompose
the policy into single premium components with benefits (for survival and/or
death and/or other causes) at single time points. For these components we have
the liabilities:

YT := CT �G (x,T),

where CT is the sum to be eventually paid at time T and G denotes the exit due
to survival, death or other cause. Under the assumption of complete market,
the stochastic payoff CT can be replicated by a trading strategy with market
price at time t equal to Ct u (x,t) (t,T), where Ct is the current value of the benefit.
The same approach must be applied to a premium to be paid at time T; of course
for constant, i.e. non readjusted, premiums the appropriate valuation factor will
be given simply by v(t,T).

In our framework, under the assumption of independence between finan-
cial and technical uncertainty, the fair value at time t of YT is given by:

Vt := V(t;YT) = Ctu (x,t)(t,T) ED
t [�G(x,T)], (56) 

where the D measure discussed in section 2.4 should reflect any technical risk
loading. This expression generalizes (19). Summing over all components of all
policies in force in the outstanding portfolio we obtain the total net fair value
Vt

Tot of benefits and premiums, that is the stochastic reserve at time t. Extend-
ing the definitions in section (3.1), the total VBIF at time t is given by Et

Tot :=
Rt

Tot – Vt
Tot, where Rt

Tot is the technical reserve of the portfolio.
In practical applications we usually avoid to perform the valuation using a

representative portfolio composed by a reduced number of “model points”,
since this can produce a number of approximations not easily controllable.
Thus the number of valuation factors to be calculated can be very high. Since
the Monte Carlo computation of the valuation factors is time consuming, it
is required that the calculation procedures are properly optimized.

As concerning portfolios of unit-linked policies, the market based valuation
is straightforward. Some computational problems can arise in the valuation of
the embedded options for policies with maturity guarantees. Many recently
issued index-linked policies are backed by a specified security, typically a “struc-
tured bond”. Usually these securities have a very complex payoff, possibly con-
taining exotic options; moreover it can happen that their price is quoted on a non
efficient market. Thus an appropriate pricing model is needed in order to con-
trol possible deviations of the quoted price from the fair value of this product.

6. MANAGING THE VALUATION VARIABILITY

The high time variability is obviously a natural characteristic of any market
based valuation. This is of course a consequence of a more detailed and up-
to-date information and is not a problem per se, but rather an advantage of the
mark-to-market approach.
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When purely financial products are concerned (as well as many types of
index-linked life insurance policies), the timeliness in pricing is crucial, since,
given the high liquidity of the markets, any mispricing can expose the issuer
to riskless arbitrage; moreover, the issued contract must be immediately hedged
at the current market conditions. For traditional life insurance products this
problems seems to be not so relevant and a continuous stream of market infor-
mations can be considered excessive, or useless, for premium calculation.

Also accounting procedures do not benefit from strongly time-dependent
valuation methods; in this kind of applications an important issue is the
comparability of the valuation results between different firms. The problem of
an increase in volatility of earnings in the accounting reports has widely been
recognized, also in the perspective of the new International Accounting Stan-
dards (IAS) (see e.g. Morgan Stanley, 2002); these difficulties could be probably
overcome by defining some standardized rules for providing an intertemporal
smoothing of the operating results.

However, having a better information cannot be a problem; the real issue
is how to organize and how to correctly use this information. As pointed out
by Bühlmann (2003a), this is particularly true for some applications, as the
embedded value measurement. In this case a more detailed analysis of the
results given by the market based valuations can provide a better understand-
ing of the value creation mechanisms.

As an example, let us slightly extend our notation of stochastic reserve, by
defining:

Vt
(s) := V (s) (t;YT), t, s ≤ T, (57)

as the value of YT at time t computed under the market conditions prevailing
at time s ; that is Vt

(s) is the value of the policy with remaining term T – t derived
using the parameter vector p calibrated on the market data at time s. Of course
Vt

(t) = Vt. Referring to a time interval [t, t + Dt], one can consider the decompo-
sition:

DVt := Vt + Dt – Vt = DVt
A + DVt

M, 0 ≤ t, t + Dt ≤ T, (58)

where:

• DVt
A := V (t)

t + Dt – Vt is the change in value due to the aging of the policy, inde-
pendently of changes in market conditions,

and:

• DVt
M := Vt + Dt – V (t)

t + Dt is the change in value caused only by the market move-
ments.

This expression suggests an analogous decomposition for the “embedded value
earnings”:

DEt := Et + Dt – Et = (Rt + Dt – Vt + Dt) – (Rt – Vt), (59)

since the change Rt+Dt – Rt is unaffected by market movements. For more details
see De Felice-Moriconi (2002a).
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