Erratum

Minerals of the rhabdophane group and the alunite supergroup in microgranite: products of low-temperature alteration in a highly acidic environment from the Velence Hills, Hungary – ERRATUM

Martin Ondrejka, Peter Bačík, Tomáš Sobocký, Pavel Uher, Radek Škoda, Tomáš Mikuš, Jarmila Luptáková and Patrik Konečný

doi.org/10.1180/mgm.2018.137, Published by Cambridge University Press, 02 July 2018.

An error was introduced in the final editing stages of production of this paper in *Mineralogical Magazine*, **82**(6), 1277–1300 under the headings **Discussion**, subheading: *ASM and RGM compositional variations*, p 1296; the word "should" was replaced mistakenly by "shouldn't"

The correct text is:

"All these data together with Fe-rich RGM from the Velence Hills suggest that the incorporation of Fe^{2+} and Fe^{3+} in the RGM is possibly via above-mentioned substitution mechanisms but does not produce a valid end-member and **should** be included in formula calculation."

Reference

Martin Ondrejka, Peter Bačík, Tomáš Sobocký, Pavel Uher, Radek Škoda, Tomáš Mikuš, Jarmila Luptáková and Patrik Konečný. (2018) Minerals of the rhabdophane group and the alunite supergroup in microgranite: products of low-temperature alteration in a highly acidic environment from the Velence Hills, Hungary. *Mineralogical Magazine*, Published by Cambridge University Press, 02 July 2018. doi.org/10.1180/mgm.2018.137

Cite this article: Ondrejka M., Bačík P., Sobocký T., Uher P., Škoda R., Mikuš T., Luptáková J. and Konečný P. (2019) Minerals of the rhabdophane group and the alunite supergroup in microgranite: products of low-temperature alteration in a highly acidic environment from the Velence Hills, Hungary – ERRATUM. *Mineralogical Magazine* **83**, 321–321. https://doi.org/10.1180/mgm.2019.13

© Mineralogical Society of Great Britain and Ireland 2019