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The Ganea and Whitehead Variants of the
Lusternik–Schnirelmann Category

Jean-Paul Doeraene and Mohammed El Haouari

Abstract. The Lusternik–Schnirelmann category has been described in different ways. Two major

ones, the first by Ganea, the second by Whitehead, are presented here with a number of variants. The

equivalence of these variants relies on the axioms of Quillen’s model category, but also sometimes on

an additional axiom, the so-called “cube axiom”.

The Lusternik–Schnirelmann category has been described in different ways. Two
major ones by Ganea and by Whitehead, are presented here with a number of vari-

ants. The equivalence of these variants rely on the axioms of Quillen’s model category,
but also sometimes on the so-called cube axiom. The cube axiom is the following as-
sertion: For any homotopy commutative diagram

• - •

��	 ��	
• -

?
•

?

?
• -

?
•

��	 ��	
• - •

if the bottom square is a homotopy push out and the four vertical squares are homo-

topy pull backs, then the top square is a homotopy push out. (See [7] for the original
assertion.) This axiom, which is satisfied in the category of topological pointed spaces
with the usual notion of homotopy, is also meaningful in Quillen’s model categories
(see [3] for more details), even if the constructions of homotopy pull backs and ho-

motopy push outs must be done carefully via factorizations through fibrations and
cofibrations (as this is done in [1, 2]).

In this paper, we work in the full subcategory Ccf of cofibrant and fibrant objects
of any pointed model category C. The star ∗ will denote the initial and final object.

The basic example is the category Topw of well-pointed topological spaces — a
space X is well pointed if the map ∗ → X is a closed cofibration. (See [8] for details
about its model category structure.)

We will draw many homotopy commutative diagrams; such diagrams not only have

objects and maps but also homotopies between every pair of composites of maps in
the diagram with same source and target. We make this more precise with the fol-
lowing definition (it is actually that of [7], transposed in the model category setting):

Let + denote the “track addition” of homotopies, and let ∼ denote the equivalence

of homotopies. A homotopy commutative diagram in Ccf is defined to consist of

Received by the editors September 16, 2003; revised May 29, 2005.
AMS subject classification: 55P30.
Keywords: Eckmann-Hilton duality.
c©Canadian Mathematical Society 2006.

41

https://doi.org/10.4153/CMB-2006-005-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-005-4


42 J.-P. Doeraene and M. El Haouari

1. A set of objects and morphisms between them, together with the compositions of
the morphisms.

2. For each pair α, β : A → B in the diagram, a homotopy Hα,β : A × I → B from α

to β such that:

(a) Hα,α is equivalent to the static homotopy (i.e., the composite of A × I → A

with α : A → B);
(b) if α, β, γ : A → B then Hα,β + Hβ,γ ∼ Hα,γ ;

(c) if α : A → B, β, γ : B → C and ǫ : C → D, then

Hǫ◦β◦α,ǫ◦γ◦α ∼ ǫ ◦ Hβ,γ ◦ (α × I).

We now give the definitions of a homotopy push out and a homotopy pull back (also
those of [7] transposed in the model category setting):

A homotopy commutative square

A - B

? ?
C - S

is a homotopy push out whenever for each other homotopy commutative square

A - B

? ?
C - D

there is a map S → D (here called a whisker map as in [7]) and a homotopy commu-

tative diagram (here called a (homotopy) push out diagram):

B

�
�
�� @

@
@R

HHHHHHj
A S - D

@
@@R �

�
��

������*

C

and the triplet made of the map S → D and the homotopies of the two triangles in

the above diagram is unique up to homotopy and equivalences of homotopies. This
notion dualizes to the one of homotopy pull back; here dualize means keeping the
same diagrams but reversing all arrows.

Homotopy push outs and homotopy pull backs exist in Ccf. To build the homo-

topy push out of f : A → B and g : A → C in Ccf, choose any factorization g = p ◦ i

where i is a cofibration and p is a fibration that is also a weak equivalence (p is a
homotopy equivalence because both its source and target are in Ccf), then take the
push out R (in C) of f and i:
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A - B

�
�

�
�	 ?

i

?

i ′

C �
p

K -
f ′

R

Finally (if R is not fibrant) choose any fibrant model S of R, i.e., choose a factorization

R - ∗

@
@
@R

j
�

�
��
q

S

where j is a cofibration that is also a weak equivalence and q is a fibration, so S is in
Ccf. The homotopy inverse of p composed with j ◦ f ′ gives us the map C → S. The

dual construction leads to the homotopy pull back. (See also [2] for other details.)
In Topw, the so-called “standard homotopy push out” Z f ,g of [7] is a particular

case of the above construction.

Warning: Because all diagrams come with homotopies, a homotopy push out is
not a push out in the homotopy category Ho C.

We will not write the homotopies explicitly in the sequel because in most cases, all
we have to know is that they are there! However, it is important to keep in mind that

all these homotopies are well defined (up to equivalences) and are not anything we
can imagine. Here is an example.

Let us consider the three homotopy commutative squares in Topw:

X - ∗ X - ∗ X - ∗

?
(1)

? ?
(2)

? ?
(3)

?
∗ - ∗ ∗ - ΣX ∗ - ΣX

where (1) and (2) come with the static homotopy H(x, t) = ∗ and (3) comes with

the homotopy K(x, t) = [(x, t)]. Only (3) is a homotopy push out. Indeed (1) is not
a homotopy push out, because the diagram

∗

�
�
�� @

@
@R

HHHHHHj
X ∗ - ΣX

@
@@R �

�
��

������*

∗

where the inside square is (1) and the outside square is (3) is not homotopy commu-
tative — condition (b) is not satisfied when conditions (a) and (c) are. Nor is (2) a
homotopy push out, because the diagram
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∗

�
�
�� @

@
@R

HHHHHHj
X ΣX - ΣX

@
@@R �

�
��

������*

∗

where the inside square is (2) and the outside square is (3) cannot be homotopy
commutative, whatever might be the map ΣX → ΣX (identity or the null map for
instance).

The following property (here called the prism lemma as in [3]) is often used:

Lemma 1 Assume the following diagram is homotopy commutative.

• - • - •

? ? ?
• - • - •

(i) If the left square is a homotopy push out, then the outside rectangle is a homotopy

push out if and only if the right square is a homotopy push out.

(ii) If the right square is a homotopy pull back, then the outside rectangle is a homotopy

pull back if and only if the left square is a homotopy pull back.

Warning: If the outside rectangle and the right square are homotopy push outs,
the left one is not necessarily a homotopy push out. Dually, if the outside rectan-
gle and the left square are homotopy pull backs, the right one is not necessarily a

homotopy pull back.
For any X, the Ganea construction on X is the following sequence of homotopy

push out diagrams (i > 0) starting with G0 ≃ ∗:

∗

�
�
�� @

@
@R

HHHHHHjFi−1 Gi - X

@
@@R �

�
��

������*

Gi−1

where each map Fi−1 → Gi−1 is the homotopy fibre of gi−1 : Gi−1 → X (which
means that the outside square is a homotopy pull back).

Note: G1 ≃ ΣΩX.

Let us define four versions of the Ganea category.

• We say that G1cat X ≤ n if the following condition (G1) holds:

(G1) The map gn : Gn → X has a homotopy section.
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G1cat X is the Ganea category defined in [4].

• We say that G2cat X ≤ n if the following condition (G2) holds:

(G2) There exists a sequence of homotopy push outs

Zi−1
- ∗

?
h.p.o.

?
Yi−1 - Yi

(0 < i ≤ n) where Y0 ≃ ∗, and X is a homotopy retract of Yn.

Note that this condition implies that we have a map yn : Yn → X, and by successive

compositions with each Yi−1 → Yi , we have maps yi−1 : Yi−1 → X. Each yi is the
whisker map induced by yi−1 and ∗ → X. Also note that, clearly, G2cat Gn ≤ n.

• We say that G3cat X ≤ n if the following condition (G3) holds:

(G3) Either n = 0 and X ≃ ∗, or n > 0 and there exists a homotopy push out

M - ∗

?
h.p.o.

?
L̂ - L

where G3cat L̂ ≤ n − 1 and X is a homotopy retract of L.

• We say that G4cat X ≤ n if the following condition (G4) holds:

(G4) There exists a sequence of homotopy push out diagrams

Ui

�
�
�� @

@
@R

HHHHHHj
Vi Xi - X

@
@@R �

�
��

������*

X̂i−1

(0 < i ≤ n) where X0 ≃ ∗, each map x̂i−1 : X̂i−1 → X factorizes through
xi−1 : Xi−1 → X, each map Ui → X is null homotopic and xn : Xn → X is the
identity up to homotopy.

This last definition appeared first in [5].

We now prove the equivalence of these conditions.

Proposition 2 For any X we have G1cat X = G2cat X = G3cat X ≤ G4cat X, and if

the cube axiom holds, also G3cat X = G4cat X.

Proof (G1) ⇒ (G2). Obvious.
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(G2) ⇒ (G1). We show inductively that yi : Yi → X factorizes through gi : Gi → X.
Assume we have αi−1 : Yi−1 → Gi−1 with gi−1αi−1 homotopic to yi−1. Then we can

construct a double push out diagram:

Zi−1
- ∗

�
�

�	

�
�

�	

@
@
@R

Yi−1 -

?

Yi -

?

X

?

Fi−1 -

?

∗

?
�

�
�	

�
�

�	

@
@
@R

Gi−1
- Gi - X

where Zi−1 → Fi−1 is given as the whisker map and then αi : Yi → Gi is given as
the whisker map. The composite giαi is homotopic to yi by the universal property of
the homotopy push out. So the inductive step is proven. At the end of the induction,

we have gnαn homotopic to yn, and as we have a homotopy section σn : X → Yn of
yn : Yn → X, we get a homotopy section αnσn for gn.

(G2) ⇒ (G3). We prove this inductively on n. First note G2cat Yi ≤ i for all i because
each Yi is a homotopy retract of itself. So assuming the step n − 1 of the induction
true, G3cat Yn−1 ≤ n − 1. To prove step n, we can choose M to be Zn−1 and L̂ to be

Yn−1, so L ≃ Yn.

(G3) ⇒ (G2). We prove this inductively on n. If G3cat X ≤ n, we have G3cat L̂ ≤

n − 1, so by induction hypothesis G2cat L̂ ≤ n − 1, which means that we have a
sequence of homotopy push outs

Zi−1
- ∗

?
h.p.o.

?
Yi−1

- Yi

(0 < i ≤ n − 1) and L̂ is a homotopy retract of Yn−1. We can then construct Yn as a

homotopy push out in the following diagram where all squares are homotopy push
outs:

M - L̂ -Yn−1
- L̂

? ? ? ?
∗ - L - Yn - L
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So L appears to be a homotopy retract of Yn and, as by hypothesis X is a homotopy
rectract of L, we obtain that X is a homotopy retract of Yn.

(G4) ⇒ (G1). We prove that xi : Xi → X factorizes through gi : Gi → X. This is
true for i = 0 as X0 ≃ ∗. Now, assuming that xi−1 : Xi−1 → X factorizes through

gi−1 : Gi−1 → X, then also x̂i−1 factorizes through gi−1 and we can construct the
following double push out diagram:

Vi - Ui

�
�

�	

�
�

�	

@
@
@R

X̂i−1
-

?

Xi -

?

X

?

Fi−1 -

?

∗

?
�

�
�	

�
�

�	

@
@
@R

Gi−1
- Gi - X

where the map Vi → Fi−1 is the whisker map to the homotopy pull back, and
then the map βi : Xi → Gi is the whisker map from the homotopy push out. The
composite giβi , which is a whisker map of the homotopy push out, is homotopic
to xi by the universal property of the homotopy push out. So the inductive step is

proven. And at the end of the induction we get gnβn homotopic to xn which is the
identity up to homotopy, so βn is a homotopy section for gn.

Finally, if the cube axiom is satisfied, we prove:

(G1) ⇒ (G4). We can construct the following double push out diagram, with a
descending induction on i:

Vi - Ui

�
�

�	

�
�

�	

@
@
@R

X̂i−1
-

?

Xi -

?

X

?

Fi -

?

∗

?
�

�
�	

�
�

�	

@
@
@R

Gi−1
- Gi - X

For i = n, we set Xn = X, Xn → X is the identity and Xn → Gn is the homotopy

section of gn : Gn → X. We take homotopy pull backs to construct the four vertical
squares of the cube. The upper square of the cube is a homotopy push out by the cube
axiom. We can choose xi−1 : Xi−1 → X to be either X̂i−1 → X or gi−1 : Gi−1 → X to
proceed to the next step of the induction. Actually all following steps will be trivial if
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xi−1 is choosen to be gi−1, because then the map X j → G j will be the identity for all
j < i.

For any X, the Whitehead construction on X is the following sequence of homotopy

push out diagrams (i > 0) starting with T0 ≃ ∗:

Xi × ∗

�
�
�� @

@
@R

HHHHHHjTi−1 Ti - Xi+1

@
@@R �

�
��

������*

Ti−1 × X

Note that the outside square is a homotopy pull back. Use the prism lemma in the
following diagram:

Ti−1
- Xi - ∗

? ? ?
Ti−1 × X -Xi × X - X

? ? ?
Ti−1

- Xi - ∗

Note: T1 ≃ X ∨ X.

Let us now give three versions of the Whitehead category.

• We say that W1cat X ≤ n if the following condition (W1) holds:

(W1) The diagonal ∆ : X → Xn+1 factorizes through tn : Tn → Xn+1 up to homo-

topy.

W1cat X is the Whitehead category defined in [10].
• We say that W2cat X ≤ n if the following condition (W2) holds:

(W2) There exists a sequence of homotopy push out diagrams:

Xi

�
�
�� @

@
@R

HHHHHHjSi−1 Ri - Xi+1

@
@@R �

�
��

������*

Ri−1 × X
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(0 < i ≤ n) where R0 ≃ ∗ and the diagonal ∆ : X → Xn+1 factorizes through
rn : Rn → Xn+1 up to homotopy. (Note that Si−1 must not be Ri−1, so Ri is not

Ti .)

We do not know (and therefore ask) if there exists some condition (W3) corre-
sponding to (G3).

• We say that W4cat X ≤ n if the following condition (W4) holds:

(W4) There exists a sequence of homotopy push out diagrams:

Pi

�
�
�� @

@
@R

HHHHHHj
Qi Wi - Xi+1

@
@@R �

�
��

������*

Ŵi−1

(0 < i ≤ n) where W0 ≃ ∗, the map wi : Wi → Xi+1 is induced by Ŵi−1 →

Xi+1, which factorizes through wi−1× idX : Wi−1×X → Xi+1, and by Pi → Xi+1,
which factorizes through Xi × ∗ → Xi+1. The map wn : Wn → Xn+1 is the

diagonal X → Xn+1 up to homotopy.

We now prove the equivalence of these conditions.

Proposition 3 For any X we have W1cat X = W2cat X ≤ W4cat X, and if the cube

axiom holds, also W2cat X = W4cat X.

Proof (W1) ⇒ (W2). Obvious.

(W2) ⇒ (W1). We show inductively that ri : Ri → Xi+1 factorizes through ti : Ti →

Xi+1. Assume we have γi−1 : Ri−1 → Ti−1 with ti−1γi−1 homotopic to ri−1. Then we
can construct a homotopy commutative diagram:

Si−1
- Xi × ∗

�
�

�	

�
�

�	

@
@
@R

Ri−1 × X -

?

Ri -

?

Xi+1

?

Ti−1
-

?

Xi × ∗

?
�

�
�	

�
�

�	

@
@
@R

Ti−1 × X - Ti - Xi+1

where Si−1 → Ti−1 is given as the whisker map and then γi : Ri → Ti is given as the
whisker map. The composite tiγi is homotopic to ri by the universal property of the
homotopy push out. So the inductive step is proven. At the end of the induction, we
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have tnγn homotopic to rn, and as the diagonal ∆ : X → Xn+1 factorizes through rn,
it also factorizes through tn.

(W4) ⇒ (W1). We prove that wi : Wi → Xi+1 factorizes through ti : Ti → Xi+1.

This is true for i = 0 as W0 ≃ ∗. Now assuming that wi−1 : Wi−1 → Xi factorizes
through ti−1 : Ti−1 → Xi , then wi−1 × idX : Wi−1 × X → Xi+1 factorizes through
ti−1 × idX : Ti−1 × X → Xi+1 and we can construct the following double push out
diagram:

Qi - Pi

�
�

�	

�
�

�	

@
@
@R

Ŵi−1
-

?

Wi -

?

Xi+1

?

Ti−1
-

?

Xi × ∗

?
�

�
�	

�
�

�	

@
@
@R

Ti−1 × X - Ti - Xi+1

where the map Qi → Ti−1 is the whisker map to the homotopy pull back, and then
the map δi : Wi → Ti is the whisker map from the homotopy push out. The com-

posite tiδi , which is a whisker map of the homotopy push out, is homotopic to wi by
the universal property of the homotopy push out. So the inductive step is proven.
And at the end of the induction we get tnδn homotopic to wn, and since the diagonal
factorizes through wn by hypothesis, it factorizes also through tn.

Finally, if the cube axiom is satisfied, we prove:

(W1) ⇒ (W4). We can construct the following double push out diagram, with a
descending induction on i:

Qi - Pi

�
�

�	

�
�

�	

@
@
@R

Ŵi−1
-

?

Wi -

?

Xi+1

?

Ti−1
-

?

Xi × ∗

?
�

�
�	

�
�

�	

@
@
@R

Ti−1 × X - Ti - Xi+1

For i = n, wn : Wn → Xn+1 is the diagonal and Wn → Tn is the homotopy lifting of

the diagonal through tn : Tn → Xn+1 which exists by hypothesis. We take homotopy
pull backs to construct the four vertical squares of the cube. The upper square of the
cube is a homotopy push out by the cube axiom. We can choose wi−1 : Wi−1 → Xi

to be ti−1 : Ti−1 → Xi . So the map Ŵi−1 → Xi+1 factorizes through wi−1 × idX =
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ti−1 × idX . We can then proceed to the next step of the induction. Actually, all steps
except the first one are trivial, because for all i < n, the map Wi → Ti will be the

identity.

To finish we prove the equivalence of the Ganea and Whitehead categories when
the cube axiom holds.

Theorem 4 For any X, we have W1cat X ≤ G1cat X and if the cube axiom holds,

W1cat X = G1cat X.

Proof We prove inductively that we have a homotopy commutative diagram:

Gi
gi - X

ǫi

? ?

∆

Ti
-

ti
Xi+1

which, moreover, is a homotopy pull back when the cube axiom holds.

For i = 0, the above square exists. Assume it exists at the step i − 1. We can

construct the following double push out diagram:

Fi−1
- ∗

�
�

�	

�
�

�	

@
@
@R

Gi−1
-

?

Gi -

?

X

?

Ti−1
-

?

Xi

?
�

�
�	

�
�

�	

@
@
@R

Ti−1 × X - Ti - Xi+1

The homotopy commutative front rectangle

Gi−1
gi−1- X

(ǫi−1, gi−1)

? ?

∆

Ti−1 × X -
ti−1 × id

Xi × X
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comes from the induction hypothesis. The map Fi−1 → Ti−1 is the whisker map to
the homotopy pull back and the map ǫi : Gi → Ti is the whisker map from the ho-

motopy push out. We get the right vertical square which is homotopy commutative,
and so the induction step is done.

At the end of the induction we obtain the square

Gn
gn - X

ǫn

? ?

∆

Tn
-

tn
Xn+1

So if gn has a homotopy section, ∆ factorizes through tn.

Now, if the cube axiom holds, we prove inductively that each square

Gi - X

? ?
Ti -Xi+1

is a homotopy pull back. Indeed it is true at step 0; assume it is true at step i − 1.
Using this hypothesis and the prism lemma in the following diagram

Gi−1
- X

? ?

∆

Ti−1 × X -Xi × X - X

? ? ?
Ti−1

- Xi - ∗

we get a homotopy pull back

Gi−1
- X

?
h.p.b.

?
Ti−1 × X -Xi × X

Let P be the homotopy pull back of ti : Ti → Xi+1 and ∆ : X → Xi+1. We can
construct the following homotopy commutative diagram:
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Fi−1 - ∗

�
�

�	

�
�

�	

@
@
@R

Gi−1
-

?

P -

?

X

?

Ti−1
-

?

Xi

?
�

�
�	

�
�

�	

@
@
@R

Ti−1 × X - Ti - Xi+1

where the map Gi−1 → P is the whisker map. As the front rectangle and the right
square of the diagram are homotopy pull backs, so are the front square and the right

square of the inside cube by the prism lemma. Moreover, as the top and bottom
lozenges are homotopy pull backs too, so are the rear and left squares of the diagram
by the prism lemma again. Thus, all the vertical faces of the inside cube are homotopy
pull backs, and as the bottom face is a homotopy push out, so is the top face of the

cube; this means that Gi ≃ P and the inductive step is proven.

Finally, if ∆ factorizes through tn, then gn has a section which is the whisker map

induced by the identity on X and the lifting map X → Tn:

X

������*

�
�
�� @

@
@R

X -Gn Xn+1

HHHHHHj

@
@
@R �

�
��

Tn

Now what if the cube axiom does not hold? Let us look to the opposite category

of topological spaces — we thank the referee for the suggestion — where G1cat is
what is usually called the cocategory. In this category, W1cat X ≤ 1 means that X is
an H-space. It was proved by James (see [6]) that if X is an H-space, then there is
a homotopy retraction r : ΩΣX → X for the natural map ρ : X → ΩΣX (see [6]);

so G1cat X ≤ 1. So when X is an H-space, W1cat X = G1cat X, despite the fact
that the cube axiom does not hold in the opposite category of topological spaces.
Moreover, if X is an H-space, we have also a homotopy fibration X → X ⋊⋉ X → ΣX

where j : X → X ⋊⋉ X is the inclusion of X into the join of X with itself (this is a

null homotopic map) and q : X ⋊⋉ X → ΣX is the Hopf construction (see [9]); so
G4cat X ≤ 1, too. So when X is an H-space, G1cat X = G4cat X, despite the fact that
the cube axiom does not hold in the opposite category of topological spaces. We do
not know, and ask, if these equalities also hold for W1cat X greater than 1, even when
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the cube axiom does not hold!
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