
Dear Editor,

The joint distribution of the running maximum
and its location of D-valued Markov processes

1. Introduction and main results

Let Y = {Y(u) : 0~ u~ I} be a real-valued elementary Markovian process defined on
a probability space (0, .Y1, P) with right-continuous trajectories also having left limits.
We define for all t E (0, 1] the running maximum of the process Y,

Mt=sup{Y(u): O~u~t},

and its location

Tt=min{O~u~t: Y(u)=Mt or Y(u- )=Mt}.

Since the set {O~u~t: Y(u)=Mt or Y(u- )=Mt} is non-empty and closed, the random
variable T, is well defined. We give an explicit formula for the joint distribution of
(Tt , M t ) . Although the derivation of our result requires only a short argument, the
obtained formula is very useful in connection with recent results of Durbin (1985),
(1992). To be precise, let

Then for all O~x~t and yE IR

Ht(x,y) :=P(Tt~x,Mt~Y)

=rcu., ~u.; ~y)

with J.1x denoting the distribution of Y(x). By the Markov property of Y it follows from
Theorem I" p. 36, of Gihman and Skorohod (1975) that Mx,t and Mo,x are independent
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with respect to the conditional probability P(· I Y(x) = ~). Consequently we obtain for
all ~ E ~

P(Mx,t~Mo,x~Y I Y(x)=~)

=1 P(Mx,t~Z I Y(x)=~)F(dz, x,~)
(- oo,y]

with

F(z, x, ~) = P(Mo,x~ z I Y(x) = ~), z E ~.

If we put

G(z,x,t,~)=P(Mx,t~ZIY(x)=~), zE~,

we therefore arrive at

(1.1) n, (x, y) =1 1 G(z, x, t, ~)F(dz, x, ~)J1x (d~),
(-oo,y] (-oo,y]

upon noticing that G(z, x, t, ~)=F(z, x, ~)=O if ~>z.

2. Applications to the Brownian bridge with general drift

In this section let

Y(u) = Bo(u) +~(u),

where Bo is a Brownian bridge and the drift function

(2.1)
~ : [0, 1]~~ is twice continuously differentiable and
either convex on the whole interval [0, t], or concave.

An application of Feller's (1971) criterion (8.13), p. 96, ensures that Bo is a Markov
process, whence Y is Markovian, too. By (1.1) we have to determine the functions G
and F. Using (18), p. 38, in Shorack and Wellner (1986) we obtain that

(2.2)

where

Similarly

(2.3)

where

(
t-x)G(z, x, t, ~)=P Bo(s)~a(s, z, x,~) VO~s~ I-x'

a(s, z, x, ~)=(I-x)-l/2[z-(I-s)(~-~(x))-~(x+s(l-x))].

F(z, x, ~)=P(Bo(s)~A(s, z, x,~) VO~s~ 1),
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A(s, z, X, ~)=X-1I2[Z-S(~-~(X))-~(SX)].
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Our assumption (2.1) and Equations (2.2)-(2.3) enable us to apply Durbin's (1992) result.
In sections four and fivethere explicit formulas are given for the non-crossing probabilities
in (2.2)-(2.3). These formulas may be specified, but we omit them. However, they are
of such a kind that one can use numerical methods to find Ht(x, y). In the case of a
linear drift function

~(u)=au, aE~,

we obtain comparatively simple analytical expressions. Namely, for 0 < x < t and y ~ 0:

(2.4)

where A =2(2nx3(I-x))-1I2, B= -(2x(l-x))-1 and

g(z, x, t, ~) = <1>(Co[(d - 1)~ +z - ad])

-exp{ C1(z -a)(z -~)} <1>(Co[2d-l]z +(l-d)~)

with <I> denoting the standard normal distribution and Co= {(I-t)(t-x)(I-x)-l} -112,

C1= -2(I-x)-1 and d=(t-x)(I-x)-I.

For xE {O, t} we obtain for all y~O that Ht(O, y)=O and

(
y-at ) (2yt-y-at)

Ht(t,y)=<I> ~ -exp{ -2y(y-a)}<I> ~.
v t(l- t) v t(l- t)

In the special case t= 1 and a=O we have that for all O~x~ 1 and y~O (with the
convention <1>( (0) = 1)

(
y ) ( y(2x - 1) )Ht(x, y)=<I> J -exp{ _2y 2}<I> J

x(l-x) x(l-x)

(2.5)
-(I-x) (2<1> ( Y )-1).

JX(I-x)

If a -1=0 this simplification of (2.4) is unfortunately no longer possible. Notice that our
formula (2.5) yields the marginal distributions

(2.6)

and

P(Tl~X)=X, O~x~1
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(2.7) y~O.
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The distribution (2.7) is well known, but (2.6) may be less so.

2.1. A numerical example
We consider

Y(u) = Bo(u)+au,

with a = 0.1 and t = 0.8. Table 1 shows values ofH, (x, y) for selected arguments 0~ x ~ 0.8
and y~O. The required numerical integrals were computed using standard subroutines
of MATHEMATICA 2.2 for MS - DOS (Enhanced Version).

TABLE 1
The probabilities H, (x, y) for Y(u) = Bo(u)+ au with a = 0.1 and t = 0.8

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
y

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.000 0.013 0.023 0.028 0.032 0.035 0.037 0.038 0.040
0.2 0.000 0.027 0.048 0.061 0.071 0.080 0.086 0.091 0.099
0.3 0.000 0.040 0.075 0.097 0.115 0.132 0.150 0.172 0.178
0.5 0.000 0.059 0.126 0.172 0.211 0.249 0.289 0.339 0.378
0.7 0.000 0.068 0.161 0.233 0.297 0.360 0.427 0.506 0.593
1.0 0.000 0.071 0.183 0.284 0.379 0.475 0.636 0.691 0.840
1.5 0.000 0.071 0.188 0.302 0.417 0.535 0.659 0.796 0.985
3.0 0.000 0.071 0.188 0.303 0.420 0.540 0.667 0.806 0.999
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