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Model-based spectral coherence analysis
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Recent data-driven efforts have utilized spectral decomposition techniques to uncover
the geometric self-similarity of dominant motions in the logarithmic layer, and thereby
validate the attached eddy model. In this paper, we evaluate the predictive capability of
the stochastically forced linearized Navier–Stokes equations in capturing such structural
features in turbulent channel flow at Reτ = 2003. We use the linear coherence spectrum
to quantify the wall-normal coherence within the velocity field generated by the linearized
dynamics. In addition to the linearized Navier–Stokes equations around the turbulent
mean velocity profile, we consider an enhanced variant in which molecular viscosity
is augmented with turbulent eddy-viscosity. We use judiciously shaped white- and
coloured-in-time stochastic forcing to generate a statistical response with energetic
attributes that are consistent with the results of direct numerical simulation (DNS).
Specifically, white-in-time forcing is scaled to ensure that the two-dimensional energy
spectrum is reproduced and coloured-in-time forcing is shaped to match normal and
shear stress profiles. We show that the addition of eddy-viscosity significantly strengthens
the self-similar attributes of the resulting stochastic velocity field within the logarithmic
layer and leads to an inner-scaled coherence spectrum. We use this coherence spectrum
to extract the energetic signature of self-similar motions that actively contribute to
momentum transfer and are responsible for producing Reynolds shear stress. Our
findings support the use of coloured-in-time forcing in conjunction with the dynamic
damping afforded by turbulent eddy-viscosity in improving predictions of the scaling
trends associated with such active motions in accordance with DNS-based spectral
decomposition.

Key words: turbulence modelling, turbulence theory

1. Introduction

In recent years, there has been considerable effort in providing reduced-order
models that explain the dynamics of the inertial-dominated logarithmic region of
high-Reynolds-number wall-bounded flows (Jiménez & Moser 2007; Marusic, Mathis &
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Hutchins 2010; Smits, McKeon & Marusic 2011). This effort, which has been facilitated
by the ubiquity of experimentally or numerically generated statistical data sets, has been
motivated by the dynamic relevance of this region of wall turbulence in turbulent kinetic
energy production (Smits et al. 2011; Smits & Marusic 2013). In this vein, one of the most
commonly cited models is the attached eddy model, which is based on the hypothesis
that the number of attached eddies drops off at a rate that is inversely proportional
to the distance from the wall (Townsend 1976). At the same time, the size of said
eddies is assumed to grow proportionally with their wall-normal distance. Thereby, the
attached eddy model provides a conceptual picture of the kinematics of wall-turbulence
as a hierarchy of randomly distributed attached eddies that are geometrically self-similar
and inertially dominated (Perry & Chong 1982; Marusic & Monty 2019). However,
wall attached eddies have been shown to exhibit both self-similar and non-self-similar
geometric scaling with respect to their distance from the wall (Perry, Henbest & Chong
1986; Marusic & Monty 2019). Numerous studies have examined self-similarity trends
in turbulent wall-bounded flows. These include modal decomposition techniques such as
proper orthogonal decomposition (Gordeyev & Thomas 2000; Hellström & Smits 2014;
Karban et al. 2022), conditional sampling of instantaneous flow fields (Volino, Schultz &
Pratt 2003; Hwang, Lee & Sung 2020) and spectral coherence analysis using the results of
numerical simulations (Moser, Rogers & Ewing 1998; Del Álamo et al. 2004) and hot-wire
measurements (Baars, Hutchins & Marusic 2017; Chandran et al. 2017; Deshpande et al.
2020; Deshpande, Monty & Marusic 2021). While the structural simplicity afforded by
the attached eddy model can be used to explain many statistical and structural features
of wall-bounded turbulent flows (e.g. see de Giovanetti, Hwang & Choi 2016; Mouri
2017; Hwang & Sung 2018), its distinct limitations and potential refinements can guide
our assessment of reduced-order models (Marusic & Monty 2019).

A characteristic feature of self-similar flow structures is their dominant energetic
signature in the logarithmic layer (Townsend 1961). Because of this, self-similarity trends
have been traditionally sought by studying the two-dimensional energy spectrum of the
velocity field at various points within the logarithmic layer (Del Álamo et al. 2004;
Chandran et al. 2017). However, the shared footprint of coexisting turbulent motions on
the energy spectrum has been shown to obscure signatures of self-similar structures within
the logarithmic layer. This effect is due to the lack of sufficient scale separation between
viscous- and inertia-dominated motions, and is exacerbated in low-Reynolds-number flows
(Perry et al. 1986; Perry & Marušic 1995; Baars & Marusic 2020a). On the other hand, the
two-dimensional energy spectra of extremely high-Reynolds-number (e.g. Reτ = 26 000)
boundary layer flows have been shown to scale linearly over streamwise and spanwise
wavelengths (Chandran et al. 2017). Instead, the correlation of the velocity field between
points in the viscous near-wall and inertial regions of the flow was shown to be capable of
accounting for the energetic signature of attached eddies that were self-similar (Deshpande
et al. 2020). Nevertheless, self-similarity trends were still shown to be degenerated at large
wavelengths due to the effect of very large-scale structures that extend well beyond the
logarithmic region (Deshpande et al. 2020). To filter the effect of such very large-scale
motions (VLSMs) and the potential footprint of non-attached eddies, Baars & Marusic
(2020a,b) proposed a spectral decomposition technique for extracting a component of
the energy spectrum that can be exclusively contributed to self-similar attached motions.
Application of this technique to the energy spectrum of high-Reynolds-number boundary
layer flow was shown to reveal the self-similarity of both active and inactive motions
(Deshpande et al. 2021). The same work also revealed a pure k−1-scaling (where k is
the horizontal wavenumber) for the one-dimensional energy spectrum associated with
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attached eddies that have little contribution to the formation of the Reynolds shear stress
(i.e. inactive motions).

In this paper, we focus on the predictive capability of a class of reduced-order models
in capturing the dominant self-similarity trends of high-Reynolds-number turbulent flows.
This class of models is given by variants of the linearized Navier–Stokes (NS) equations
around the turbulent mean velocity profile, which have shown promise in capturing various
structural and statistical features of turbulent wall-bounded flow in addition to utility in
model-based flow control. We next provide a brief overview of the historical significance
of these models and summarize our contributions.

1.1. Linear analysis of turbulent wall-bounded shear flows
Linear mechanisms have been shown to play an important role in the emergence and
maintenance of streamwise streaks in turbulent wall-bounded shear flows. For example,
numerical simulations were used to attribute the formation of such structures to the
linear amplification of eddies that interact with the background shear (Lee, Kim & Moin
1990). Kim & Lim (2000) later highlighted the role of linear mechanisms in maintaining
near-wall streamwise vortices. Such studies support the relevance of linear mechanisms in
various stages of the self-sustaining regeneration cycle (Hamilton, Kim & Waleffe 1995;
Waleffe 1997) and motivate the linear dynamical modelling of turbulent shear flows. One
of such models is the linearized NS equations and its eddy-viscosity enhanced variant,
which results from augmenting molecular viscosity with turbulent eddy-viscosity. These
models have shown particular success in capturing the structural and statistical features of
turbulent flows.

Chernyshenko & Baig (2005) used the linearized NS equations to predict the formation
and spacing of near-wall streaks. The eddy-viscosity enhanced linearized NS equations
were shown to reliably predict the length scales of the dominant near-wall motions
in turbulent wall-bounded shear flows (Del Álamo & Jiménez 2006; Cossu, Pujals &
Depardon 2009; Pujals et al. 2009; Hwang & Cossu 2010b). In particular, Hwang &
Cossu (2010b) showed that eddy-viscosity enhancement imposes a self-similar scaling
with respect to the wall-normal coordinate resulting in a plateau in the premultiplied
one-dimensional energy spectrum. Moreover, the resolvent of the linearized NS operator
has been used to provide insight into linear amplification mechanisms associated with
critical layers and to explain the extraction of energy from the mean velocity to fluctuations
(McKeon & Sharma 2010; McKeon, Sharma & Jacobi 2013; Sharma & McKeon 2013).
Moarref et al. (2013) studied the Reynolds number scaling and geometric self-similarity
of the dominant resolvent modes associated with the eddy-viscosity enhanced linearized
NS equations. They also showed that decomposition of the resolvent operator can provide
low-order approximations of the energy spectrum of turbulent channel flow. More recently,
Symon et al. (2022) analysed the effects of the Cess eddy-viscosity profile (Cess 1958)
on the ability of the resolvent operator in predicting relevant spatiotemporal scales
of the near-wall cycle. Illingworth, Monty & Marusic (2018) used the eddy-viscosity
enhanced model to develop a Kalman-based estimator of the velocity field based on
observations from the wall-normal location corresponding to the maximum of streamwise
streaks. Madhusudanan, Illingworth & Marusic (2019) demonstrated the benefit of the
eddy-viscosity enhancement in predicting turbulent eddies that are coherent over a
significant wall-normal extent in high-Reynolds-number channel flow. They also showed
that the addition of eddy-viscosity significantly improves the linear stochastic estimation
of the fluctuation field in wall-parallel planes that are lower than measurements taken
from the top of the logarithmic layer. Finally, we note that the eddy-viscosity enhanced
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linearized NS equations have also served as the basis for model-based design of passive
flow control strategies in turbulent channels (Moarref & Jovanovic 2012; Ran, Zare &
Jovanović 2021).

1.2. Stochastically forced linearized NS equations
The nonlinear terms in the NS equations play an important role in the growth of flow
fluctuations and the transfer of energy between different spatiotemporal modes, both
of which are important in transition to turbulence and in sustaining a turbulent state.
However, due to their conservative nature, these terms do not contribute to the transfer
of energy between the mean flow and velocity fluctuations (McComb 1991; Durbin &
Reif 2011). Inspired by this property, many studies have sought additive stochastic forcing
of the linearized equations to model the uncertainty caused by neglecting the nonlinear
terms or the impact of exogenous excitation sources and random initial conditions on
the dynamics of fluctuations. These studies have focused on the modelling of various
configurations and flow regimes ranging from homogeneous isotropic turbulence (Orszag
1970; Kraichnan 1971; Monin & Yaglom 1975) to quasigeostrophic turbulence (Farrell &
Ioannou 1993a, 1994; DelSole & Farrell 1995) to transitional and turbulent channel flows
(Farrell & Ioannou 1993b; Bamieh & Dahleh 2001; Jovanovic & Bamieh 2005; Hwang &
Cossu 2010a,b; Moarref & Jovanovic 2012; Zare, Jovanovic & Georgiou 2017b; Ran et al.
2019).

The stochastically forced linearized NS were also used as part of restricted nonlinear
models that aimed to generate self-sustained turbulence in Couette and Poiseuille flows
(Farrell & Ioannou 2012; Constantinou et al. 2014; Thomas et al. 2014). In these studies
it was shown that even though turbulence could be triggered with white-in-time stochastic
forcing, correct statistics could not be reproduced without accounting for the dynamics
of the mean flow or without manipulation of the underlying dynamical modes (Bretheim,
Meneveau & Gayme 2015; Thomas et al. 2015). This finding was in agreement with studies
that suggested the deficiency of the linearized NS equations subject to white-in-time
forcing in reproducing long-time averaged velocity correlations of channel flow (Farrell
& Ioannou 1998; Jovanovic & Bamieh 2001; Hœpffner 2005). Moarref & Jovanovic
(2012) showed that the variance of white-in-time stochastic forcing could be tuned to
match the two-dimensional energy spectrum (integrated in the wall-normal dimension)
of turbulent channel flow using the linearized NS equations. This choice was inspired by
the observation that the second-order statistics of homogeneous isotropic turbulence can
be exactly matched by white-in-time forcing with variance proportional to the turbulent
energy spectrum (Moarref 2012).

Zare et al. (2017b) exposed the limitations of white-in-time forcing models in
reproducing the second-order statistics of turbulent channel flow using the linearized NS
equations. To address this limitation, this study offered an optimization-based modelling
framework for identifying the spectral content of coloured-in-time stochastic forcing
that enables the linearized NS equations to match the second-order statistics of fully
developed turbulence. It was also shown that the effect of coloured-in-time stochastic input
can be equivalently interpreted as a structural perturbation of the linearized dynamical
generator, with damping effects that are reminiscent of the role of eddy-viscosity. Such
structural perturbations are suggestive of important state-feedback interactions that are
lost through linearization and have inspired alternative problem formulations whereby
dynamical feedback interactions are directly sought to reconcile partially available velocity
correlations with the given linearized dynamics (Zare, Jovanovic & Georgiou 2016; Zare
et al. 2020b).
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1.3. Preview of the main results
Application of the modelling framework of Zare et al. (2017b) to turbulent channel
flow demonstrated its efficacy in capturing various structural and statistical features of
the flow. For example, when trained with one-point correlations of the velocity field
(normal/shear stresses), it was shown that such models not only match the one-dimensional
energy spectra, but they also reasonably predict two-point velocity correlations that are,
in turn, pertinent to the prediction of coherent flow structures as well as spatiotemporal
features such as the power spectral density (see Zare et al. (2017b) and Zare, Georgiou
& Jovanovic (2020a) for details). Building upon this observation, we propose the use of
such data-enhanced stochastic dynamical models for the purpose of spectral coherence
analysis in high-Reynolds-number wall-bounded shear flows. In particular, we demonstrate
the efficacy of a model-based spectral coherence analysis for validating the structural
hierarchy offered by the attached eddy model, i.e. the self-similarity of wall-coherent
motions that dominate the energy of the logarithmic region of the wall.

The performance of our model-based approach relies on the predictive capability of
the reduced-order models we use for coherence analysis over the wall-normal dimension.
In this paper, we focus on a class of physics-based models, which are given by variants
of the stochastically forced linearized NS equations around the Reynolds and Tiederman
turbulent mean velocity profile (Reynolds & Tiederman 1967), namely the original
linearized NS equations and their eddy-viscosity enhanced variant subject to the scaled
white-in-time forcing of Moarref & Jovanovic (2012), in addition to the data-enhanced
linearized NS equations proposed by Zare et al. (2017b). While all models are capable
of reproducing the two-dimensional energy spectrum (integrated over the wall-normal
dimension) in accordance with direct numerical simulations (DNS), the latter is capable of
matching the normal and shear stresses (one-point velocity correlations) over all horizontal
wavenumbers. Nevertheless, neither of these models are capable of matching two-point
velocity correlations and their ability to partially reproduce this measure of coherence
forms the basis for the analysis conducted in this paper.

Most of our discussion focuses on turbulent channel flow with Reτ = 2003, yet
the methodology and analysis are applicable to more complex wall-bounded flow
configurations. We form the linear coherence spectrum using the models highlighted
above to examine their capability in identifying regions of the energy spectrum that are
affected by self-similar wall-coherent structures. We compare and contrast the geometric
scaling extracted from the results of said stochastic models with those resulting from
spectral coherence analysis of DNS data. We then examine the scaling laws between the
spatial length scales of such flow structures and follow the work of Baars et al. (2017)
to provide analytical expressions for the dependence of the linear coherence spectrum
on the horizontal wavelengths. We show that the addition of eddy-viscosity enables the
linearized NS model to capture a linear scaling trend in its coherence spectrum that is in
close agreement with that of DNS.

At low to moderate Reynolds numbers, the signature of self-similar wall-coherent
motions in the energy spectrum is obscured by the overlapping footprint of eddies of
different size. To address this challenge, we use the decomposition technique proposed
by Baars & Marusic (2020a) to extract the energetic signature of dynamically dominant
self-similar motions that actively contribute to turbulent transfer and the formation of the
Reynolds shear stress. Our results demonstrate the benefits of coloured-in-time stochastic
forcing in improving the predictions of scaling trends associated with such active motions
in the logarithmic layer, thereby highlighting the importance of accounting for various
second-order statistics of turbulent flows in developing model-based spectral filters.
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1.4. Paper outline
The rest of our paper is organized as follows. In § 2 we introduce the stochastically
forced linearized NS equations in evolution form and relate their steady-state covariance
to two-point correlations of the velocity field. In § 3 we provide details of the stochastic
processes that are used to generate statistically relevant velocity fields in the output of the
linearized NS models. In § 4 we use two-point correlations generated by our stochastic
models to construct the linear coherence spectrum and analyse the geometric scaling laws
of wall-attached self-similar structures that dominate the logarithmic layer. In § 5 we use
the linear coherence spectrum to decompose the one-dimensional energy spectrum into
active and inactive motions and analyse their geometric scaling. Finally, in § 6 we provide
a summary of our results and an outlook for future research directions.

2. Stochastically forced linearized NS equations

In this section, we introduce the linear models that we will use for analysing the geometric
features of dominant coherent flow structures in high-Reynolds-number channels. These
are based on two variants of the linearized NS equations subject to an additive source of
excitation that triggers a statistical response from the linearized dynamics. The spectral
proprieties of the said stochastic forcing will be determined in the next section.

For a channel flow of incompressible Newtonian fluid, the dynamics of the velocity and
pressure fields are governed by the NS and continuity equations,

∂tu = − (u · ∇) u − ∇P + 1
Reτ

Δu,

0 = ∇ · u,

⎫⎬
⎭ (2.1)

where u is the velocity vector, P is the pressure, ∇ is the gradient operator, Δ = ∇ · ∇
is the Laplacian operator and t is time. The Reynolds number Reτ = uτ h/ν is defined
in terms of the channel half-height h, kinematic viscosity ν and the friction velocity
uτ = √

τw/ρ, where τw is the wall-shear stress (averaged over wall-parallel dimensions
and time) and ρ is the fluid density. By adopting the Reynolds decomposition to split
the velocity and pressure fields into their time-averaged mean and fluctuating parts and
linearizing the NS equations around the mean components, we arrive at the equations that
govern the dynamics of velocity and pressure fluctuations,

vt = − (∇ · ū) v − (∇ · v) ū − ∇p + 1
Reτ

Δv + d, (2.2a)

0 = ∇ · v. (2.2b)

Here, ū = [U( y) 0 0]T denotes the vector of mean velocity, p is the fluctuating pressure
field and v = [u v w]T is the vector of velocity fluctuations, with u, v and w representing
the fluctuating components in the streamwise, x, wall-normal, y, and spanwise, z,
directions, respectively. In (2.2a), d denotes a three-dimensional zero-mean additive
stochastic forcing, which is commonly used to model the impact of exogenous excitation
sources and initial conditions, or to capture the effect of nonlinearity in the NS equations.

In addition to equations (2.2), we also consider the eddy-viscosity enhanced linearized
NS equations (Reynolds & Hussain 1972; Del Álamo & Jiménez 2006; Pujals et al. 2009;
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Hwang & Cossu 2010b),

vt = − (∇ · ū) v − (∇ · v) ū − ∇p + 1
Reτ

∇ · ((1 + νT)(∇v + (∇v)T)) + d, (2.3a)

0 = ∇ · v, (2.3b)

which result from linearizing the NS equations around the turbulent mean velocity ū,
and compensating for the nonlinear terms by augmenting the molecular viscosity with
turbulent viscosity νT . For turbulent viscosity in channel flow, we use the Reynolds &
Tiederman (1967) profile,

νT( y) = 1
2

((
1 +

(c2

3
Reτ (1 − y2)(1 + 2y2)(1 − exp(−(1 − |y|)Reτ /c1))

)2
)1/2

− 1

)
,

(2.4)

where parameters c1 and c2 are selected to minimize the least squares deviation between
the mean streamwise velocity obtained in experiments or simulations and the steady-state
solution to the Reynolds-averaged NS equations in conjunction with the Boussinesq
eddy-viscosity hypothesis obtained via the wall-normal integration of Reτ (1 − y)/(νT +
ν) (McComb 1991; Pope 2000; Durbin & Reif 2011). Application of this least squares
procedure in finding the best fit to the DNS-generated turbulent mean velocity (Del Álamo
& Jiménez 2003; Del Álamo et al. 2004; Hoyas & Jiménez 2006; Hoyas & Jimenez 2008)
yields {c1 = 25.4, c2 = 0.42} for the turbulent channel flow with Reτ = 2003 considered
in this study.

Application of a standard conversion for the elimination of pressure (Schmid &
Henningson 2001) together with a Fourier transform in the wall-parallel directions brings
the linearized equations (2.2) and (2.3) into the evolution form

ϕt( y, k, t) = [
A(k)ϕ(·, k, t)

]
( y) + [B(k) d(·, k, t)] ( y),

v( y, k, t) = [
C(k)ϕ(·, k, t)

]
( y),

}
(2.5)

where the state variable ϕ = [v η]T contains the wall-normal velocity v and vorticity
η = ∂zu − ∂xw, k = [kx kz]T is the vector of streamwise and spanwise wavenumbers,
and v(±1, k, t) = vy(±1, k, t) = η(±1, k, t) = 0, which can be derived from the original
no-slip and no-penetration boundary conditions on u, v and w. Operators B and C are
given by

B(k) :=
[−ikxΔ

−1∂y −k2Δ−1 −ikzΔ
−1∂y

ikz 0 −ikx

]
,

C(k) :=
⎡
⎣Cu

Cv

Cw

⎤
⎦ = 1

k2

⎡
⎣ikx∂y −ikz

k2 0
ikz∂y ikx

⎤
⎦ ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.6)
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where i is the imaginary unit, k2 = k2
x + k2

z , and Δ = ∂2
y − k2 is the Laplacian. For the

original linearized NS model (2.2), operator A is given by

A(k) =
[

A11(k) 0
A21(k) A22(k)

]
,

A11(k) = Δ−1
(

1
Reτ

Δ2 + ikx (U′′ − UΔ)

)
,

A21(k) = −ikz U′,

A22(k) = 1
Reτ

Δ − ikxU

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

and for the eddy-viscosity enhanced linearized NS model (2.3), it is given by

A(k) =
[

A11(k) 0
A21(k) A22(k)

]
,

A11(k) = Δ−1
(

1
Reτ

((1 + νT)Δ2 + 2ν′
TΔ ∂y + ν′′

T (∂2
y + k2)) + ikx (U′′ − UΔ)

)
,

A21(k) = −ikz U′,

A22(k) = 1
Reτ

((1 + νT)Δ + ν′
T∂y) − ikx U.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

In these operators, a prime denotes differentiation with respect to the wall-normal
coordinate, and Δ2 = ∂4

y − 2k2∂2
y + k4.

We use a pseudospectral scheme with N Chebyshev collocation points in the
wall-normal direction (Weideman & Reddy 2000) to discretize the operators in the
linearized equations (2.5). Moreover, we employ a change of variables to obtain a
state-space representation in which the kinetic energy is determined by the Euclidean norm
of the state vector (Zare et al. 2017b, appendix A). This yields the state-space model

ψ̇(k, t) = A(k)ψ(k, t) + B(k) d(k, t),

v(k, t) = C(k)ψ(k, t),

}
(2.9)

where ψ and v are vectors with 2N and 3N complex-valued entries, respectively,
and matrices A, B and C are discretized versions of the corresponding operators that
incorporate the aforementioned change of coordinates. In statistical steady state, the
second-order statistics of the state ψ and output velocity vector v in (2.9) are linearly
related as follows:

Φ(k) = C(k) X(k) C∗(k). (2.10)
Here, Φ(k) = limt→∞ 〈v(k, t) v∗(k, t)〉 and X(k) = limt→∞

〈
ψ(k, t)ψ∗(k, t)

〉
denote the

covariance matrices of the velocity v and state ψ , respectively, and ∗ denotes the
complex-conjugate transpose. The two-point correlation matrix Φ contains the normal and
shear Reynolds stresses as one-point correlations along the diagonals of the submatrices
of Φ, in addition to the off-diagonal two-point correlations (Moin & Moser 1989) (see
figure 1). As we discuss next, depending on the nature of the stochastic forcing d that
is used to persistently excite the variables in (2.9), the state covariance matrix X is
either computed as the solution to the standard algebraic Lyapunov equation or a similar
Lyapunov-like algebraic equation.
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uu uv uw

vv vw

ww

Figure 1. Structure of the output covariance matrix Φ = CXC∗. One-point correlations of the velocity vector
in the wall-normal direction are marked by the red lines.

3. Forcing models and flow statistics

In this study, we consider two types of stochastic forcing: (i) white-in-time forcing that
ensures the recovery of the two-dimensional energy spectrum; and (ii) coloured-in-time
forcing that ensures the recovery of both two- and one-dimensional energy spectra. As
we explain next, the spectral content of both types of stochastic forcing are determined
by DNS-generated second-order statistics and the latter approach relies on the stochastic
dynamical modelling framework of Zare et al. (2017a,b, 2020a).

3.1. Judiciously scaled white-in-time forcing
When the stochastic forcing d in (2.9) is zero-mean and white-in-time the steady-state
covariance X can be determined as the solution to the standard algebraic Lyapunov
equation (Kwakernaak & Sivan 1972)

AX + XA∗ = −M. (3.1)

Here, M = M∗ 	 0 is the covariance matrix of d̄ := B d, i.e. 〈d̄(k, t1)d̄
∗
(k, t2)〉 =

M(k)δ(t1 − t2) and δ is the Dirac delta function. Following Moarref & Jovanovic (2012),
we select the covariance of white-in-time forcing to guarantee equivalence between the
two-dimensional energy spectrum of turbulent channel flow and the flow obtained by the
linearized NS equations. This is achieved via the scaling

M(k) = Ē(k)

Ē0(k)
M0(k), (3.2)

where Ē(k) = ∫ 1
−1 E( y, k) dy is the two-dimensional energy spectrum of a turbulent

channel flow obtained using the DNS-based energy spectrum E( y, k) (Del Álamo &
Jiménez 2003; Del Álamo et al. 2004), and Ē0(k) is the energy spectrum resulting from
(2.9) subject to a white-in-time forcing d with covariance

M0(k) =
[

E( y, k) I 0
0 E( y, k) I

]
. (3.3)

Appendix A.1 includes a step-by-step procedure for determining white-in-time forcing d̄
with such spectral content.

3.2. Data-driven coloured-in-time forcing
While carefully scaled white-in-time stochastic forcing can be used to match the
two-dimensional energy spectrum of turbulent flow using the linearized NS dynamics, it
falls short of matching turbulent velocity correlations, namely the normal and shear stress
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profiles (Zare et al. 2017b). When the stochastic forcing d in (2.9) is coloured-in-time, the
statistics of forcing are related to the state covariance X via the Lyapunov-like equation
(Georgiou 2002a,b)

AX + XA∗ = −BH∗ − HB∗. (3.4)

Here, B is the input matrix that determines the preferred structure by which stochastic
excitation enters the linearized evolution model and H is a matrix that contains spectral
information about the coloured-in-time stochastic forcing. The matrix H is related to the
cross-correlation between the forcing and the state in evolution model (2.9).

Following Zare et al. (2017b), we select the matrices B and H in (3.4) to guarantee
equivalence between the one-dimensional energy spectrum of turbulent channel flow and
the flow obtained via the linearized NS equations. Specifically, assuming knowledge of
normal and shear Reynolds stress profiles from the result of DNS (Del Álamo & Jiménez
2003; Del Álamo et al. 2004), we determine the statistics of the coloured-in-time stochastic
forcing in system (2.9) that reproduces the desired one-point correlations of the velocity
field. Our desire to match such second-order statistics of the velocity field stems from
their role in forming spectral filters that enable the extraction of geometric scaling laws for
wall-coherent flow structures (§ 4) and the predominant role of self-similar motions in the
production of shear stresses (§ 5). To this end, complete matrices X and Z are sought as
solutions to the covariance completion problem

minimizeX,Z − log det (X) + α ‖Z‖�

subject to AX + XA∗ + Z = 0

(CXC∗)ij = Φij, (i, j) ∈ I

⎫⎪⎬
⎪⎭ (3.5)

where the dynamic matrices A and C are problem data, in addition to the available entries
of the output covariance matrix Φ denoted by indices (i, j) ∈ I. This convex optimization
problem involves a composite objective, which provides a balance between the solution
X � 0 to the maximum entropy problem and the complexity of the forcing model (see Zare
et al. (2017a) for additional details). The latter is accomplished by minimizing the nuclear
norm ‖Z‖�, which is used as a convex proxy for rank minimization (Fazel 2002; Recht,
Fazel & Parrilo 2010), and the parameter α > 0 determines the importance of the nuclear
norm regularization term. While the choice of α does not interfere with the feasibility
of problem (3.5), it does, however, alter the quality of completion (Zare et al. 2017b,
appendix C). Figure 2 displays perfect matching of the normal and shear stress profiles
of a turbulent channel flow with Reτ = 2003 for the wavenumber pair that corresponds to
the peak of the premultiplied energy spectrum, i.e. k = (0.4, 4.5).

While one-point correlations are representative of the energy of fluctuations at various
distances away from the wall, two-point correlations, i.e. off-diagonal entries in the
covariance matrix, are indicators of the presence and spatial extent of coherent structures
(Monty et al. 2007; Smits et al. 2011). It has been shown that the solution to optimization
problem (3.5) provides a reasonable recovery of two-point velocity correlations, especially
for large values of the regularization parameter α (see Zare et al. (2017b, § 4.2)). This is in
spite of the fact that only one-point correlations or diagonal entries of the submatrices in Φ

are typically provided as data in problem (3.5) and is attributed to the Lyapunov constraint,
which maintains the relevance of flow physics by enforcing consistency between data and
the linearized NS dynamics. The quality of completing the two-point correlation matrix
is found to depend on the value of α in optimization problem (3.5) (Zare et al. 2017b,
appendix C). In this paper, the choice of α = 104 is made to ensure good predictions of
the dominant length scales of the near-wall cycle (Robinson 1991; Jiménez & Pinelli 1999).

958 A16-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.82


Model-based spectral coherence analysis

0.25

–0.5 0 0.5 –0.5 0 0.5

0.20

0.15

0.10

0.05

0.05

0

–0.05

(b)(a)

Figure 2. One-point velocity correlations resulting from DNS of a channel flow with Reτ = 2003 at k =
(0.4, 4.5) (−) and from the solution to problem (3.5). (a) The normal stresses uu (◦), vv (�) and ww (�); and
(b) the shear stress uv (�).

Modified dynamics

Coloured

noise

White

noise

Stochastic

outputLinearized

dynamicsFilter

Figure 3. Parsimonious modifications of linearized dynamics are formed via the cascade connection of
linearized dynamics with a spatiotemporal filter that is designed to account for partially available output
statistics.

The solution to problem (3.5) can be used to construct a dynamical model for the
realization of coloured-in-time stochastic input to the linearized NS equations (2.9). The
class of generically minimal linear filters proposed by Zare et al. (2017b, § 3.2) provide one
such realization whose cascade connection with system (2.9) yields a minimal realization
in the form of a parsimonious (low rank) modification to the original linearized dynamics
(figure 3),

ψ̇(k, t) = (A(k) − B(k) K(k))ψ(k, t) + B(k) w(k, t). (3.6)

Here, w is a zero-mean white-in-time stochastic process with covariance Ω and

K(k) =
(

1
2ΩB∗(k) − H∗(k)

)
X−1(k) (3.7)

for matrices B and H that correspond to the factorization Z = BH∗ + HB∗ (see Zare
et al. (2017a) for details). Appendix A.2 includes a step-by-step procedure for obtaining
a state-space realization for the coloured-in-time forcing, which leads to the modified
dynamics (3.6).

4. Self-similarity trends based on the coherence spectrum

As explained in the previous sections, the linearized NS equations and their data-enhanced
variant provide statistical responses that are representative of the energy and structural
features of various length scales of turbulent flows. In particular, model (3.6) was trained
to reproduce the one-dimensional energy spectrum of the flow in addition to reasonably
recover two-point velocity correlations between different wall-normal locations. In this
section, we build on the latter feature and the work of Baars et al. (2017) to study the
geometric scaling of dominant flow structures resulting from three models: (i) the original
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linearized NS equations (2.2); (ii) the eddy-viscosity enhanced linearized NS equations
(2.3); and (iii) the data-enhanced variant of model (ii) (i.e. model (3.6) with dynamic
matrix A corresponding to (2.3)). In the remainder of the paper, these models will be
referred to as LNS, eLNS and dLNS, respectively. We compare and contrast the deduced
scaling trends with the attached eddy model and discuss its corruption by the signature of
non-self-similar flow structures.

Both the one-point and two-point correlations of the streamwise velocity have been
previously used to study the dominant geometric scaling of wall-turbulence (Chandran
et al. 2017; Deshpande et al. 2020). In high-Reynolds-number boundary layer flow, the
two-dimensional energy spectrum has been shown to exhibit the geometric self-similarity
of structures that reside in the logarithmic layer (Chandran et al. 2017). However, such
geometric properties are typically obscured in the two-dimensional energy spectrum of
low to moderate Reynolds number flows due to a lack of separation of scales. Instead, the
two-point correlation of the velocity field, which quantifies the coherence between two
wall-normal locations, can be used to isolate the influence of those energetic motions that
reside in the logarithmic region and are coherent with the wall (Deshpande et al. 2020).
A normalized variant of the correlation between two wall-normal planes is given by the
linear coherence spectrum (LCS) (Baars et al. 2017; Baidya et al. 2019),

γ 2(y, yr; k) := |Φuu(y, yr, k)|2
Φuu(y, y, k)Φuu( yr, yr, k)

, (4.1)

where | · | is the modulus of a complex quantity, Φuu is the two-point correlation of the
streamwise velocity component u, yr is the distance of a predetermined reference point
from the wall and y denotes a second point whose wall-normal location can vary. Based
on this, 0 ≤ γ 2 ≤ 1, with perfect coherence (γ 2 = 1) happening when yr = y.

In the remainder of this section, we extract the geometric scaling of wall-attached eddies
from the LCS resulting from the stochastic models introduced in § 3 and compare scaling
laws with those extracted from a DNS-based LCS. In § 5 we extend this comparison to
the efficacy of LCS-based spectral filters in extracting the portion of the energy spectrum
that corresponds to motions that significantly contribute to the Reynolds shear stress. The
LCS is determined in reference to the wall-normal location y+

r = 15 to target wall-attached
coherent motions that extend to farther layers of the wall. Prior studies have shown that
wall-coherence remains largely unchanged for 0 ≤ y+

r � 15 (Baars et al. 2017). We note
that as the LCS only considers the magnitude of the two-point correlation between yr and y,
any consistent stochastic phase shift between u( yr, k) and u(y, k) would not be taken into
account by our spectral coherence analysis. The DNS-based LCS is computed from the
channel flow dataset provided by the Polytechnic University of Madrid (Vela-Martín et al.
2021). This dataset contains 1146 time instances of the velocity extracted from a reduced
grid of size 512 × 512 × 512 that only accounts for scales that are larger than the viscous
scale (Vela-Martín et al. 2021). The compressed dataset is computed from the result of
DNS of a channel flow at Reτ = 2003 with a computational box size of 8πh × 2h × 3πh
in the streamwise, wall-normal and spanwise directions, covering a 2048 × 512 × 2048
grid.

4.1. Geometric scaling of attached eddies in the vertical planes
For a turbulent channel flow with Reτ = 2003, figure 4 displays the LCS contours
resulting from the LNS, eLNS and dLNS models plotted on top of the premultiplied
one-dimensional energy spectra. As explained in § 3, the forcing d̄ (2.9) of each of
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Figure 4. Contours of the LCS spectrogram obtained using the LNS (a,b), the eLNS (c,d) and the dLNS
(e, f ) models plotted on top of the premultiplied energy spectrum. The LCS contours are displayed as functions
of the wall-normal coordinate and the streamwise (a,c,e) and spanwise (b,d, f ) wavelengths all scaled in inner
units. The LCS contour lines correspond to {0.05 : 0.05 : 0.9} coherence levels with thicker lines denoting
coherence levels below 0.5. The hypotenuse of each triangle indicates the lowest level of coherence (0.05).

the physics-based models is adjusted to ensure either the recovery of the wall-averaged
two-dimensional energy spectrum (in the case of LNS and eLNS models) or the
one-dimensional energy spectrum (in the case of the dLNS model). Note that matching the
one-dimensional energy spectrum would yield the exact recovery of the two-dimensional
energy spectrum as well. Figure 4 shows the premultiplied energy spectra in a colourmap
as a function of the wall-normal coordinate and streamwise (a,c,e) and spanwise (b,d, f )
wavelengths all in viscous units y+ = Reτ (1 + y), λ+x = 2πReτ /kx, and λ+z = 2πReτ /kz.
In each panel, the missing dimensions have been averaged out.

The LCS contour lines plotted on top of the energy spectra in figure 4 represent various
levels of a coherence hierarchy predicted by the three models. While all models predict
high levels of coherence in the proximity of the wall, only wall-attached eddies with large
streamwise or spanwise wavelengths remain coherent in the outer layer. The elongated
structures corresponding to the second energetic peak are identified by the LNS model
to be weakly coherent with the wall. This is in contrast to the predictions of the eLNS
and dLNS models, which predict strong coherence for large-scale structures extending
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beyond the logarithmic region and into the wake region in accordance with LCS-based
observations made for high-Reynolds-number turbulent boundary layer flow (Baars et al.
2017).

For each of the panels in figure 4, a triangular region can be identified which is
bounded from below by a wall-normal height corresponding to the shortest distinguishable
geometrically self-similar eddy (or shortest height that would encompass parallel patterns
within the triangle), from the left by the wavelength of the smallest inner-scaled structures,
and from the right by the wavelength of the smallest distinguishable outer-scaled
structures. We note that these limits are identified by visual inspection. In all spectrograms,
the inner- and outer limits are marked by vertical dashed lines and the lower limits
are marked by horizontal dashed lines. The hierarchies established within the triangular
regions demonstrate higher levels of coherence for larger wavelengths at lower wall-normal
locations, which is consistent with the additive nature of the coherence spectra of
high-Reynolds-number boundary layer flows and the predictions of prior conceptual
models proposed for the structure of attached eddies (Baars et al. 2017).

As indicated by the lower limit of the triangles, the initial signs of self-similar behaviour
appear at y+ ≈ 80 from the LNS- and eLNS-based spectrograms and at y+ ≈ 100 from
the dLNS-based spectrogram. The inner limit, which indicates the smallest wall-attached
wavelengths predicted by the LNS, eLNS and dLNS models, is observed at λx/y ≈
{28, 13, 20} and λz/y ≈ {2.7, 3, 2.5}, respectively. Finally, the outer limit, which indicates
the breakdown of self-similar scaling and the dominance of VLSMs with constant
λ/y (horizontal contours lines at large wavelengths), is predicted to happen at λx/h ≈
{22, 22, 10} and λz/h ≈ {0.8, 1.3, 0.8} by the LNS, eLNS and dLNS models, respectively.
The extent of the self-similar region is generally in agreement with that of a turbulent
boundary layer flow with Reτ = 2000 extracted from the spectrogram of DNS data (Baars
et al. 2017, cf. figure 4), i.e. a lower limit of y+ ≈ 80, inner limit of λx/y ≈ 14, and
λx/δ ≈ 10 in the x–y plane.

Within the triangles, the LCS trends are indicative of approximately self-similar
flow structures with a y+ ∼ (λ+x )m1 and y+ ∼ (λ+z )m2 scaling extracted from the
slope of the hypotenuse. Perfect geometric self-similarity requires m1 = m2 = 1. The
coherence contours shown in figure 4(c,e) demonstrate a y+ ∼ (λ+x ) and y+ ∼ (λ+x )1.3

scaling, respectively. The same scaling laws can be deduced from figure 4(d, f ), i.e.
y+ ∼ (λ+z ) and y+ ∼ (λ+z )1.3, respectively. These observations are indicative of perfect
self-similarity of dominant wall-attached structures in the wall-parallel plane and
approximate self-similarity in the x–y and y–z planes, with slightly better scaling laws
extracted from the predictions of the eLNS model. The linear relationship between the
wall-normal coordinate and horizontal wavelengths extracted from the eLNS-based LCS
is in alignment with the findings of Madhusudanan et al. (2019) and can be attributed
to wall-normal scaling of the eddy-viscosity profile νT in the logarithmic region. On the
other hand, the deviation from perfect self-similarity in the results of the dLNS model is
caused by the dynamical modification affected by the coloured-in-time stochastic forcing.
As described in § 3.2, this dynamical modification aims to match the two-dimensional
energy spectrum at all wall-normal locations and thereby captures the energetic signature
of non-self-similar motions on one-point velocity correlations that are used to compute the
LCS (cf. (4.1)). In contrast to the scaling laws extracted for eLNS and dLNS models, those
extracted from the coherence contours corresponding to the LNS model, i.e. y+ ∼ (λ+x )0.45

and y+ ∼ (λ+z )0.45, are not indicative of self-similarity (figure 4a,b). This observation,
which implies that the LNS model fails to capture the coherence between the reference
point yr and the logarithmic region, can be attributed to the highly localized nature of the
flow structures captured by this model (Madhusudanan et al. 2019).
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Based on the findings of this section, regardless of the type of additive forcing,
eddy-viscosity enhanced models (eLNS and dLNS) better capture previously established
geometric scaling laws of attached eddies (cf. Marusic & Monty (2019)). The
aforementioned imperfect self-similarity at large wavelengths can be attributed to the
spectral signature of wall-coherent (i.e. wall-attached) large-scale structures that reside
in the outer layer and are known to be non-self-similar (Marusic & Monty 2019). Such
flow structures are known for actively modulating the production of near-wall scales
while playing a crucial role in the redistribution of fine-scale motions throughout the
turbulent boundary layer (Hutchins & Marusic 2007). In § 5, we use the LCS to filter
out the signature of such very large-scale flow structures in analysing the self-similarity of
wall-attached eddies in the logarithmic layer. We next validate the scaling laws extracted
from figure 4 by analysing the collapse of the corresponding linear coherence spectra in
scaled coordinates.

4.2. Wall-distance scaling of coherence spectra
In figure 4, the parallel coherence contours observed throughout the logarithmic region,
imply three-dimensional self-similarity for a range of horizontal length scales. This also
means that such geometric self-similarity can be made apparent by a wall-normal scaling
of the associated coherence spectra. In other words, an LCS computed using a reference
point yr close to the wall and a target point in the logarithmic region would scale
with the wall-normal distance of that target point (Madhusudanan et al. 2019). Figure 5
shows the isocontours of the LCS computed using the results of DNS and the three
models discussed in the prior subsection as functions of λ+x /y+ and λ+z /y+ where y+
corresponds to the wall-normal distance of the target point within the logarithmic layer,
i.e. 2.6

√
Reτ ≤ y+ ≤ 0.15Reτ . In agreement with trends observed for the isocontours of

the DNS-based LCS, the isocontours of the LCS computed using the eLNS or dLNS
models demonstrate reasonable collapse over various wall-normal locations, which is to
be expected given the approximately linear relation between y+ and λ+x (or λ+z ) observed
in figure 4(c–f ).

Figure 6 plots the isocontours of LCS as function of (λ+x )m/y+ and (λ+z )m/y+ where
m corresponds to the power-law relations extracted from figure 4. While the isocontours
of LCS resulting from the LNS model demonstrate an almost perfect collapse for this
power-law scaling, the isocontours resulting from the other two models do not significantly
change relative to those observed in figure 5, which is again due to the almost linear
relation between the horizontal and vertical sizes of attached eddies. The almost perfect
collapse of the LCS isocontours resulting from the eLNS model (figure 5c) indicates that
this model outperforms the LNS model (figure 5b) in capturing not only the coherence
of the large-scale flow structures, but also their self-similar nature (Madhusudanan et al.
2019). Interestingly, the isocontours resulting from the eLNS model demonstrate a slightly
stronger collapse relative to those generated by the dLNS model (figure 6b versus
figure 6c). This implies that the predictions of the dLNS model for wall-attached eddies
residing in the logarithmic layer do not uniformly follow the scaling law extracted from
figure 4(e, f ).

4.3. Analytical models for the LCS
Inspired by the collapse of coherence contours in figures 6(b) and 6(c), we propose
a simplified analytical model for the dependence of the LCS corresponding to eLNS
and dLNS models on the normalized horizontal wavelengths. In order to obtain the
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Figure 5. Contour level corresponding to γ 2( y, yr; k) = {0.1, 0.4, 0, 7} plotted for y+
r = 15 and for different

values of y such that 2.6
√

Reτ ≤ y+ ≤ 0.15Reτ as a function of λ+x /y+ and λ+z /y+. The contours of LCS are
generated using the results of (a) DNS, (b) the LNS model, (c) the eLNS model, (d) the dLNS models.

approximate model for the LCS we focus on the spectral regions corresponding to γ 2 >

0.05. Figure 7 shows the two-dimensional coherence spectra together with trapezoidal
prisms that best approximate the LCS surfaces. The analytical expressions for the
trapezoidal prisms are given by

γ 2( y+, y+
r = 15; λ+x , λ+z )

=

⎧⎪⎨
⎪⎩

c1 log
(
(λ+x )m/y+)+ c2 log

(
(λ+z )m/y+) , (λ+z )m/y+ > c6(λ

+
x )m/y+

c3 log
(
(λ+x )m/y+)+ c4 log

(
(λ+z )m/y+) , (λ+z )m/y+ < c6(λ

+
x )m/y+

c5, (λ+z )m/y+ > bz, (λ
+
x )m/y+ > bx

(4.2)

with parameters provided in table 1. These parameters ensure a best fit using the least
squares distance between the model-based LCS data and the masking planes determined
by the analytical models. The spectral limits bx, and bz correspond to the edges of the
plateau formed at the top of the prisms where the LCS take their maximum values (cf.
figure 7a,b).

The LCS model in (4.2) represents a two-dimensional model-based generalization
of the spectral filter proposed by Baars et al. (2017) and Baars & Marusic (2020a,b)
based on experimentally measured coherence levels in high-Reynolds-number boundary
layer flows. The pyramid-like geometry of the fitted prisms in figure 7 imply that only
large-scale structures remain coherent with the wall as the distance from the wall increases
(Baars et al. 2017; Madhusudanan et al. 2019; Baars & Marusic 2020a). Our numerical
experiments show that variations of yr (4.1) below y+ = 15 do not result in significant
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Figure 6. Contour level corresponding to γ 2( y, yr; k) = {0.1, 0.4, 0, 7} plotted for y+
r = 15 and for different

values of y such that 2.6
√

Reτ ≤ y+ ≤ 0.15Reτ as a function of (λ+x )m/y+ and (λ+z )m/y+ with the power m
corresponding to the scaling laws extracted from figure 4. The contours of LCS are generated by (a) the LNS
model (m = 0.45), (b) the eLNS model (m = 1) and (c) the dLNS model (m = 1.3).

bx bz c1 c2 c3 c4 c5 c6 m

eLNS 420 20 0.21 0.6 0 0.69 0.95 0.1 1
dLNS 200 14 1.01 0 0 1.20 0.87 0.001 1.3

Table 1. Constant parameters for the LCS model proposed in (4.2).

changes to the coherence spectra. The robustness of the proposed analytical LCS models
in (4.2) is indicative of the strong near-wall footprint of the targeted wall-attached flow
structures that dominate the logarithmic region and is in agreement with the DNS-based
filter-diagnostic proposed by Baars & Marusic (2020a) for a turbulent boundary layer flow
with Reτ = 2000.

5. Spectral filters for energy decomposition

In the previous section, we showed that the inclusion of an eddy-viscosity model can
significantly improve the geometric scaling of dominant flow structures that result from the
linearized NS equations. However, at low to moderate Reynolds numbers, such coherence
analysis is obscured by overlapping contributions from eddies with different geometric
attributes (Perry et al. 1986; Perry & Marušic 1995; Baars & Marusic 2020a). Herein, we
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Figure 7. Two-dimensional surface plot of the LCS of turbulent channel flow at Reτ = 2003 with y+
r = 15 and

2.6
√

Reτ ≤ y+ ≤ 0.15Reτ corresponding to the (a) eLNS and (b) dLNS models. Black lines represent edges
of best fit trapezoidal prisms that approximate the LCS.

adopt the spectral decomposition technique introduced by Baars & Marusic (2020a) to
separate the energetic signature of such overlapping length scales. This method is based
on the concept of active and inactive motions that was originally introduced by Townsend
(1961, 1976).

Based on Townsend (1976), active motions are a constituent part of wall turbulence
that play a major role in momentum transfer and the production of Reynolds shear stress.
This classification follows the significance of vortex structures with image vortex pairs in
the plane of the wall that result in an impermeability boundary condition (v = 0) while
allowing slip (finite u and w) at the wall, and ultimately lead to a spatially localized
wall-normal velocity signature (Perry & Chong 1982, figure 2); see Deshpande et al.
(2021) for details. Consequently, at any wall-normal location y within the logarithmic
layer, active motions are the attached eddies with wall-normal extent H ∼ O( y). Unlike
active motions, inactive motions have a small contribution to Reynolds shear stress and are
affected by wall-coherent structures that are much taller, and extend beyond the point of
interest y, i.e. O( y) � H < h (h is the channel half-height). Based on this, the LCS (4.1)
can be used to decompose the streamwise velocity spectrum Φuu in the wall-parallel plane
at y into an inactive component and a residual as follows:

Φia( y, y; k) := γ 2( y, yr; k)Φuu( y, y; k) = |Φuu( y, yr, k)|2
Φuu( yr, yr, k)

, (5.1a)

Φa( y, y; k) = Φuu( y, y; k) − Φia( y, y; k). (5.1b)

Here, the reference point yr is chosen close to the wall to target wall-coherent flow
structures and Φia( y, y; k) denotes the portion of the two-dimensional energy spectrum
that contains the signature of attached eddies that have wall-normal extents beyond y. This
inactive component Φia can alternatively be interpreted as the linear stochastic estimate of
the spectrum at y (see Deshpande et al. (2021, appendix A) for details). Since we focus on
evaluating the self-similarity of wall-coherent structures in the logarithmic region, we will
neglect traces of non-coherent small dissipative scales in the residual energy computed
in (5.1b) and assume that Φa solely captures the signature of self-similar motions that
are active. Figures 12(c,d) and 13(a,b) show the premultiplied active component of the
streamwise energy spectrum Φa and the premultiplied Reynolds shear stress cospectrum
Φuv computed using DNS data. The coinciding regions of inner-scaled wavelengths in
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Figure 8. Contour lines denoting 15 % of the maximum premultiplied streamwise energy spectrum of
turbulent channel flow at Reτ = 2003 evaluated over the logarithmic region (2.6

√
Reτ ≤ y+ ≤ 0.15Reτ )

plotted as functions of horizontal wavelengths scaled by (a) the distance from the wall and (b) the channel
half-height (h = 1).

comparing Φa and Φuv provide evidence that Φa is associated with active motions of
the flow. We note that the inactive component of the energy spectrum also includes
contributions from wall-coherent self-similar eddies, whose signature is obscured by the
presence of VLSMs that are not self-similar. At significantly higher Reynolds numbers
relative to those considered in the present work, the larger wall-normal gap between the
reference and target points considered in the computation of the LCS warrant a subsequent
decomposition of the inactive energy component whereby the self-similar motions can be
separated from the VLSMs (see Baars & Marusic (2020a) for additional details).

Figure 8 depicts the premultiplied energy spectrum using inner- and outer-scaling. This
figure shows that throughout the logarithmic region, small-to-medium wavelengths (λ+x �
2 × 104 and λ+z � 103) scale with the distance to the wall and large wavelengths scale with
the channel half-height, which is consistent with observations from turbulent boundary
layer flow (Bradshaw 1967; Baidya et al. 2017; Deshpande et al. 2020). This distinct
scaling trend hints at the potential to decompose the energy spectrum over wavelengths
with exclusively inner- or outer-scaling. We thus use the spectral decomposition technique
given by (5.1) to decompose the energy spectrum in the logarithmic region 116 ≤ y+ ≤
300 with a concentration on wavelengths that contain at least 10 % of the energetic peak.

Figure 9(a,b) show the result of the spectral decomposition highlighted in (5.1)
based on a DNS-based LCS, and figure 9(c–h) demonstrate the spectral decomposition
achieved by the model-based LCS resulting from LNS (2.2), eLNS (2.3) and dLNS
(3.6) models. The black contour lines in this figure correspond to 15 % of the maximum
premultiplied energy at two points in the logarithmic region (y+ = 100 (figure 9a,c,e,g)
and y+ = 300 (figure 9b,d, f ,h)). Regardless of the model we use to determine the LCS, the
linear decomposition technique (5.1) splits the two-dimensional energy spectrum at each
wall-normal location into portions that are affected by either active or inactive motions,
where inactive motions contribute to larger wavelengths and active motions contribute to
small and medium-sized wavelengths. The active component of the energy (blue contours)
is smaller at y+ = 100 relative to y+ = 300. This is to be expected because the number of
wall-attached self-similar eddies significantly reduces as we move farther away from the
wall. The LCS resulting from the eLNS and dLNS models yield inactive components (red
contours) whose growth over spatial dimensions (indicated by the slope of the line passing
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Figure 9. Contour lines denoting 15 % of the maximum premultiplied streamwise energy spectrum of
turbulent channel flow at Reτ = 2003 evaluated at y+ = 100 (a,c,e,g) and y+ = 300 (b,d, f,h) plotted as
functions of horizontal wavelengths in viscous units. Black contours denote the total energy, whereas blue
and red contours denote the active and inactive components resulting from decomposition (5.1) enabled by the
results of DNS (a,b), LNS (c,d), eLNS (e, f ) and dLNS (g,h) models. The dashed diagonal lines demonstrate
perfect geometric self-similarity in the horizontal plane (λ+x = λ+z ).
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through their ridge) deviates from that of active components (blue contours) and away
from the linear growth indicated by the dashed lines. This observation, which can also be
made from the result of spectral decomposition using a DNS-based LCS (figure 9a,b), is in
accordance with the premise that Φia is due to inactive motions that are non-self-similar.
On the other hand, the spectral filter resulting from the LNS model fails to appropriately
decompose the energy spectrum (figure 9c,d). Moreover, application of this decomposition
to the energy spectrum at y+ = 100 yields an inactive component that maintains a similar
linear growth as the active component (figure 9c). Both the LNS and eLNS models yield
active components (blue contours) that exhibit residual outer-scaling for large streamwise
wavelengths (figure 9c–f ). On the other hand, the γ 2 resulting from the dLNS model
yields an almost perfect decomposition of the energy spectrum into components that are
exclusively associated with inner- and outer-scaled eddies (figure 9g,h).

To evaluate the performance of the model-based LCS in decomposing the energy
spectrum at various wall-normal locations, figures 10 and 11 show the active and inactive
components of the energy spectra at various wall-normal locations plotted as functions
of horizontal wavelengths scaled with the distance from the wall y (panels a,c,e,g) and
the channel half-height h (panels b,d, f ,h). Figure 10(a) depicts the inner-scaling of active
energy components resulting from a DNS-based spectral decomposition for the majority
of the spectrum besides small wavelengths (red shaded box in figure 10a). On the other
hand, the active energy components demonstrate inner-scaling over small- to medium-size
wavelengths with a slight deviation from inner-scaling for the largest wavelengths (green
shaded box in figure 10a). In comparison with the spectral decomposition obtained
using the DNS-based LCS, the dLNS model (figure 10g) outperforms the eLNS model
(figure 10e) at both ends of the spectrum; at small wavelengths (λ+x /y+ � 2) the
decomposition obtained by the dLNS-based LCS shows a lack of perfect inner-scaling
due to the effect of the viscous layer and at medium-size wavelengths (λ+x /y+ � 102)
the decomposed energy spectrum shows a slight deviation from inner-scaling, which
are both in agreement with the scaling of active motions resulting from the DNS-based
decomposition. This superior performance can be attributed to the fact that the coloured
forcing matches the Reynolds shear stress which is directly related to the active structures
by definition. Finally, as expected from the results presented in figure 9, the γ 2 predicted
by the LNS model fails to decompose the energy spectrum into components that exhibit
exclusive inner- or outer-scaling (figure 10c,d).

The scaling trends observed for wall-distance scaling of active structures in
figure 10(e,g) and outer-scaling of inactive structures in figure 11( f,h) are consistent
with the scaling trends detected in figures 10(a,b) and 11(a,b) from the DNS-based
decomposition. Furthermore, these scaling trends are consistent with the observations
made in decomposing the energy spectrum of boundary layer flow using a data-driven
LCS constructed from experimental measurements (Deshpande et al. 2021). Even though
Φa resulting from the DNS-, eLNS- and dLNS-based decompositions exhibit an almost
perfect inner-scaling (figure 10a,e,g), the inactive component Φia shows both inner- and
outer-scaling whether the spectral decomposition is conducted using a DNS-based spectral
filter or one based on the aforementioned models (figures 11a,b and 11e–h). This can be
attributed to the fact that Φia( y, y; k) comprises contributions from attached eddies of
height O( y) � H < h as well as outer-scaled superstructures, which is also in agreement
with the results of Deshpande et al. (2021), where both inner- and outer-scaling have been
observed for the inactive component of the energy spectrum. The narrow region over which
we observe wall-scaling for the inactive components (figure 11g) with λ+x /y+ � 102 is also
in alignment with the results of the same study. As expected, the resulting contour lines
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Figure 10. Contour lines denoting 15 % of the maximum premultiplied streamwise energy spectrum
corresponding to active motions in a turbulent channel flow at Reτ = 2003 evaluated over the logarithmic
region (y+ ≈ 100, 150, 250 and 300) plotted as functions of horizontal wavelengths scaled by the distance from
the wall (a,c,e,g) and the channel half-height (b,d, f,h). The active components result from decomposition (5.1)
enabled by the results of (a,b) DNS, (c,d) LNS, (e, f ) eLNS and (g,h) dLNS models. The red and green shaded
squares in (a) mark regions of deviation from inner-scaling in Φa resulting from a DNS-based decomposition.
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Figure 11. Contour lines denoting 15 % of the maximum premultiplied streamwise energy spectrum
corresponding to inactive motions in a turbulent channel flow at Reτ = 2003 evaluated over the logarithmic
region (y+ ≈ 100, 150, 250 and 300) plotted as functions of horizontal wavelengths scaled by the distance from
the wall (a,c,e,g) and the channel half-height (b,d, f,h). The inactive components result from decomposition
(5.1) enabled by the results of (a,b) DNS, (c,d) LNS, (e, f ) eLNS and (g,h) dLNS models.
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Figure 12. (a,b) Premultiplied one-dimensional streamwise energy spectrum of turbulent channel flow with
Reτ = 2003 along with its active component extracted using (c,d) the DNS-based, and (e, f ) dLNS-based
spectral filters as a function of streamwise (a,c,e) and spanwise (b,d, f ) wavelengths normalized by the
wall-normal distance. In each panel, the missing dimensions have been averaged out and different lines
correspond to different target wall-normal locations y within the logarithmic layer.

from the LNS model do not exhibit any sign of outer-scaling for inactive energy structures
(figure 11d).

In figure 12 we study the inner-scaling of the one-dimensional energy spectrum as well
as the active component resulting from DNS- and dLNS-based spectral decompositions
(5.1). It is evident that the inner-scaling observed for small to medium wavelengths in
figure 12(a) is due to the predominant contribution from active motions (cf. figure 12c,e).
This observation is consistent with those made from the two-dimensional energy spectrum
shown in figure 8 and its active component shown in figure 10(a,g). We note that the
inner-scaling observed for y+ � λ+ � 10y+ is also consistent with observations made for
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Figure 13. Premultiplied one-dimensional (a,b) streamwise/wall-normal cospectrum and (c,d) wall-normal
spectrum of turbulent channel flow with Reτ = 2003 as a function of streamwise (a,c) and spanwise
(b,d) wavelengths normalized by the wall-normal distance. Each line corresponds to a wall-normal location
within the logarithmic layer.

high-Reynolds-number boundary layer flow (see figure 3c in Deshpande et al. (2021)). To
elucidate the dynamical relevance of the active motions, we follow Deshpande et al. (2021)
in examining the spectral distribution of the premultiplied one-dimensional uv-cospectrum
and vv-spectrum within the logarithmic layer (figure 13). The uv-cospectra shown in
figure 13(a,b) demonstrate peaks at λ+x ∼ 10y+ and λ+z ∼ 3 y+, which coincide with
the peak of the active component of the streamwise energy spectra resulting from the
DNS-based spectral decomposition Φa,dns shown in figure 12(c,d) and the dLNS-based
variant Φa shown in figure 12(e, f ). This coincidence and the similar inner-scaling trends
observed between the uv-cospectrum and the active component of the streamwise energy
spectrum support the argument that Φa,dns and Φa are indeed associated with active
motions that contribute to the Reynolds shear stress. A similar observation was made in
the coherence analysis of boundary layer flow (Bradshaw 1967; Morrison, Subramanian
& Bradshaw 1992; Baidya et al. 2017; Deshpande et al. 2021). When plotted as a
function of the spanwise length scale, the DNS-generated premultiplied energy spectrum
of wall-normal velocity (figure 13d) exhibits an energetic peak that coincides with that
of kzΦuv(λ

+
z ), kzΦa,dns(λ

+
z ) and kzΦa(λ

+
z ) in addition to inner-scaling. In contrast, its

dependence on the streamwise wavelength does not demonstrate inner-scaling besides a
narrow band around y+ � λ+x � 2y+ and at very large wavelengths. It also lacks a peak
wavelength that coincides with the active energy component (figure 13c). The deviation
from inner-scaling at small streamwise wavelengths can be attributed to the contribution

958 A16-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.82


S. Abootorabi and A. Zare

of viscous dissipative scales or those that follow the scaling within the inertial subrange in
accordance with the observations of Deshpande et al. (2021).

6. Concluding remarks

In this study, we propose a model-based approach to spectral coherence analysis
using variants of the stochastically forced linearized NS equations. In addition to the
linearized NS dynamics around the turbulent mean velocity profiles, we consider an
eddy-viscosity enhanced variant of the linearized equations in which molecular viscosity
is augmented with turbulent eddy-viscosity. We excite statistical responses from the
linearized dynamics using two classes of stochastic forcing: (i) a scale-dependent
white-in-time stochastic forcing that reproduces the two-dimensional energy spectrum
(integrated in the wall-normal direction); and (ii) a scale-dependent coloured-in-time
stochastic forcing that matches the normal and shear Reynolds stress profiles and thereby
reproduces the one-dimensional energy spectrum of the turbulent velocity field. We have
used the resulting stochastic dynamical models to construct the coherence spectrum of
a turbulent channel flow with Reτ = 2003 and examined the geometric self-similarity of
wall-coherent flow structures with dominant energetic footprint in the logarithmic layer.
Specifically, we have compared and contrasted the structural similarity trends predicted by
each of these models against self-similarity trends extracted from DNS-based coherence
spectra.

Our results show that the linearized models that benefit from eddy-viscosity
enhancement or coloured-in-time forcing, which itself works as a dynamical damping
(Zare et al. 2017b), capture self-similarity trends that are expected for the energetically
dominant motions affecting the logarithmic region of the wall based on the result of
DNS. This is in contrast to the original linearized NS equations, which does not capture
such self-similarity. Leveraging the wall-attached property of VLSMs, we have used
the DNS- and model-based LCS to decompose the energy spectrum of the flow within
the logarithmic layer into components that correspond to the signatures of active and
inactive motions. We have demonstrated the successful extraction of the self-similar
portion of the energy spectrum using both eLNS- and dLNS-based spectral filters. In
particular, the dLNS-based spectral filter extracts an active component with structural
similarity trends that are in close agreement with those resulting from a DNS-based
filter. Further analysis of the active component of the energy spectrum extracted by the
dLNS-based filter provides evidence in support of the dynamical relevance of active
motions and their contribution to the formation of the Reynolds shear stress. The inactive
component of the energy spectrum is critically influenced by the footprint of VLSMs that
obscure self-similarity trends in the inertially dominated region close to the wall. We note
that subsequent filtering of this energy component, which would result in contributions
exclusive to self-similar inactive motions and the appearance of a k−1-scaled spectral
bandwidth in the associated one-dimensional energy spectrum (Baars & Marusic 2020b;
Deshpande et al. 2021) requires a sufficient separation of scales that is absent at the current
Reynolds number.

Inspired by our observations, we have provided analytical expressions for the
two-dimensional model-based coherence spectrograms. Figures 14 and 15 show the
results of spectral decomposition using the analytical expression provided for the eLNS-
and dLNS-based coherence spectrograms, respectively. The inner- and outer-scaling
demonstrated in these figures signify the successful separation of contributions associated
with active and inactive motions, respectively. These results are in agreement with
figures 10(e,g) and 11( f,h) for the model-based decomposition and support the use
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Figure 14. Contour lines denoting 15 % of the maximum premultiplied streamwise energy spectrum of a
turbulent channel flow at Reτ = 2003 corresponding to (a) active motion and (b) inactive motions plotted
as functions of horizontal wavelengths scaled by the distance from the wall and the channel half-height,
respectively. The decomposition is achieved using the analytical eLNS-based filter (4.2) and contour lines
correspond to different wall-normal locations within the logarithmic region (y+ ≈ 100, 150, 250 and 300).
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Figure 15. Contour lines denoting 15 % of the maximum premultiplied streamwise energy spectrum of a
turbulent channel flow at Reτ = 2003 corresponding to (a) active motion and (b) inactive motions plotted
as functions of horizontal wavelengths scaled by the distance from the wall and the channel half-height,
respectively. The decomposition is achieved using the analytical dLNS-based filter (4.2) and contour lines
correspond to different wall-normal locations within the logarithmic region (y+ ≈ 100, 150, 250 and 300).

of analytical expressions of two-dimensional coherence spectrograms for spectral
decomposition. Baars et al. (2017) demonstrated the Reynolds number independence
of the coherence spectrogram of boundary layer flow. This observation is suggestive
of the potential for coherence analysis based on models that are trained using velocity
correlations computed from experimental measurements or numerical simulations as it
opens the door to extrapolating the parameterization of the two-dimensional coherence
spectrogram to higher Reynolds numbers (beyond that of the training data set).
Investigating the robustness and Reynolds number scaling of our model-based analytical
expressions for the coherence spectrum calls for additional in-depth examination using
data from higher-Reynolds number flows and is an ongoing research topic.
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Our modelling approach is in-line with early efforts in maintaining the conservative
nature of the NS equations via a balanced combination of dynamical damping and
stochastic forcing (Kraichnan 1959, 1971; Orszag 1970; Monin & Yaglom 1975). The
slight benefits of the coloured-in-time stochastic forcing used in the dLNS over the
eLNS model in dissecting the energy spectrum is also reminiscent of more recent studies
that point to the efficacy of using scale-dependent eddy-viscosity models over invariant
profiles (Gupta et al. 2021; Symon et al. 2022). We anticipate that incorporation of
more sophisticated eddy-viscosity models that may vary over different spatial scales or in
different directions can potentially improve the predictive capability of spectral coherence
analysis using the stochastically forced linearized NS equations.
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Appendix A. Procedure for obtaining stochastic forcing models

The two-point correlation matrix Φuu used for computing the LCS (4.1) corresponds to
variants of the linearized NS equations (model (2.5) with dynamic generator (2.7) or
(2.8)) subject to white- or coloured-in-time forcing whose parameterization follows the
procedure outlined below. Note that finite-dimensional approximation of the linearized
dynamics and the change of variables resulting in model (2.9) precede these steps.

A.1. White-in-time forcing using by LNS and eLNS models
For each horizontal wavenumber pair k, the white-in-time forcing that matches the
two-dimensional energy spectrum resulting from DNS is obtained via the following
four-step procedure:

(i) Obtain the energy spectrum E( y, k) from DNS-based turbulence intensities uu,
vv and ww (Del Álamo & Jiménez 2003; Del Álamo et al. 2004), i.e. E( y, k) =
uu( y, k) + vv( y, k) + ww( y, k), and the two-dimensional energy spectrum Ē(k)

via wall-normal integration of E( y, k).
(ii) Construct the diagonal covariance matrix M0(k) as shown in (3.3).

(iii) Obtain the energy spectrum Ē0(k) from the solution of the Lyapunov equation

AX + XA∗ = −M0 (A1)

as Ē0(k) = trace(X(k)).
(iv) Having computed Ē(k), Ē0(k) and M0(k) from prior steps, obtain the forcing

covariance M(k) from (3.2).

The state covariance X used in computing the two-point correlation matrix Φuu(k) =
Cu(k)X(k)C∗

u(k) can be computed by solving equation (3.1).
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A.2. Coloured-in-time forcing leading to the dLNS model
For each horizontal wavenumber pair k, the coloured-in-time forcing that matches the
one-dimensional energy spectrum resulting from DNS is obtained via the following
four-step procedure:

(i) For α = 104 and Φi,j corresponding to the DNS-generated normal and shear stress
profiles uu, vv, ww and uv, use the customized algorithms developed in Zare et al.
(2017a) to solve problem (3.5) for X and Z.

(ii) Use the spectral decomposition technique in Zare et al. (2017a, § III.B) to decompose
matrix Z into BH∗ + HB∗.

(iii) Construct the gain matrix K using (3.7) with Ω = I, X from step (i), and matrices B
and H from step (ii).

(iv) The filter dynamics

φ̇(k, t) = (A(k) − B(k) K(k)) φ(k, t) + B(k) w(k, t),

d(k, t) = −K(k) φ(k, t) + w(k, t),

}
(A2)

generate the coloured-in-time forcing d from white-in-time forcing w of covariance
Ω = I and the modified dynamics of the dLNS model are obtained as in (3.6).

The state covariance X obtained in step (i) can also be directly used to compute the
two-point correlation matrix Φuu(k) = Cu(k)X(k)C∗

u(k).
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