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The Fefferman-Stein Type Inequalities for
Strong and Directional Maximal Operators
in the Plane

Hiroki Saito and Hitoshi Tanaka

Abstract. The Fefferman-Stein type inequalities for strong maximal operators and directional max-
imal operators are verified with an additional composition of the Hardy-Littlewood maximal oper-
ator in the plane.

1 Introduction

The purpose of this paper is to develop a theory of weights for strong maximal op-
erators and directional maximal operators in the plane. We first fix some notation.
By weights we will always mean non-negative and locally integrable functions on
R". Given a measurable set E and a weight w, w(E) = [, w(x) dx, |E| denotes the
Lebesgue measure of E and 1g denotes the characteristic function of E. Let 0 < p < oo
and w be a weight. We define the weighted Lebesgue space L? (R", w) to be a Banach
space equipped with the norm (or quasi norm)

1/
Il = ([ U G)Pw(xyax) ™

For a locally integrable function f on R", we define the Hardy-Littlewood maximal
operator Mg by

Maf(x) = sup 1Q(x>]{2 £l dy,

where Q is the set of all cubes in R” (with sides not necessarily parallel to the axes)
and the barred integral fQ f(y) dy stands for the usual integral average of f over Q.
For alocally integrable function f on R", we define the strong maximal operator Mty
by

M f(x) = suple()f, 1F ()] dy;

where R is the set of all rectangles in R” with sides parallel to the coordinate axes.
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Let :LP(R") — LP(R"), p > 1, be a sublinear operator. It is a fundamental
problem in weight theory to determine some maximal operator 9z capturing certain
geometric characteristics of ¥, such that

(L1) fR £ (x)|Pw(x) dx < C fR () PMzw(x) dx
holds for an arbitrary weight w. It is well known that

/R" Mo f(x)Pw(x)dx<C /R" Lf (x)[PMow(x) dx

holds for an arbitrary weight w and p > 1, and further that

(12) suptw({x eR": Mof(x)>1}) < C/Rn |f(x)|DMow(x) dx.

£>0
These are called the Fefferman-Stein inequalities and are toy models of (see [3]).

Problem 1.1 ([4} p. 472]) Does the analogue of the Fefferman-Stein inequality hold
for the strong maximal operator, i.e.,

(1.3) fR" My f(x)Pw(x)dx < C fRn lf ()P Merw(x)dx, p>1,

for arbitrary w(x) > 0?

Concerning Problem|[L]} it is known that holds for all p > 1if w € A% ; see [§]
(also [1L,12]).
We say that w belongs to the class A}, whenever

-1
[W]A; = sup]{2 w(x) dx(]{z w(x) V() dx)P <oo, 1<p<oo,
ReR
frw(x)dx

W]ygr = sup ————— < 00.
[ ]A‘ Reg essinfy g w(x)
It follows by Holder’s inequality that the A} classes are increasing; that is, for 1 < p <
q < oo, we have A; c A’;. Thus, one defines A% = Ups1 A;.
The endpoint behavior of 9 close to L' is given by Mitsis [10] (for n = 2) and
Luque and Parissis [9] (for n > 2); that is,

w({x eR": M f(x) > t}) <
C |f(x)|(1+(log+|f(tx))n_l)9ﬁggw(x)dx, t>0,

Rn t

holds for any w € A%, where log" t = max(0,logt).
In this paper we will establish the following concerning Problem [L.1}

Theorem 1.2  Let w be any weight on R? and set W = MxMow. Then
w({x eR*: My f(x)>1}) <
Cf F()l (1+10g+ |f(x)|)W(x) dx, t>0,
]RZ

t t
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holds, where the constant C > 0 does not depend on w and f.
By interpolation, we have the following corollary.

Corollary 1.3 Let w be any weight on R? and set W = MxMow. Then, for p > 1,
there exists a constant C, > 0 such that

|19 f | Lo (R2,w) < Cpll fllLe R, w)
holds for all f € LP(R*, W).
Let = be a set of unit vectors in R?, i.e., a subset of the unit circle S'. Associated
with 3, we define By to be the set of all rectangles in R* whose longest side is parallel

to some vector in 2. For a locally integrable function f on R?, we also define the
directional maximal operator 9ty associated with X as

s f(x) = sup 1a()f, F )] dy.

Many authors have studied this operator, (see [1,2,6,7}/13}/14]), and Katz showed that
My is bounded on L?(R?) with the operator norm O(log N) for any set = with car-
dinality N.

For fixed sufficiently large integer N, let

2mj 2mj
ZN:{(cosgj,sin;’]) :j:O,l,...,N—l}

be the set of N uniformly spread directions on the circle S'. In this paper we shall
prove the following, which is a weighted version of the classical result due to Strém-
berg [14].

Theorem 1.4 Let N > 10 and w be any weight on R%. Set W = My, Mow. Then

(1.4) sup tw( {x e R*: My, f(x) > t})l/2 < C(lOgN)l/ZHfHLZ(RZ’W)

t>0

holds for all f € L*(R?, W), where the constant C > 0 does not depend on w and f.
By interpolation, we have the following corollary.

Corollary 1.5 Let N > 10 and w be any weight on R?. Set W = Mz, Mow. Then,
for2 < p < oo, there exists a constant C, > 0 such that

|95 e 22,0) < Cp(1og NP £ 1 (2w
holds for all f € LP(R?, W).

The letter C will be used for the positive finite constants that may change from one
occurrence to another. Constants with subscripts, such as C;, C;, do not change in
different occurrences.
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2 Proof of Theorem

Our proof relies upon the refinement of the arguments in [10]. With a standard argu-
ment, we can assume that the basis R is the set of all dyadic rectangles R (cartesian
products of dyadic intervals) having long side pointing in the x;-direction. We de-
note by P;, i = 1,2, the projection on the x;-axis. Fix ¢ > 0 and assume given the finite
collection of dyadic rectangles {R; }*, c R such that

2.1) ﬁ FO)ldy>t, i=12,..., M.

It suffices to estimate W(LJ?;I1 R;) (see the next section for details).

First, relabeling if necessary, we can assume that the R; are ordered so that their
long sidelengths [Py (R;)| decrease. We now give a selection procedure to find a sub-
collection {R;}¥, c {R; }, -

Take R, = Ry and let R, be the first rectangle Rjsuch that |R; NRy <1 1IR}|. Suppose
that we have now chosen the rectangles R, Ry, ..., R;_;. We select R; to be the first
rectangle R; occurring after R;_; so that ’ Ui Rjn ﬁk’ < 3|Rj|. Thus, we see that

i—-1 ~ 1~
(2.2) |UR;nR;| <<[Ri|, i=2,3,...,N.
j=1 3
We claim that
M 5 1
2.3) URic{xeR*: Mally 5](x) 25}
i=1 =L 3

Indeed, choose any point x inside a rectangle R; that is not one of the selected rect-
angles R;. Then there exists a unique K < N such that

Koo 1
|iL=Jle NRy| > SIRl

Since, |Pi(R;)| < |Pi(R;)|fori =1,2,..., K, we have
Pi(R;)n Pi(R;) = Pi(R;) when R; nR; # @,
where we have used the dyadic structure;
(2.4) If both I and ] are the dyadic interval, then InJ € {I,], @}.
Thus,

K - K ~ K ~
L_Jle NR; = L_lel(R]) X (Pz(RJ) ﬁPz(Ri)) = Pl(RJ) X L_lez(R]) ﬂPz(R,‘).
Hence,
|UP2(R )N Py(R)| 2 |P2 (R))|-
Thanks to the fact that |P,(R;)| < |Py(R;)| < |P1(R,-)|, this implies that
K ~
1§ ank>

where Q is a unique dyadic cube containing x and having the side length [P,(R;)].

This proves (2.3).
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It follows from (2.3) and (.2) that
1
. 2 . ~ p—
W(EIR,) <w({xeR?:Maf1y 7](x) 2 3})
N N
<cU(UR) <CXUR)),
i=1 i=1
where U = MMow. We shall evaluate the quantity
N ~
(i) = Y U(R).
i=1

Let uy(x) be the weighted multiplicity function associated with the family {R; };
that is,

U(R ),
5 R

By (2.1), choosing 8, small enough determined later,
. R;
e LU IO,

,1|R| R, t

=8 [ mo(x)W(x)™ UCN 4y (2 .
R2 601’
Using the elementary inequality
ab< (e -1)+b(l1+log"b), a,b>0,

py(x) =

we get
(i)séof (exp(uu ()W (x)™) — 1) W(x) dx
L TPRMRTIC | PPN

S&)f (exp(yU(x)W(x)_ )—1) W(x)dx
+ (1-1log 8o )f =)l )| 1+log - )|)W( ) dx.

We have to evaluate the quantity

()= [ (exp(uu(x)W(x)™) ~1) W(x) dx.

We expand the exponential in a Taylor series. Then

Lol o
(11):;EAZ(FU(x)W(x) )W (x) dx
=1 -
:,;EfRz“U(x)kW(x) *dx.

Fix k > 2. We use an elementary inequality

(gai)k <k § a,-(jzijlaj) k—1)
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where {a;}, is a sequence of summable nonnegative reals. Then

i U(ﬁj) ~(x i x)*dx
(2 T ) W(x)

| U(R) i
= |Rj|] (j=1 1§,(X)) W (x).

We claim that, forn =1,2,...,N,
(2.5) |Xi.a] <3[R,
where
i
Xi,n = {x € Ri : nglij(x) > l’l}.
Indeed, first we notice that, for any k and jwith N > k > j > 1, if INQk nR j # @, then
Rpn ﬁj = Pi(Ry) x Pz(ﬁj),

because we have Py(Ry) c P(R;) and, by @2), [P,(Rx) n P2(R;)| < 3|P2(Ry)|. With
this in mind, we can observe the following.
There exists a set of dyadic intervals {I;; } with j =1,2,...,nand k =1,2,...,K;
that satisfies the following:
* the dyadic intervals I are pairwise disjoint for varying k;
e for each I}, j > 1, there exists a unique I(j_1y; 2 Ijx;
* for each I there exists a unique number i < i such that I, = Pz(ii,- L
* Py(Xi1) = Iy, Pa(Xin) = Ul,fil L oo Pa(Xij) = UIk{il Iiks -oos P2(Xin) =
Uit Ins o
o if Ijx c I(j_1ys, thenijp <ijoy;and R, N Ry, # @.

It follows from the last relation and (2.2) that

K; Kj, )
3Z|I]k|< Z ‘I(j—l)k|’ ]:2,3,...,n.
k=1 k=1

This gives us that
Ku
3t Z Lo k| < |Ials
k=1
which yields (2.5).
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It follows from that

U(R:) S 1 - UR) X 4y
IR| ffz,.(gll&(x)) dx < S 1 X ]

Altogether, the quantity (ii) can be majorized by

: s 1 N k-1,2-n
1 3 .
(1)><[ +k§:j2 = Eln ]
There holds
o 1
>
k=2

N oo n
k-152-n €
377 <9 =) =Cy.
(k—l)! nzz:ln nZ::1(3) 0

If we choose g so that §o(1+ Cy) = %, we obtain

, f ()] )l
(1)SCf]Rz . (1+10g . )W(x)dx.
This completes the proof. u

Remark  Since our proof relies only upon the dyadic structure (2.4), it can be ap-
plied the basis R of the form the set of all rectangles in R"” whose sides are parallel
to the coordinate axes and that are congruent to the rectangle (0, a)"~! x (0, b) with
varying a, b > 0.

3 Proof of Theorem

We follow the argument in [5, Chapter 10, Theorem 10.3.5]. To avoid problems with
antipodal points, it is convenient to split Xy as the union of eight sets, in each of which
the angle between any two vectors does not exceed 77/4. It suffices therefore to obtain
for each such subset of Zy. Let us fix one such subset of £y, which we call Z},.

To prove (L4), we fix + > 0 and start with a compact subset K of the set
{x eR?: My f(x) > t}. Then for every x € K, there exists an open rectangle R,
that contains x and whose longest side is parallel to a vector in T4, By compactness
of K, there exists a finite subfamily {R, } ge of the family {R, } ek such that

(1) frolay>t

for all « € A and such that the union of the R,’s covers K.

In the sequel we denote by 6, the angle between the x;-axis and the vector pointing
in the longer direction of R, for any « € A. We also denote by [, the shorter side of
R, and by L, the longer side of R, for any « € A.

We shall select the subfamily {Rg}ges as follows. Without loss of generality, we
can assume that A = {1,2,...,€} with L; > Lj,; forall j =1,2,...,€ -1 Let ; = 1
and choose 3, to be the first number in {$; +1, 1 + 2,.. ., £} such that

1
|Rﬁ1 N Rﬂz| < £|Rﬁz|
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We next choose f83 to be the first number in {8, +1, 8, + 2, ..., £} such that
1
|R[31 n Rﬁ3| + |R/32 n R/33| < E‘Rﬁ3|

Suppose we have chosen the numbers B, B3, ..., 8j-1. Then we choose f3; to be the
first number in {f;_; + 1,81 +2,..., €} such that

j-1 1
(3.2) |Rﬁk N Rﬁj| < E|Rﬁj|.
k=1

Since the set A is finite, this selection stops after m steps.
Define B = {f1, 2, ..., Bm} and let

Y(x) = ) liry)y (%),

BeB

where (Rg)* is the rectangle Ry expanded 5 times in both directions.
We claim that

(3.3) w(K) < 1/1/(0‘L€JJLl R,,,) < C(logN) /}Rz Y(x)U(x)dx,

where U(x) = Maow(x). To verify this claim, we need the following lemma.

We set wy = 2’;\]2k for k € Z* and wy = 0. Welet M = [%]

Lemma 3.1 ([5, Lemma 10.3.6]) Let R, be a rectangle in the family {Ry}qen and
let 0 < k < M. Suppose that 3 € B is such that wy < |0q — 0| < Wiy and such that
Lg>Lgy. Letsy =8 max(ly, wgLy ). For an arbitrary x € R, let Q be a square centered
at x with sides of length s, parallel to the sides of R,. Then we have

RgnR, Rg)*n
RN Rl |(Rg) Q|
R4 | Q|

We shall prove (3.3). By it suffices to show that

(3.4) U Ry c {x eR%: MY (x) >

C
acA logN} '

Since we may assume that C/(log N) < 1, the set Uges Rp is contained in the set of
the right hand side of (3.4). So, we fix a € A \ B. Then the rectangle R, was not
selected in the selection procedure.

By the construction and (3.2), we see that there exists j such that

J 1
D |Rﬁk mRoc| > 7|Rv¢|
k=1 2

and such that Lg, > L, forall k =1,2,..., j.
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Let B; = {1, B2, ..., B} It follows from Lemmathat
1 |R’3 ﬂRa|

M

3< 2 =2 )

2 ﬁeﬁj |R0C| k=0 [3631-: |R0¢|
wks\ﬂa—oﬁkwk“

[Rg N Ry

i [(Rg)* n Qg
k=0 BeB;: k

Wi <|0a—0p|<wipy
where Qj is a square determined by Lemma 3.1 with an arbitrary x € R,. Since we
have M < C(log N) and
5> [(Rg)™ N Q]
BeBj: |Qk|

wks|0u—0p|<wk+l

< CMoY(x) forall x € Ry,

we obtain

MoY(x)> locN for all x € Ry,

which implies (3.4) and, hence, (3.3).
We now evaluate

(i):f Y(x)U(x)dx =Y U((Rp)*).

BeB
By and Holder’s inequality we have
0< 7 3 U(Re))f, 170Ny
ﬁeB
_1 U((Rg)")
B EfRz(IEB WWU)) f()ldy
! U((Rp)") 2\
< t(‘/]REZ(ﬁE:25 WIR;;()/)) W(y) ldy) HfHLZ(]RZ,W)-

Further, we have

(ii):f (z MlRﬂ(y))zw(y)"dy

2\gen  |Rgl

i( U(|(11:§,|) )) [Rﬁj W(y)"dy

j=1

n U((Rg))*) 1 U((Rg,)") ,
2 ! w dy.
TR BT Rl ey, YO

We notice that, for any y € Rg, N R,

U((Rﬂk)*) _ U((Rﬁk)*)
|(Rﬁk)*| 25|Rﬁk|

=

(y) 2
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This yields

U((Rg)") izl

m m
(i) <25 Y U((Rg,)*) +50 % Y |Rg, N Rg)|
j=1 =1 |Rg k=1

S|

0y U((Rg)*),
<50 3 ((Rg)")

where we have used (3.2). Altogether, we obtain (i) < § | f ||%2(R2)W) , which yields, by

2
(3.3,
C(logN)
w(iy < N iz, oy
Since K was an arbitrary compact subset of {x € R? : M1 f(x) > t}, the same
estimate is valid for the latter set, and we finish the proof. ]
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