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Abstract

Targeted spraying application technologies have the capacity to drastically reduce herbicide
inputs, but to be successful, the performance of both machine vision–based weed detection and
actuator efficiency needs to be optimized. This study assessed (1) the performance of spotted
spurge recognition in ‘Latitude 36’ bermudagrass turf canopy using the You Only Look Once
(YOLOv3) real-time multiobject detection algorithm and (2) the impact of various nozzle
densities on model efficiency and projected herbicide reduction under simulated conditions.
The YOLOv3 model was trained and validated with a data set of 1,191 images. The simulation
design consisted of four grid matrix regimes (3 × 3, 6 × 6, 12 × 12, and 24 × 24), which would
then correspond to 3, 6, 12, and 24 nonoverlapping nozzles, respectively, covering a 50-cm-wide
band. Simulated efficiency testing was conducted using 50 images containing predictions
(labels) generated with the trained YOLO model and by applying each of the grid matrixes to
individual images. Themodel resulted in prediction accuracy of an F1 score of 0.62, precision of
0.65, and a recall value of 0.60. Increased nozzle density (from 3 to 12) improved actuator
precision and predicted herbicide-use efficiency with a reduction in the false hits ratio from
~30% to 5%. The area required to ensure herbicide deposition to all spotted spurge detected
within images was reduced to 18%, resulting in ~80% herbicide savings compared to broadcast
application. Slightly greater precision was predicted with 24 nozzles but was not statistically
different from the 12-nozzle scenario. Using this turf/weed model as a basis, optimal actuator
efficacy and herbicide savings would occur by increasing nozzle density from 1 to 12 nozzles
within the context of a single band.

Introduction

Turfgrass managers rely on broadcast applications of selective postemergence herbicides to
control emerged weeds, despite the nonuniform pattern of typical weed infestations (Jin et al.
2022a, 2022b; Yu et al. 2020). Therefore broadcast applications result in a portion of the
herbicide deposited to turfgrass canopy without the weed target (Monteiro and Santos 2022).
Site-specific weed management (SSWM) using manual spot applications directly to individual
weeds minimizes herbicide losses but is labor intensive and often cost prohibitive (Heisel et al.
1996; Rider et al. 2006). SSWM also often lacks sufficient accuracy and precision due to human
error (Yu et al. 2019a, 2019b, 2019c, 2020). Modern technologies have the capacity to achieve
accurate and precise herbicide applications to spatially and temporally variable weed
infestations (Monteiro and Santos 2022). However, real-time recognition of the weed species
and location of the weed (spatial distribution) remains a critical component.

Deep learning (DL) is a sophisticated, in-depth subset of machine learning through artificial
intelligence. DL is based on the utility of artificial neural networks (ANNs), which are
mathematical models patterned around the neural connectivity of a human brain (Greener et al.
2022; Janiesch et al. 2021). Convolutional neural networks (CNNs) are complex ANNs with the
capacity to decipher grid-structured spatial relationships for automated learning of informative
features with multiple levels of representation of such features (Greener et al. 2022; LeCun et al.
2015; Schmidhuber 2015). Machine vision (MV) is the process of signal transfer from a sensing
device (e.g., image capturing camera) into a digital form (Nasirahmadi et al. 2017). Paired with
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MV, CNNs have the potential for recognition of certain objects
within an image (Greener et al. 2022; Janiesch et al. 2021; Zhang
and Lu 2021) and can be used for automated differentiation
between weeds and turf (Jin et al. 2022b).

CNNs were first introduced for weed recognition in turf by Yu
et al. (2019c). Researchers initially focused on the use of image
classification networks like AlexNet, DenseNet, EfficientNetV2,
GoogLeNet, MobileNet-v3, RegNet, ResNet, ShuffleNet-v2, and
visual geometry group neural network (VGGNet), which provide
information on the presence or absence of the target weed in the
image but lack the ability to discriminate the area within the image
occupied by the weed. These networks have been shown to
successfully recognize various broadleaf and grassy weeds in
bermudagrass, bahiagrass (Paspalum notatum Flueggé), and
perennial ryegrass (Lolium perenne L.) turf (Jin et al. 2022a,
2022b; Yu et al. 2019a, 2019b, 2019c, 2020).

Object detection networks are more precise than image
classification networks, with the ability for target recognition
and location within the image (Medrano 2021; Xie et al. 2021; Yu
et al. 2019a, 2019b, 2019c). These networks include DetectNet, You
Only Look Once (YOLO), Single Shot MultiBox Detector (SSD),
and Faster R-CNN. Even greater precision can be attained with
semantic segmentation models like Mask R-CNN, which have the
ability to identify the exact shape of the target (Xie et al. 2021).
Object detection models have been used to successfully differ-
entiate and identify actively growing clumps of annual bluegrass
(Poa annua L.), henbit (Lamium amplexicaule L.), purple
deadnettle (Lamium purpureum L.), and white clover (Trifolium
repens L.) in fully dormant (i.e., straw-colored) bermudagrass (Yu
et al. 2019b, 2019c) or common dandelion (Taraxacum officinale
F.H. Wigg.) in perennial ryegrass (Yu et al. 2019a) and
bermudagrass (Medrano 2021). Semantic segmentation (Mask
R-CNN, modified Mask R-CNN) was made by Xie et al. (2021) to
detect nutsedge (Cyperus L.) plants in bermudagrass turf.

While the achievements in MV/DL-based technology in turf
continue to evolve, integration with image capturing/processing
systems and independent real-time, solenoid-actuated nozzles is
the goal to achieve advanced SSWM—targeted spraying (Sharpe
et al. 2020). This technology has already been adapted for many
crops, including rice (Oryza sativa L.), common sunflower
(Helianthus annuus L.), sugar beet (Beta vulgaris L.), and carrot
(Daucus carota L. var. sativus Hoffm.) (Hasan et al. 2021; Ma et al.
2019), with estimates of 50% herbicide-use reduction when
utilizing targeted spraying compared to broadcast applications
(Thorp and Tian 2004). This technology cannot be readily applied
to turfgrass because of differences in management and growth
characteristics compared to agronomic crops; therefore, new
turfgrass-specific approaches must be developed (Esau et al. 2016).

In turfgrass, the factual accuracy and precision of a targeted
spraying system are dependent not only on the performance of its
CNN component but also on the capacity of the application device
to target the weed and avoid the crop. In real-world scenarios,
an application pattern created by an individual nozzle in motion
will be a linear strip of varying width (bandwidth) depending
on the nozzle height and orifice angle (Villette et al. 2021).
As bandwidth increases, more area is covered, so the ability to
precisely target small areas is limited compared to narrower
bandwidths. Therefore, multiple nozzles comprising multiple
narrow bandwidths should increase the precision and accuracy
of the sprayer, because each nozzle can be operated independently
to cover a smaller area (Jin et al. 2022b; Villette et al.
2021). However, identifying the proper nozzle density for a

turfgrass-specific precision sprayer is crucial to achieving the
compromise between maximized precision and accuracy and
minimum installation and maintenance costs.

There were two primary objectives within the scope of this
research. The first objective was to develop an object detection
YOLO CNN model to detect complex spotted spurge patches
structurally blended within highly infested bermudagrass turf
maintained as a golf course fairway/athletic field. The second
objective was to evaluate the impact of various nozzle densities
on the YOLO CNN model efficacy and projected herbicide
savings under simulated conditions. Spotted spurge was utilized as
a target species for several reasons. It is found across a wide
geographic area, making it applicable to many situations. Spotted
spurge is an annual species with a high infestation capacity due to
prolific seed production, late germination (often resulting in erratic
control with preemergence applications), ability to survive
under extremely close mowing conditions, and high recuperation
capacity (Asgarpour et al. 2015; McCullough et al. 2016). This
species serves as a good example of a low-growing broadleaf weed
with small foliage that easily intertwines with turf canopy; thus it
can pose difficulties for accurate weed detection using MV-based
models. Spotted spurge allowed for the assessment of the
YOLO algorithm’s potential to detect intricate weed structures
entangled in turfgrass canopy as opposed to previously researched
scenarios in which distinct weed patches were detected on
contrasting backgrounds.

Materials and Methods

Image Acquisition

To ensure a diverse data set, images of various levels of spotted
spurge infestation in ‘Latitude 36’ bermudagrass were collected
from March to July 2021 at various times of day and week (i.e., at
varying light conditions and randomly between mowing events)
from two locations: the University of Florida (UF)/Institute of
Food and Agricultural Sciences (IFAS) Fort Lauderdale Research
and Education Center in Davie, FL (26.085°N, 80.238°W), and the
UF/IFAS Plant Science Research and Education Unit in Citra, FL
(29.409°N, 82.167°W). Turf at both locations was managed as a
golf course fairway/athletic field. Standard maintenance was
performed at each location and included mowing 3 d wk–1 at
1.3 cmwith a reel mower with fertilization and irrigation according
to UF Extension guidelines for each area.

Images were captured using a cell phone camera (iPhone 8 Plus,
Apple Inc., Cupertino, CA, USA) via recording videos in MOV file
format using 16:9 ratio. To ensure consistency in capturing
uniform surface area, the camera was installed facing downward at
a fixed height of 43.5 cm. The ground area represented in the
recordings was 50.00 × 28.13 cm. Still frame images were then
acquired from recordings via video extraction conducted using the
FFmpeg (Free Software Foundation, Boston, MA, USA) script on a
desktop computer (Dell OptiPlex 740, Dell, Round Rock, TX,
USA) running an Ubuntu 18.04 operating system (Canonical USA,
Dover, DE, USA). The script extracted still images from the videos
at 4 frames s−1 with a pixel resolution of 1,280 × 720. Acquired
still images were then subjectively selected to ensure balanced
representation of captured weed encroachment levels, light
conditions, and turfgrass canopy quality. As a result, a total of
1,291 still frame images for further model development/training
(710 images for manual labeling and 481 images for automated
labeling, totaling 1,191 images) and efficiency tests (the remaining
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100 images) were acquired using the method described. To ensure
diverse data sets, images for each step were selected randomly.
During the entire process, unaltered individual images were not
subject to more than one step, except when manually labeled
images were pooled with autolabeled images for final CNN model
training, as described later.

Model Development

A randomly selected subset of 710 of the extracted still frame
images was labeled using bounding box drawing software compiled
with Lazarus 1.8.0 (https://www.lazarus-ide.org/) to identify
spotted spurge in turfgrass. Labeling consisted of a rectangle
(“bounding box”) drawn around the outer margins of individual
spotted spurge plants or their parts on the background of turfgrass
canopy in each of the 710 images (Figure 1). The labeled subset of
images was then used to train a YOLOv3 model to convergence
(mAP = 87%) on the Darknet framework (Bochkovskiy et al.
2020). The YOLOv3-tiny-3l model was selected because of its
compact size and high speed for real-time inferencing of video. The
trained model was subsequently used to identify and autolabel
spurge in a randomly selected 481 unlabeled images. A final model
was trained with a combined data set of 1,191 labeled images

consisting of 710 manually labeled images and 481 autolabeled
images. The following Darknet hyperparameters (i.e., configura-
tion variables to manage model training) were tuned prior to
the model development to ensure the most optimal performance
of the algorithm during the aforementioned training steps: 6,000
training iterations, batch size of 64 training images, subdivision of
16 training images, an exponential decay learning rate policy with
3,000 and 5,000 steps, and a base learning rate of 0.001.

Model Accuracy Assessment

Intersection over union was used to describe the ratio of overlap
between the actual and predicted bounding boxes to establish if the
detected object was a true positive (TP). Results were organized in a
binary classification confusion matrix under four conditions: a TP, a
false positive (FP), a true negative (TN), and a false negative (FN).
Upon the completion of CNN training, the following parameters
were computed using the aforementioned results to assess the new
model’s accuracy in detecting spurge plants: precision (Equation 1),
recall (Equation 2), and F1 score (Equation 3).

Precision (also called positive predictive value) is the number
of correct results divided by the number of all returned results
and describes how efficacious the new model is in positive

(a)

(b)

Figure 1. Original still frame image with spotted spurge infestation in bermudagrass turf (A) and the same image manually labeled using bounding boxes drawn around the
outer margins of individual target plants or their parts used for YOLOv3 model training (B).
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(i.e., accurate) object (i.e., spurge) detection. Precisionwas calculated
using the following equation (Hoiem et al. 2012; Sokolova and
Lapalme 2009; Tao et al. 2016; Yu et al. 2019a, 2019b, 2019c):

Precision ¼ TP
TPþ FP

� 100 [1]

Recall (also called sensitivity) is the number of correct results
divided by the number of all results that should have been returned
and describes how successful the new model is in correct target
weed (i.e., spurge) identification. Recall was calculated by the
following equation (Hoiem et al. 2012; Sokolova and Lapalme
2009; Tao et al. 2016; Yu et al. 2019a, 2019b, 2019c):

Recall ¼ TP
TPþ FN

� 100 [2]

The F1 score stands for the harmonic mean of the precision and
recall values. The F1 score was determined using the following
equation (Jin et al. 2022a, 2022b; Sokolova and Lapalme 2009; Yu
et al. 2019a, 2019b, 2019c):

F1 score ¼ 2� Precision� Recall
Precisionþ Recall

[3]

Model Efficiency Assessment under Simulated Varying
Nozzle Densities

One hundred remaining unlabeled images were predicted with the
trained YOLOmodel, and 50 output images (i.e., images labeled by
newly trained YOLO model) were randomly selected for analysis.
Each image was evaluated using a series of grids with a 3 × 3, 6 × 6,
12 × 12, and 24 × 24 matrix to simulate 3, 6, 12, or 24 nozzles,
respectively, equally distributed on the spraying boom to cover the
bandwidth of 50 cm total (Figure 2). This simulation was
conducted under the assumptions that each individual nozzle
remains open for the same time interval, the pattern and
distribution is even and equal for each nozzle, and spray patterns
do not overlap; thus the ratio of the sprayed area remains the same.
Grids were created on separate layers in Adobe Photoshop (Adobe
Systems, NewYork, NY, USA) and individually placed over each of
the YOLO algorithm labeled images. This step created four new
files per image and resulted in a total of 200 gridded labeled files for
evaluation. The dimensions of each individual box within each grid

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Original input image (left) and the same image with YOLOv3-generated bounding box spotted spurge predictions (right) with 3 × 3 (A, B), 6 × 6 (C, D), 12 × 12 (E, F), and
24 × 24 (G, H) grid matrixes demonstrating, respectively, 3, 6, 12, and 24 nozzles equally distributed on the spraying boom.
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matrix scenario were calculated based on actual total surface area
captured in the photos (Table 1). The following data weremanually
collected for each grid-labeled file: (1) the number of grid boxes
containing spurge regardless of detection (i.e., regardless, if labeled
with bounding boxes; true infestation), (2) the number of grid
boxes containing bounding box–labeled (i.e., detected) spurge only
(true hits), (3) the number of grid boxes containing bounding box
labels devoid of spurge (false hits), and (4) the number of grid
boxes with spurge that was not labeled with bounding boxes
(misses). This information was used to calculate the following
variables for each grid:

True infestation ratio ¼ Boxes containing spurge true infestationð Þ
Total boxes in the grid

� 100

[4]

True hits ratio ¼ Boxes containing spurge with labels only true hitsð Þ
Total boxes in the grid

� 100

[5]

Misses ratio ¼ Boxes containing spurge with no labels only missesð Þ
Boxes containing spurge true infestationð Þ � 100

[6]

False hits ratio ¼ Boxes with labels devoid of spurge false hitsð Þ
Total boxes in the grid

� 100

[7]

Data Analysis

Each photo (n= 50) was considered a separate experimental unit,
grids were considered fixed variables, and images were considered
random variables. Analysis of variance was performed using the
PROC MIXED procedure in SAS version 9.4 (SAS Institute, Cary,
NC, USA), and means for each fixed variable were compared using
Tukey means comparisons at α= 0.05. Nonlinear regression was
conducted in Sigma Plot (Systat Software, San Jose, CA, USA), and
an exponential decay model was used to predict the relationship
between the dependent variables and the number of boxes in the
grid for each grid pattern:

y ¼ y0 þ ae�bx [8]

where y is the dependent variable, y0 is the starting point, a is the
scaling factor, e is the natural log, and −b is the rate of decay at
box x.

Results and Discussion

Spotted Spurge Detection

Most of the prior work on the utility of CNN protocols in turfgrass
has focused primarily on image classification algorithms like
AlexNet, DenseNet, EfficientNetV2, GoogLeNet, ResNet, RegNet,
ShuffleNet-v2, and VGGNet for the purposes of various broadleaf
and/or grassy weed detection in bahiagrass, bermudagrass, and/or
perennial ryegrass turf (Jin et al. 2022a, 2022b; Yu et al. 2019b,
2019c, 2020). With the exception of GoogLeNet, which resulted in
inconsistent weed detection (i.e., a variable F1 score ranging from
0.55 to 0.99), as reported by Yu et al. (2019c), the majority of image
classification networks evaluated in those studies achieved an F1
score> 0.95 (Jin et al. 2022a, 2022b; Yu et al. 2019b, 2019c, 2020).
Being a harmonic mean between precision and recall, F1 score is a
widely used CNN performance measure, with the maximum value
of 1.00 indicating the model’s perfect fit and the minimum value of
0.00 indicating complete failure of the model (Zhao and Li 2020).
In general, the performance of CNN models is considered
sufficient (i.e., the detection is considered successful) when F1
score> 0.50, good when F1 score = 0.80 to 0.90, and very good
when F1 score > 0.90, while CNN models that achieve F1
score< 0.50 are considered poor or unsuccessful (Allwright 2022).

Unlike the image classification networks, the feasibility of object
detection has not been extensively studied for turfgrass. However,
in all researched cases, object detection models outperformed (i.e.,
achieved higher F1 scores when compared) image classification
algorithms (Yu et al. 2019b, 2019c). Moreover, object detection
algorithms have the capacity to locate the target’s position within
the image and in that regard are superior to image classification
(Jin et al. 2022a, 2022b; Yu et al. 2019a, 2019b, 2019c, 2020).
Therefore, the YOLO object detection CNN was chosen for this
research. Also, to date, all work on object detection architectures
for turfgrass had been limited to recognizing weeds on contrasting
backgrounds (either by color or by shape) and included the
evaluation of (1) the DetectNet model for the ability to recognize
various broadleaf species in contrasting color dormant bermuda-
grass (Yu et al. 2019b, 2019c) and (2) different versions of YOLO
(YOLOv3; YOLOv4, and YOLOv5), SSD, and Faster R-CNN
models for the detection of contrast in foliage shape of individual
common dandelion plants (Medrano 2021). In this research, the
focus was on the more complex scenario in which the target weed
was structurally blended within the turfgrass canopy as opposed to
forming distinguishable clumps on contrasting (either by color or
by shape) backgrounds. However, the overarching purpose for
developing an object detection–basedmodel in this research was to
achieve its sufficient performance, allowing for evaluating the
model’s potential to cooperate with various nozzle density settings.
Therefore, for this objective to be met, a minimum score of 0.50 in
all the evaluated metrics was required. The object detection–based
YOLO model used in this study achieved spotted spurge detection
denoted by an F1 score of 0.62 (i.e.,>0.50) resulting from precision
of 0.65 and recall of 0.60 (Table 2). Therefore the minimum
requirement is considered fulfilled, and this study is the first report
of the successful recognition of diversified and complex weed
patches formed by spotted spurge and intertwined in actively
growing bermudagrass turf maintained as a golf course fairway or
athletic field using an object detection algorithm. However,
improvements in this model’s performance to allow it an
achievement of fitness close to perfect (i.e., F1 Score of 1.00) are
recommended and will be the subject of further research.

Table 1. Calculated grid dimensions for each photograph of spotted spurge in
‘Latitude 36’ bermudagrass turf

Grid dimensions No. boxes in grid Box width Box height Box area

———— cm ———— cm2

3 × 3 9 16.67 9.38 156.25
6 × 6 36 8.33 4.69 39.06
12 × 12 144 4.17 2.34 9.77
24 × 24 576 2.08 1.17 2.44
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In addition to general CNN performance, the target weed
annotation process is an important aspect impacting CNN model
development and training. Image classification procedures gen-
erally require high-volume imagery data sets. For example, Yu et al.
(2019b) used 36,000 images for multispecies model training and up
to 16,000 images for single-species training. In this study, the
YOLO model was trained using only 1,191 training images and—
as already discussed—resulted in successful detection of spotted
spurge as denoted by an F1 score of 0.62 (i.e., >0.50) (Table 2).
However, this method required creating bounding boxes that
surrounded the entire individual target weed, resulting in time-
and labor-intensive preparation of data sets. Other researchers (Yu
et al. 2019b) have noted the challenges of this approach, especially
when individual plants are aggregated in larger patches. To
overcome these issues, Xie et al. (2021) developed a bounding
box/skeletal annotationmethod for nutsedge that takes advantage of
the plant’s unique morphological characteristics. This model was
not tested for other species or other weed groups that form dense
mats in turf, suggesting that this technique may lack universality.

Sharpe et al. (2020) demonstrated that a simple change in
annotation method from labeling the entire plant with a single
bounding box to labeling small parts of the plant (partial annotation)
using multiple bounding boxes drastically increased performance of
goosegrass [Eleusine indica (L.) Gaertn.] detection in strawberry
[Fragaria ×ananassa (Weston) Duchesne ex Rozier (pro sp.)
[chiloensis × virginiana]] and tomato (Solanum lycopersicum L.).
A similar approach was chosen for this study, resulting in the YOLO
model’s capability of accurately recognizing spotted spurge patches
of various shapes, sizes, and densities, as well as different levels of
blending within turf canopy. The annotation may be further
facilitated by using synthetic data sets and other data augmentation–
based approaches in the future (Tong et al. 2020). However, thismay
be easier to achieve using semantic segmentation, where data are
annotated precisely at the pixel level, allowing for outlining the
actual boundaries between objects of similar spectral characteristics
(Thorp and Tian 2004). Therefore, given the rapid advancement of
information technology and engineering allowing for processing
increasingly higher amounts of data in shorter time, various data set
assembly strategies (particularly considering various ranges of image
resolutions and/or dimensions) and annotation approaches will be
considered in future investigations. The emphasis will be on more
sophisticated annotation techniques, such as semantic segmenta-
tion, especially when coupled with the utility of synthetic data.

Effects of Grid Density on Spotted Spurge Detection

An efficient MV-based weed detection system is the foundation for
the success of a targeted sprayer. However, to maximize the
benefits of using such technology, a sprayer also needs to be

capable of delivering herbicide to the detected target as accurately
and precisely as possible (Jin et al. 2022b). Although object
detection algorithms enable precise localization of target weeds
(Medrano 2021; Yu et al. 2019b, 2019c), the accuracy and precision
of herbicide deposition on target plants are highly dependent on
actuator characteristics (Villette et al. 2021). The vast majority of
herbicides currently used in turfgrass scenarios are systemic
herbicides; thus it can be assumed that when a portion of a weed is
sprayed, the herbicide will be translocated within the target plant
and achieve kill, provided that the herbicide used has sufficient
efficacy (Patton and Elmore 2021). Unless to compensate for
imperfections of a spray system, as long as the sprayed area is not
smaller than what the model has identified, there is no benefit to
broadening the bandwidth. Therefore, when the sprayed band-
width is wider than the weed plant/weed patch, assumption can be
made that a portion of herbicide solution will be deposited off-
target and wasted (Jin et al. 2022b). In turfgrass, this “wasted”
portion of spraying solution will be applied to the turfgrass canopy,
which may lead to undesired outcomes. For instance, some of the
chemistries currently allowed in turfgrass scenarios (e.g., to control
challenging weed species) pose some risk of phytotoxicity even
when applied accordingly with the label recommendations. One
such example is topramezone-caused bleaching of bermudagrass
canopy when applied to control goosegrass (Brewer and Askew
2021). Also, the development of such targeted spraying technology
for turfgrass may allow for future use of nonselective herbicides
with such systems, which will damage desired turfgrass outside of
the target plant.

This study examined potential herbicide savings offered by
targeted spraying technology using grid matrix simulation of
various nozzle density scenarios. Grids were utilized to estimate
herbicide use at different nozzle densities, with an increase in
nozzle density corresponding to a decrease in spray width
(Table 1). True infestation ratio and true hits ratio, which estimate
detection accuracy, follow a similar pattern of exponential decline
as the number of boxes in the grid increases (Figures 3 and 4).
Results indicate that three nozzles would spray 41% of the area, and
increasing to six nozzles would decrease the area sprayed to 28%
(Figure 4). This translates to 59% and 72% in herbicide savings
compared to broadcast applications, respectively. Simulating 12 and
24 nozzles further decreased the area sprayed to 18% and 13%,
respectively (Figure 4), which translates to 82% and 87% in herbicide
savings compared to the broadcast application, respectively. The
YOLO model used in this study also resulted in very few misses
(nondetected spurge; Figure 5), but a greater number of false hitswas
observed (Figure 6). Results were significantly higher with the 3 × 3
and 6 × 6 grids due to the higher probability of unlabeled spurge
occurring within the larger boxes. Higher grid densities (12× 12 and
24 × 24) provided significantly fewer false hits (both <5%). This
significantly improved accuracy, resulting in a further reduction in
herbicide losses due to misplacement to nontarget areas.

Given the exponential nature of the data (Table 3), greater
increases in efficiency were observed at lower nozzle densities.
Conversely, diminishing returns occurred at higher nozzle
densities, resulting in only slight improvements in ground cover
accuracy when increasing from a 12 × 12 to a 24 × 24 grid. Thus,
higher nozzle density provided better accuracy and greater
herbicide reduction, which coincides with Rasmussen et al.
(2020). Moreover, Villette et al. (2021) concluded that in the case
of small patches dispersed across the field, either independently
operated nozzles or narrow boom sections are necessary to attain
significant herbicide reduction.

Table 2. Spotted spurge detection in ‘Latitude 36’ bermudagrass training
results using the You Only Look Once (YOLO) real-time multiobject detection
algorithm.a,b

Metric Value

Precision 0.65
Recall 0.60
F1 score 0.62

aImages for model development acquired from the UF/IFAS Plant Science Research and
Education Unit in Citra, FL, and from the UF/IFAS Fort Lauderdale Research and Education
Center in Davie, FL.
bPrecision, recall, and F1 score values were obtained at the conclusion of 6,000 iterations for
the experimental configuration.
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The imagery data for this study were collected from areas
representing high levels of weed infestation (i.e., ranging from 20%
to 80% weed cover) forming relatively large mats. Weed
distribution patterns under real-world scenarios may be less
dense, forcing turfgrass managers to target smaller-sized individual
plants. In such conditions, the accuracy of the spraying section,
that is, higher nozzle density, gains importance. In this study, the
difference in savings offered by the 12- and 24-nozzle scenarios was
not statistically significant (Figure 4). However, the increase in the
number of nozzles on the spraying section increases equipment
and maintenance costs. On the basis of the results, optimal

herbicide savings would occur with 12 nozzles applying a 4.17-cm
band. Turfgrass is characterized by a low-mowed and uniform-
height surface. To achieve such narrow bandwidth in those
conditions, nozzle parameters like orifice size and distribution
angle will need to be considered when developing booms and
sprayers for targeted applications in such settings. Factors like
boom height and turfgrass surface topography will also play
important roles. Regardless, spray deposition uniformity within
the bandwidth with minimal overlap is key to maintaining good
coverage while ensuring the goal of maximizing efficiency.
Achieving such objectives, along with verifying cost–benefit

Figure 3. True infestation ratio, that is, the percentage of boxes containing spotted spurge regardless of detection (i.e., regardless, if labeled with bounding boxes; true
infestation), at four box densities within a grid pattern. The error bars are the standard error of the mean (n= 50). Means marked with the same letter are not statistically different
at P ≤ 0.05.

Figure 4. True hits ratio, that is, the percentage of boxes containing spotted spurge with labels only (true hits), at four box densities within a grid pattern. The error bars are the
standard error of the mean (n= 50). Means marked with the same letter are not statistically different at P≤ 0.05.
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relationships of added costs and maintenance (an increased
number of nozzles and valve actuators) versus herbicide cost
savings will be a subject of future research with prototype sprayers.

Practical Implications

Overall, the results of this research bring the possibility of
implementing modern targeted spraying technology closer to the
turfgrass industry. This study confirms that object detection
algorithms like YOLO can be successfully utilized for weed
detection in developing targeted sprayers dedicated to turfgrass.
The model developed in this study was able to differentiate
structurally complex patches of weeds interwoven with turf, which
are frequently observed under real-world conditions. This level of

detection and distinction allows for targeted weed application and
avoidance of the desired turf. Future research will focus on
improving current CNN models’ efficacy, enhancing the training
procedure, testing new algorithms, and broadening the spectrum
of weed detection to include other species.

Despite a highly accurate weed detection system, precise
herbicide application cannot be accomplished without precise and
targeted spray delivery mechanisms. Owing to the precise nature of
the differentiated detection, the area to be sprayed can be very
limited. As such, the area covered by the nozzle should be
correspondingly small, but the logistics in increasing nozzle
density with ever-decreasing bandwidth is a major issue. Our
research suggests that the 12-nozzle setting covering a 50-cm
bandwidth (12 nozzles at 4.17-cm spacing) provides the optimal

Figure 5. Misses ratio, that is, the percentage of boxes containing spotted spurge with no labels only (misses), at four box densities within a grid pattern. The error bars are the
standard error of the mean (n= 50). Means marked with the same letter are not statistically different at P ≤ 0.05.

Figure 6. False hits ratio, that is, the percentage of boxes with labels devoid of spotted spurge (false hits), at four box densities within a grid pattern. The error bars are the
standard error of the mean (n= 50). Means marked with the same letter are not statistically different at P ≤ 0.05.
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actuator accuracy with minimal financial outlay and results in
~80% herbicide savings compared to broadcast application.
Further research in this area should investigate the validity of
these results under field conditions. Collectively, these results
provide groundwork for further research and development of
precision targeted spraying in turfgrass.
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