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LIFTINGS OF SOME TYPES OF TENSOR FIELDS

AND CONNECTIONS TO TANGENT BUNDLES

OF p'-VELOCITIES

AKIHIKO MORIMOTO

§ Introduction.

In the previous paper [6], we studied the liftings of tensor fields to

tangent bundles of higher order. The purpose of the present paper is to
r, p

generalize the results of [6] to the tangent bundles TM of pr-velocities in a

manifold M notions due to C. Ehresmann [1] (see also [2]). In §1, we

explain the pr-velocities in a manifold and define the (Λ)-lifting of different-

iable functions for any multi-index λ - (λ19 λ2, , λp) of non-negative integers

λi satisfying ΣΛ ^ r. In § 2, we construct <£>-lifts of any vector fields and

U)-lifts of 1-forms. The <J>-lift is a little bit different from the U)-lift of

vector fields in [6].

In §3, we construct (X)-lifting of (0, #)-tensor fields and then (Λ)-lifting
r, V

of (1, #)-tensor fields to TM for q^l. Unfortunately, the author could not
r, v

construct a natural lifting of (s, #)-tensor fields to TM for s;>:2.

Nevertheless, our (^)-liftings of (s, g)-tensor fields for 5 = 0 or 1 are quite

sufficient for the geometric applications, because the important tensor fields

with which we encounter so far in differential geometry seem to be, fortu-

nately, only of type (s, q) with s = 0 or 1.

As an application, we shall consider in § 4, the prolongations of almost

complex structures and prove that if M is a (homogeneous) complex manifold,
r, p

then TM is also a (homogeneous) complex manifold.
r,p

In § 5, we consider the liftings of affine connections to TM and prove
r, p

that if M is locally affine symmetric then TM is also locally affine symmetric

with respect to the lifted affine connection.

In § 6, we shall give a proof for the fact that if M is an affine sym-
r, p

metric space then TM is also an affine symmetric space.Received June 17, 1969.
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14 AKIHIKO MORIMOTO

In this paper, all manifolds and mappings (functions) are assumed to

be diίferentiable of class C°% unless otherwise stated.

We shall fix two positive integers r and p throughout the paper.

§ 1. Tangent bundles of pr-velocities.

Consider the algebra C°°{RP) of all C°°-functions on the p-dimensional

euclidean space Rp with natural coordinates (t1912, , tp). For any p-tuple

„ = (ι>19v2, ,vp) of non-negative integers VJ we denote as usual by (dldt)v

the following partial differentiation

(i.i) Urίf==

dtγ dtv

pp

for / G C M ( F ) . We define \v\ and v\ as follows:

! I i i I t (
1^1 = Vγ-r * + Vp9 l)\ = Vχ\ V2-

We denote by iV(p, r) the set of all p-t u pl e s ^ = (*>i> * * > ^) of non-

negative integers vι such that \v\^Lr. The set N{p,r) is a subset of the

additive group Zp of all p-tuples of integers.

Take two elements f,g&C°°{Rp). We say / is r-equivalent to g if

(d/dt)vf= (B/dtYg at t = (tu , tp) = 0 for every v<BN(p,r) and denote it by

/ ~ 0 . Clearly r+^ is an equivalence relation in C°°(RP).
r r

Now, let M be an ^-dimensional manifold. Consider the set SP{M) of

all maps φ: Rp-+M. Take two elements φ,ψ^Sp{M). We say that ψ is

r-equivalent to ψ if f o φ^f oψ for every f^Cx{M) and denote it by φ~ψ.
r r

The relation ^ is also an equivalence relation in SP{M). We denote by
r,p r

TM the set of all equivalence classes in SP{M) with respect to the equival-

ence relation <~. We denote by \_φ~\r the equivalence class containing
r

<P&SP{M), and we shall call it a pr-velocity in M at φ(Q). To introduce the
r,p r,p

manifold structure in TM, we define local coordinate system on TM as fol-

lows: Take a coordinate neighborhood U in M with coordinate system

{xl9 x2, ,%n} Define the coordinate functions {x^\i = 1, ,n; v^N(φ,r)}

on*TU by

for |>] re777 (cf. (1.1)). It is straightforward to see that TM becomes a
r,p

manifold by the above coordinate systems lxγ^}. The projection π defined
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TENSOR FIELDS AND CONNECTIONS 15

r,? r, V

by π(|>]r) = φ(0) for <p&Sp(M) is clearly a differentiable map of TM onto M.

r,v # *% P

DEFINITION 1.1. The differentiable manifold TM with projection π will

be called the tangent bundle of <pr-velocities in M.

DEFINITION 1.2. For any /eC"(Af), we define the (XjΊifl / ( i ) of f, for

every λ&N(p,r), as follows:

(1.3)

»*, P r, p

for [φ'Jr&TM. Clearly, / ( a ) is a well-defined differentiable function on TM.

We note also that (acί)
(v) = #V° holds on TU for the above coordinate system

For the sake of convenience we define fw — 0 for any λ^Zp such that

LEMMA 1.3. The (^)-lifting f->fω is a linear map of CT{M) into
r,p

C°°(TM) and satisfies the following equality

(1.4) (/ flθ(a)= Έfμ)-9(i-μ)

μ(=ZP

for every f,g(ΞC°°{M) and λ(ΞN(p,r).
Proof. Straightforward verification similar to the one of Lemma 1.2 [6].

§ 2. Liftings of vector fields and 1-forms.

Let ^~{M) — Σ!ιJ^~s

q{M) be, as in [6], the tensor algebra of all tensor

fields on M.

LEMMA 2.1. For any Xe j^J(M) and any λ^N{p9r) there exists one and

only one X<λ>ζ

(2.1)

for every f<=C

=jrκτM)

I C O(M) and ,

satisfying

X<i>fL

the following equality

Proof. Take a coordinate neighborhood U in M with coordinate system

{#i, •»#»} and let X = 2 ^ 3/3^ (^eC^ί/)) be the local expression of X

in £7. Consider the vector field X-XΌ on ( TΓ )-1(ί7) defined by
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16 AKIHIKO MORIMOTO

(2.2) X= Σ Λ

We see that X{xψ) = af~» = ( X a , ) ^ for = 1,2, ,n; μ<ΞN(p,r). Now,

making use of same arguments as in the proof of Lemma 1.4 [6], we can

prove that X{fω) = (XfYμ-x) for every /<=C°°(L0 and μ<=N{p,r). We can also

prove that if £/' is a coordinate neighborhood in M such that Uf)U' = Όnφφ,

then A^II/" = Xtr/|ί/" holds. Thus we obtain a vector field X<a> on *TM
**» P ~

such that X<i>l(π)'"1(^) = XΌ ft>r every coordinate neighborhood U in M.

This vecotr field X<1> clearly satisfies the condition (2.1) for every f&CiM)

and μ^N(p,r). The uniqueness of X<x> is also easily verified. Q.E.D.

C O R O L L A R Y 2.2. Let {xί9 *,xn] be a local coordinate system on a neigh-

borhood U in M. Then, we have

for every i = 1, ,w and

r,p

Proof. Clear from the expression (2.2) of X<λ> in ( π ) " 1 ^ ) .

COROLLARY 2.3. Notations being as in Corollary 2.2, we have

(2 4)

for every i = 1, ,n and λ,μ^N{p,r).

Proof. By Corollary 2.2, we have

DEFINITION 2.4. The vector field X<λ> in Lemma 2.1 will be called the
r,p

iλylift of X to TM for λ&N(p,r). For the sake of convenience, we define

X<λ> = 0 for every λt=Zp such that λ<3pN{p,r). The <λ>-lifting X-*X<λ> is a.

linear map of y j ( M ) into J?~\{TM) for every

LEMMA 2.5. i w X , F e ^ ^ J ( M ) , r«;β have

(2.5) [X<1>, F ^ ^ = [X, Y]<x+μ>

for every λ,μ<ΞN{p,r).
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TENSOR FIELDS AND CONNECTIONS 17

Proof. Assume λ + μ<^N{φ,r). Then, for any g^C°°(M) and

we have

[X<X>, Y<μ>] (£ ( v )) = X<ι>Y<P>gM - γ<t»χ<i>g^

= X<λ>(Yg){v~μ) - Y<μ>{

Since g^C*{M) and v^N(p,r) are arbitrary we get (2.5) if ^ + μ<aN(p, r).,

Assume λ-\- μ&N{p,r), then by our convention, we have [Z, y]<<i+/1> = 0.

On the other hand, for any g^C°°{M) and v<BN{p,r) we have, by the same

calculation as above,

[X<λ>, Y<μ>]g^ = CXF£)<"-'•-'> - (yXflr)<"-'-"> = 0, since * - μ - ^ φ iV(p, r).

Thus (2.5) is verified in any case. Q.E.D.

LEMMA 2.6. For X e ^ J ( M ) am/ / e ^ ^ J ( M ) , we have

(2.6) (/ X) < 2 > = Σ fω-X<ι+v>

ΛΓ( )

/or

Proof For any ^ G / J t M ) and μ^N{p,r), we have

-̂  = Σ /

Since ^ and μ are arbitrary, we get (2.6) for every λ^N{p,r). Q.E.D.

Remark 2.7. By our convention (cf. Def. 1.2) we can write (2.6) as

follows:

(2.7) {f-X)<λ>=: Σ fMX<i+v>.
VΪΞZP

L E M M A 2.8. Let fi,gi^Ceo{M) {i = 1, 9k) be such that Σ ^ i ^ Λ = 0 on

M. Then the following equality

(2.8) Σ
1

https://doi.org/10.1017/S0027763000013830 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013830


18 AKIHIKO MORIMOTO

holds on TM for every λ^N(p,r).

Proof. Similar to the proof of Lemma 2.1 [6]. Q.E.D.

r, p

{T
r, p

LEMMA 2.9. There is one and only one lifting Lλ: J?~\{M) ->^\{TM) for

every λ^N{p,r) satisfying the following condition:

(2.9) Lλ(f.dg)=
λ<=Zp

for every f,g<Ξ^~l{M).

Proof Similar to the proof of Lemma 2.2 [6].

LEMMA 2.10. For f^^\{M) and Θ&^~\{M), we have

(2.10) (/ 0)(a) = Σ βμ) θ<λ~»
μ<zZP

for every λ^N(p,r).

Proof Similar to the proof of Corollary 2.4 [6].

LEMMA 2.11. For Θ^^\{M) and X^^l(M), we have

(2.11) θ^(X<μ>) = (0CX))<'-'>

for every λ,μ&N{p,r).

Proof Let θ = Σ fidxt be the local expression of θ. Making use of

Lemma 2.1, we calculate as follows:

θ^{X<μ>) = (Σfidχt)w{X<μ>)

= Σ Σ Λv'dχf-vHX<μ>)
i Z

= Σ (/< dXtVQY*-* = {β(X)Y™K Q.E.D.

§ 3. Lifting of (1, ̂ -tensor fields.

Let ^ϊ(Λf) be the subalgebra of <^~(M) consisting of all covariant
r, P

tensor fields on M. We denote by JZΓJS/L the m{r,p) times direct sum of
r,p

), where m(r,p) denotes the number of elements in N(p,r). i.e.
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TENSOR FIELDS AND CONNECTIONS 19

q=0 λ&NQp, r)

where (yjTM)) ; = ^UTM) for all
r, p

Take two elements Θ = (θλ) and η = (ηλ) in <_^(M). We define the

multiplication θ (x) η of θ and η by the following:

(3.1)

r,v
for λ^N(p,r). We can readily see that ^J(M) is an associative graded

r,p
algebra over C~(TM) by this multiplication (x).

We have defined, in Lemma 2.9, the lifting Lλ of ^~\(M) into J )

for AeiV(p,r). Define L\ ^\M-*J?l{TM) by L(̂ ) = ( L ^ ) ) ^ ( p , r ) for

J(M).

LEMMA 3.1. There exists one and only one homomorphism L:

/. Define L9: ( . ^ S ( M ) ) 9 ^ ^ ; ( M ) by

£9(#i, , 0q) = L(^) (x) ® L(^)

for θi&^ΊiM) i — 1,2, ,#. Then, L is a multilinear map satisfying the

following condition:

I V A , , /A) = L (/i Λ) ® Vlfiu , oq)

for ^ G y (M) and Λ e ^ ' J ( M ) i = 1, ,q, from which we conclude that

there is a linear map D of ]hq(M) into ^J(M) such that

for ^ e y ί ( M ) , / = 1, •• ,^. Thus Lq(q^0) define a homomorphism

L : J ς ( M ) - > ^ ς ( M ) such that L(̂ ) = L(θ) for ^ e ^ (M). Q.E.D.

DEFINITION 3.2. For Ke^~q{M) we denote by Kw the i-component

of L{K) for λ^N{p,r), i.e.

We shall call Kw the (λ)-lifl of K. For the sake of convenience we put

= 0 for λ<zZp such that λ$N{p9r).
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20 AKIHIKO MORIMOTO

LEMMA 3.3. The notation a\ being as in Lemma 3.7 [6], for any

and X^^l(M), we have

(3.2) a\<

for λ,μ<=N(p,r).

Proof Using Lemma 2.11, we can prove the lemma in the same way

as the one of Lemma 3.7 [6].

COROLLARY 3.4. For K^^\{M) and X^^UM) i = 1, -,q, we have

K^(X<^>9 .fXSV) = (K(Xlf ,Xg))w-ϊ*>

for every Λ,jκ<eJV(p,r), i = 1, 9q.

Proof. We use Lemma 3.3 g-times. Q.E.D.

LEMMA 3.5. For any K&^~\{M) and y £ % r ) , there is a unique

K= K^^^IITM) such that

(3.3) K(Xί^, ,XSV) = (K(Xl9 ,Xq))<λ+v>

for every X^^\{M) and λi^N{p,r), where A = Σ3^
i

Proof Define Lv : ^\{M) x ^~°q(M)-+<?~l(TM) by the following

{3.4) LV{X, T) = Σ X ^

for X&J^KM) and T G ^ 5 ( M ) . It is clear that L is a bilinear map over

JR. We now assert that the following

(3.5) Lv{fX,T)=LXX9fT)

holds for every X<a^\{M)9 T^^°q{M) and /e^~$(Af). For, making use

of Remark 2.7 and Lemma 3.1, we calculate as follows:

Lv{fX9 T) = Σ (fX)<μ+v

= Σ Σ / W Γ U / 1 + V >

= Σ Σ fw-μ-»ϊχ<Xr>
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TENSOR FIELDS AND CONNECTIONS 2 1

= LXX,fT),
λ

which proves our assertion. Thus, we obtain a linear, map Lv of

into 3^\{TM) such that

LXX (x) T) = Σ X<μ*v> ® T<">

for Xe^-J(M) and Te^~°q(M). Put K = LV(K). It is now sufficient to

prove (3.3) for K = X®T with I G ^ « ( M ) and Γ e ^ ' J ( M ) . Using Corol-

lary 3.4 and Lemma 2.6, we can calculate as follows:

The uniqueness of K is clear, since (3.3) holds for every Xi&j7~Ί{M) and

). Q.E.D.

DEFINITION 3.6. For K^^l(M) and yeiV(p,r), we denote i? in

Lemma 3.5 by J?= X(^ and call it the {v)-lift of K, i.e.

(3.6) ii>>(X<V, . . . ,*<V) q

for Xίec^~'J(M), λi<=N{p,r), where λ = Σ ^ We call ϋC(°> the complete lift

of K to ΨM.

LEMMA 3.7. .For K<=Ξ^ι

q(M) {q^l) and X e ^ J ( M ) , ^ have

(3.7)

for k^q and λ,

Proof It suffices to prove (3.7) for K=Y®T with

Using Lemma 3.3, we calculate as follows:
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Q E.D.

COROLLARY 3.8. We have

for every X^^\(M)9 K^^\{M) and μ<ΞN{p,r).

§4. Prolongations of almost complex structures.

LEMMA 4.1. For any A9B^^\{M), we have

(4.1) C4oB)«»

Let IM^^Ί(M) be the (l,ΐ)-tensor field of identity transformations of tangent

spaces to M. Then, we have

(4.2) P

TM

Proof Making use of (3.6), we have, for any

λ>) = (ABX)<λ>

= ({A o B)X)<X> == (i4 o J B ) ^ ) ^ ^ )

for every λ^N{p,r). Therefore we get (4.1).

To prove (4.2), let IM = 2(9/3^)® dXi be the local expression of IM9

where {xi9 ,a?Λ} is a local coordinate system. Then, we have

which proves (4.2).

COROLLARY 4.2. For any polynomial P(x) of one variable x with real coeffi-

cients and for any A^J7~\{M), we have

(4.3)
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Proof. Use (4.1) and (4.2) repeatedly. Q.E.D.

THEOREM 4.3. Let J be an almost complex structure on M with its Nijenhuis
r,p

tensor Nj. Then, the bundle TM of p7-velocities in M has an almost complex

structure / ( 0 ) with its Nijenhuis tensor

THEOREM 4.4. If a manifold M is a complex manifold with almost complex
r,v

structure / , so is the bundle TM of φr-velocities in M with almost complex structure
/CO).

§ 5. Lifting of affine connections.

Let V be the covariant differentiation defined by an affine connection

of M.

r, p

THEOREM 5.1. There exists one and only one affine connection of TM whose

covariant differentiation V satisfies the following condition :

(5.1) vx<λ>γ<"> = (VxY)<λ+μ>

for every X,Y^^l(M) and

Proof Take a coordinate neighborhood U with coordinate system

{xl9 ,xn] and let Γ\j be the connection components of V with respect to

Q ^ t dxk

for i,j — 1, ,/z. Let /\ $ be the connection components of V with respect

to another coordinate system {yί9 ,yn} on U. Then, we have the fol-

lowing equalities:

/c o\ r'k - yi da& dxc dyk p a ,_ y, d2xa dyk

for i9j,k- 1,2, , n . (cf. for ins tance [3] p . 27). L e t {a#° | i = 1, , n ;
r,p

v^N(φ9r)} (resp. {y^}) be the induced coordinate system on ( J Γ ) " 1 ^ ) .

Define

(5.4) T{ti]a^ = (Πj)"-*-*

for ij,k = 1,2, ,n; λ,μ,v&N{p,r). We can now prove that there exists

a connection V whose connection components with respect to {#V°} a r e given
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by (5.4). For, we can verify (5.5) [6] for λ,μ,v^N(p>r) in the same way as

the proof of (5.5) [6], since we can use the equalities

f

for every λ,μ(=N(p,r) and ff=C*{U) (cf. Cor. 2.3).

Next, we shall verify the following

(5.5) ^xf>Xr = (VXiX,)<J+">

for every i,j = l, ' n and λ, μeNip,r), where we have put Xt =

Making use of Lemma 2.6 we calculate as follows:

Σ

Now, we shall verify

(5.6) V{f.Xi)<χ>X<

f o r f(=C°°(U), i,j = 1, - , n a n d λ,

For, the left hand side of (5.6) is equal to

which proves (5.6). Thus (5.1) is proved for Y = —^— and for every
dx j

Finally, we shall verify (5.1) for F = Σ / A e ^ " J W as follows:

= Σ {fψ^x<^>X?+μ> 4- ΛΓ<a>/c/) ^5 y + " > }

= Σ {frwχXjr+iHi>

= Σ
j
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TENSOR FIELDS AND CONNECTIONS 25

The uniqueness of, V is clear, since (5.1) holds for every XfYG^~\(M) and

). Q.E.D.

r, P

DEFINITION 5.2. We denote V in Theorem 5.1 by V = V and call it
r, v

the complete lift of V to TM.

PROPOSITION 5.3. Let f, R be the torsion and the curvature tensor field of

V = V. Then we have

(5.7) 7 = 7(0) and R = R9

where T ( o ) and # ( 0 ) are the complete lift of T and R {cfi Def 3.6).

Proof Using the relation (3.6), we calculate as follows:

<λ>, Y<μ>) = (T(X,Y))<λ+μ>

= Vx<»Y<μ> - Vγ<μ>X<λ> - [X < ; > , Y<μ>] = T(X<λ>, Y<μ>)

for every X,Y^^l{M) and λ,μ<=N(p,r), which proves 7(0) = 7.

Similarly, we have:

<λ+μ+v>= (R{X,Y)Z)

= R{X<λ>, Y<«>)z<v>

for every X, Y, Z(=^l(M) and λ, μ, v(=N(p,r), which proves Rw = R.

Q.E.D.

PROPOSITION 5.4. For any fe^J(M) (5 = 0 or ΐ) and <Xe^~{(M), we

have

(5.8)

(5.9)

for every μ<=N{p,r).

Proof It is sufficient to prove (5.8) for K=Y®T, where

T<Ξ^l{M). Now, since K^ = Σ Y<υ+μ> ® Γ w , and since V̂ <o> is a deriva-

tion of jT^iTM), it suffices to verify (5.8) in the special cases, where
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K= f<Ejr°Q{M) and K= F e ^ J ( A f ) and K=θ<=κ?
r*o

ι{M).

If K = /, then we have

If if = F, then we have

If K=θ, then we have, for μ9v^N{φ9r) and

and hence we get Vjr<o>̂ (At)

To prove (5.9), using Corollary 3.8, we calculate as follows

Since (X<Q>\ψl{X^^l{M)) spans the tangent space to ΨM at [?>]reΓΛff we

conclude that (5.9) holds. Q.E.D.

Combining Proposition 5.3 and 5.4 we have proved the following

THEOREM 5.5. Let T and R be the torsion and the curavture tensor field of

an qffine connection V of M. According as T = 0, T = 0, i? = 0 or VR = 0, we

have T ( o ) = 0, Vτ(0> = 0, 7?(0) = 0 or *Vi?(0) = 0. In particular, if M is qffine locally
r,φ r,φ

symmetric with respect to V, so is TM with respect to V.

§6. AfEne symmetric spaces.

Let Φ : Λf-> iV be a map of a manifold M into another manifold N.
r,p r,p t r,p

Then, the map Φ induces a map TΦ of TM into TN as follows:

(6.1)

r,Ί> r, p

for Mr^TM. The map TΦ is a well-defined differentiable map, which will

be called the (r, p)-tangent to Φ. It is clear that if Φ is a diίfeomorphism

then T0 is also a diffeomorphism.
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LEMMA 6.1. For any f^C°°(N)9 we have

(6.2)

for every

Proof Take a point |>] reTM. Then we have

LEMMA 6.2. Z^ί Φ : M-+N be a diffeomorphism of M onto N. Then for

any l e ^ ί M ™e have

(6.3) TTΦ{X<λ>) = {TΦX)<λ>

for every

Proof Take a function /eCro(iV). Then, by making use of Lemma 6.1

and 2.1, we have, for any

T

μ-» = (TΦX)<λ>βμ\

Since f<=C°°{N) and μ<=N(p,r) are arbitrary, we get (6.3). Q.E.D.

L E M M A 6.3. Zέtf V (ras£. V) έ^ an aβne connection on M (resp. N) and let

Φ : M-^ N be a diffeomorphism transforming V onto V7, i.e. we have

) = ΨTΦXTΦY

for X,Y<=^~l(M). Then the map *TΦ transforms *V onto V .

Proof. Put Φ = T^T Φ. It suffices to verify

(6.4) ΦVx<χ>Y<μ> = V~ΦX<χ>ΦY<μ>

for every X,Y^^\{M) and λ,μ^N{p,r). Now, by making use of Theorem

5.1 and Lemma 6.2, we see the left hand side of (6.7) is equal to
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TΦtfxY)<λ+μ> == (TΦ{VxY))<λ+μ>

= (V'TΦZTΦY)<1+μ> = VW<A>(TΦF)^ > = rψ~ΦX<χ>ΦY<μ>.

Q.E.D.

LEMMA 6.4. Take a point xo^M and let Φ be a diffeomorphism of M onto

itself such that Φ(x0) = x0 and that TX0Φ = — lTχ M. Consider the constant map Txo

of Rp into M defined by ΐXQ{u) = x* for u^Rp. Put x0 = [Γ^],.. Then, we have

(TΦ) (x0) = x0 and that

lθ Oj 1 x 1 W — — ± Γ ~ ( T j^).

Proof Take an element [φ\<ΞT~fΓM)9 where ψ : R-^TM with φ(Q) = x0.

Making use of the same arguments as in the proof of Lemma 1.1 [5], we

can find a differentiate map ψ : Rp+1 -»M such that φ(t) — [Φt~\r for small

t, where we have put ψt(u) = ψ{t,u) for t^R and u<=Rp. Put ψu(t) = Ψ(t9u).

Then, since <p(0) = [ψo]r - x0 = [rΛ 0], we can assume that ψ(09u) = xQ for small

u&Rp (cf. the expression of (ψ) in the proof of Lemma 1.1 [5]). Take a

coordinate neighborhood U of x0 with coordinate system {xl9 *,xn}. Put

xitV == α;^ for f = 1, 9n and yeJV(p,r). Then {#ίfl,} is a coordinate system
r, V % r,φ

around x0. We have to prove TTΦ([φ\) = — [φ]u i.e. to prove [TΦoφ\ =

— Mi To prove this, it suffices to prove the following

(6.6) (^i.vY^itTΦ o ψ\) = — (^,v)
(1)(|>]i)

for ί = 1,2, ,w and ι>^N(p9r).
r,p r,p r,v

Since (TΦ o ψ){t) = TΦ{ψ{t)) = TΦ{[ψt]r) =[Φo ψt]r9 we calculate as follows:

Now, making use of our assumption TXQΦ = — lTa. M and the fact that ψu(0) =
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ψ{0,ύ) = x0 for small u&Rp, we have

Of Jc-o

Therefore, we can continue the above calculation as follows:

which proves {6.6). Q.E.D.

COROLLARY 6.5. Let M be an affine symmetric space with affine connection V.

Let Φ:M-*M be the affine symmetry at a point ^ e M , Then the (r,p)-tangent
r,p # r,p r,p

TΦ to Φ is also the affine symmetry of TM with affiine connection V at the point xo»

r,p r,p

Proof. Since Φ leaves V invariant, TΦ also leaves V invariant by Lem-

ma 6.3. Next, since Φ is an affine symmetry we see that TX0Φ = —1TXQM*
r, p

Thus, by Lemma 6.4, we get (6.5), which means that TΦ is the affine

symmetry at x0. Q.E.D.

LEMMA 6.6. Let V be an affine connection on a manifold M, and let X e ^ Ί ( M )

be an infinitesimal affine transofrmation of V. Then, the Q}-lift X<λ> of X is also
r,p r,p

an infinitesimal affine transformation of V = V on TM for every λ&N{p,r).

Proof A necessary and sufficient condition for X to be an infinitesimal

affine transformation of M is that

for every Fej^~i(M), where Six denotes the Lie derivation with respect to

X. Therefore, we have to prove the following

(6.7)

r,p _ r,p

^ ) d 1
y, p ^ y, p

for every K&J^iTM) and Y&J?~l(TM). To prove (6.7) it suffices to prove

(6.7) for the special cases, where Ϋ = Y<μ> with Y^^\{M), μ^N(φ,r) and

K=Z<V> or θiv) with Z^j7~l(M), 0<=^J(M) and v^N{p,r). Moreover, to

prove (6.7) for the case K=θiv) with Θ^^\{M), it suffices to prove (6.7)
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for θ = df with /

If K = Z<">, then we calculate as follows:

= ([X, VrZ] - VAX, Z])* 1 "*" = (jgS ° VY)Z - (Vτ °

which proves (6.7) for i f = Z < " > .

To prove (6.7) for the case K=dfM with /e^" o

n (M), we first note

that the following equalities hold:

(6.8) (JSSMΠ = XW)) - θ([X, Π

(6.9) (Vχ(J/))(F) = Z F / - (VχY)f

for Z , F e ^ " ί ( M ) , / e ^ " J ( M ) and

Take a vector field Ze^Ί(M) and p^N(p,r). Making use of (6.8),

(6.9), Lemma 2.5 and (5.1), we calculate as follows:

= \X{YZf- (VyZ)/} - {Y[X,Z]f- (VyίX,Z]f-

which proves (6.7) for K=dβ"\ since Ze^~l(M) and p&N(p,r) are

arbitrary. Thus (6.7) holds for any # and F. Q.E.D.

From Lemma 6.6 we obtain
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PROPOSITION 6.7. If the group of affine transformations of M with V is
r,P

transitive on M, then the group of affine transformations of TM with respect to V
r,p

is transitive on TM.

From Proposition 6.7 and Corollary 6.5 we obtain the following

r,p
THEOREM 6.8. If M is an affine symmetric space with connection V, then TM

r,P
is also an affine symmetric space with connection V .

§ 7. Remarks.

Let P{M,π,G) be a principal fibre bundle with base M, projection π

and structure group G. We shall be able to prove that 'ΪP {TM, Tfπ, 'ΪG)
r,p

becomes canonically a principal fibre bundle with structure group TG,

which is a Lie group by the natural group multiplication. Let αi be a

connection form on P. Then by the same methods as in [5], we can con-
r,p

struct the prolongation ω{r'P) of ω to TP. If P= F{M) is the frame bundle
r,p

of M then a linear connection on M will induce a linear connection on TM

by the above procedure. We shall investigate the relationships between this

procedure and the liftings of affine connections in § 5 in a forthcoming

paper, where we shall also study the prolongations of G-structures to the

tangent bundles of pr-velocities, which will generalize the results in [4].
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