THE K-PRODUCT OF ARITHMETIC FUNCTIONS

A. A. GIOIA

1. Introduction. In this note we introduce a natural generalization of the ordinary convolution of arithmetic functions: If f and g are arithmetic functions,

$$
(f \times g)(n)=\sum_{a b=n} f(a) g(b) K((a, b))
$$

defines the K-product of f and g. If the kernel $K(n) \equiv E(n)=1$, the K-product is the ordinary convolution $\sum_{d \mid n} f(d) g(n / d)$; if $K(n) \equiv \epsilon(n)=[1 / n]$, then the K-product is the unitary product $\sum f(d) g(n / d)$, summed over $d \mid n,(d, n / d)=1$ $\mathbf{(1 , 2)}$. We give in Theorem 1 a characterization of all associative kernels, i.e., kernels for which the corresponding K-product is associative.

In the latter half of this paper we study multiplicative functions under the K-product. It is shown that under certain conditions the function $\epsilon(n)$ (defined above) is the identity for the K-product, a multiplicative function has a multiplicative inverse, and the K-product of multiplicative functions is multiplicative. Finally, we derive some general identities involving multiplicative functions defined in terms of the K-product.

2. The associative kernels.

Theorem 1. The K-product is associative if and only if either $K(n) \equiv 0$ or $K(n)$ is of the form

$$
K(n)= \begin{cases}O, & \text { if } m \nmid n, \\ K(m) \prod_{\substack{b b \| n \\ b \nmid m}} K^{*}\left(q^{b}\right), & \text { if } m \mid n,\end{cases}
$$

where m is the smallest integer such that $K(m) \neq 0$, and $K^{*}(n) \equiv K(m n) / K(m)$ is a multiplicative function having values $K^{*}\left(p^{a}\right)=1$ for all a if $p \mid m$, and if $q \nmid m, K^{*}\left(q^{a}\right)=0$ or $K^{*}\left(q^{B(q)}\right)$ according as $a<B(q)$ or $a \geqslant B(q)$, for $B(q) a$ positive integer or ∞.

Proof. Since

$$
((f \times g) \times h)(n)=\sum_{a b c=n} f(a) g(b) h(c) K((a, b)) K((a b, c))
$$

and

$$
(f \times(g \times h))(n)=\sum_{a b c=n} f(a) g(b) h(c) K((a, b c)) K((b, c)),
$$

Received July 7, 1964. This material appeared in the author's dissertation, University of Missouri, January, 1964.
it is clear that the K-product is associative if and only if

$$
\begin{equation*}
K((a, b)) K((a b, c))=K((a, b c)) K((b, c)) \quad \text { for all } a, b, c \tag{1}
\end{equation*}
$$

First, suppose K is a given function satisfying (1), and K is not identically zero. Let m be the smallest integer such that $K(m) \neq 0$. If n is any integer and $K(n) \neq 0$, take $a=m, b=n, c=m n$ in (1). We have

$$
K((m, n)) K(m n)=K(m) K(n)
$$

The right side is not zero, so $K((m, n)) \neq 0$. By definition of m, then, $m \leqslant(m, n)$. But $(m, n) \mid m$, so n is a multiple of m. Thus, if $K(n) \neq 0$, then $m \mid n$, or as stated in the theorem $K(n)=0$ if $m \nmid n$.

We consider now the function $K^{*}(n) \equiv K(m n) / K(m)$. Clearly $K^{*}(1)=1$. Let $(r, s)=1$, and replace a by $m s, b$ by $m r$, and c by $m r s$ in (1):

$$
K(m) K(m r s)=K(m r) K(m s)
$$

Dividing both sides by $(K(m))^{2}$, we have $K^{*}(r s)=K^{*}(r) K^{*}(s)$, so K^{*} is multiplicative.

Note. If $K(1)=1$, then $K(n)=K^{*}(n)$ is multiplicative, so $K(1)=1$ is necessary and sufficient for $K(n)$ to be multiplicative.

In view of the multiplicativity of K^{*}, it suffices to find K^{*} at the prime powers. Let N be a positive integer, q any prime, and x, y, z integers such that $0 \leqslant x \leqslant y \leqslant z$. Take $a=N q^{x}, b=N q^{y}, c=N q^{2}$. Then (1) yields

$$
\begin{equation*}
K\left(N q^{x}\right) K\left(N q^{\min (x+y, z)}\right)=K\left(N q^{x}\right) K\left(N q^{y}\right), \quad 0 \leqslant x \leqslant y \leqslant z \tag{2}
\end{equation*}
$$

Suppose q is any prime divisor of m. In (2), take $N=m / q, x=y=1$, and $z=2$. We have $K(m) K(m q)=K(m) K(m)$, and since $K(m) \neq 0$, $K(m q)=K(m)$ or $K^{*}(q)=1$. Assume that $K^{*}\left(q^{t}\right)=1, t>0$. In (2), take $N=m, x=y=t, z=t+1$ to get

$$
K\left(m q^{t}\right) K\left(m q^{t+1}\right)=K\left(m q^{t}\right) K\left(m q^{t}\right)
$$

Dividing both sides by $(K(m))^{2}$ and applying the inductive assumption, we obtain $K^{*}\left(q^{t+1}\right)=K^{*}\left(q^{t}\right)=1$. This proves that $K^{*}\left(q^{a}\right)=1$ for all a, if $q \mid m$.

Consider now $K^{*}\left(q^{a}\right)$ for prime $q, q \nmid m$. If $k^{*}\left(q^{a}\right)=0$ for $a=1,2, \ldots$, define $B(q)=\infty$, and if $K^{*}\left(q^{a}\right) \neq 0$ for some positive a, define $B(q)$ to be the least such a. Obviously if $B(q)=\infty$ for every $q \nmid m$, the function K^{*} has been completely determined. If there is a prime q such that $B(q)<\infty$, put $N=m, z=x+1, x=y=B(q)$ in (2). Dividing by $(K(m))^{2}$, we get

$$
\begin{equation*}
K^{*}\left(q^{B}\right) K^{*}\left(q^{B+1}\right)=K^{*}\left(q^{B}\right) K^{*}\left(q^{B}\right), \quad B \equiv B(q) \tag{3}
\end{equation*}
$$

Since $K^{*}\left(q^{B}\right) \neq 0$, by definition of $B, K^{*}\left(q^{B+1}\right)=K^{*}\left(q^{B}\right)$. Continuing by induction, we obtain

$$
K^{*}\left(q^{B}\right)=K^{*}\left(q^{B+1}\right)=K^{*}\left(q^{B+2}\right)=\ldots
$$

Together with the previous results, this shows that

$$
K^{*}\left(q^{b}\right)=\left\{\begin{aligned}
1, & \text { for all } b \geqslant 0 \text { if } q \mid m, \\
0, & \text { if } q \nmid m \text { and } b<B(q), \\
K^{*}\left(q^{B(q)}\right), & \text { if } q \nmid m \text { and } b \geqslant B(q) .
\end{aligned}\right.
$$

Suppose n is any multiple of m. Then n can be written uniquely as

$$
n=m^{a} \prod_{\substack{q^{0} \| n \\ q \nmid m}} q^{b}, \quad a \geqslant 1,
$$

and

$$
\begin{aligned}
K(n) & =K(m) K^{*}\left(m^{a-1} \prod q^{b}\right)=K(m) K^{*}\left(m^{a-1}\right) \prod K^{*}\left(q^{b}\right) \\
& =K(m) \prod K^{*}\left(q^{b}\right) .
\end{aligned}
$$

This completes the first part of the proof.
It remains to show that every such function satisfies (1). Suppose a, b, c are any positive integers. If m fails to divide (a, b, c), then at least one factor on each side of (1) vanishes. If (a, b, c) has an exact divisor $q^{b}, q \nmid m$, with $0<b<B(q)$, then again at least one factor on each side of (1) vanishes, so we may assume that $K((a, b, c)) \neq 0$. Then

$$
\begin{aligned}
& K((a, b)) K((a b, c))=(K(m))^{2} \prod_{\substack{q^{b} \|(a, b) \\
q \nmid m}} K^{*}\left(q^{b}\right) \prod_{\substack{a^{b} \|(a b, c) \\
q \nmid m}} K^{*}\left(q^{b}\right) \\
& =(K(m))^{2} \prod_{q \mid(a, b)} K^{*}\left(q^{B(q)}\right) \prod_{q \mid(a b, c)} K^{*}\left(q^{B(q)}\right) \\
& =(K(m))^{2} \prod_{q \mid(a, b c)} K^{*}\left(q^{B(q)}\right) \prod_{q \mid(b, c)} K^{*}\left(q^{B(q)}\right) \\
& =(K(m))^{2} \prod_{q^{b} \|(a, b c)} K^{*}\left(q^{b}\right) \prod_{q^{\|} \|(b, c)} K^{*}\left(q^{b}\right) \\
& =K((a, b c)) K((b, c)) .
\end{aligned}
$$

The proof is complete.
In the balance of this paper we consider only K-products with associative kernels.
3. Evidently $K(1) \neq 0$ is necessary and sufficient for the K-product operation to have the identity

$$
\epsilon_{K}(n)=\left\{\begin{aligned}
1 / K(1), & \text { if } n=1 \\
0, & \text { if } n>1
\end{aligned}\right.
$$

and in particular if $K(1)=1$, the identity is $\epsilon(n)$. If $K(1) \neq 0$ and f is any arithmetic function, the inverse f^{-1} (if is exists) is defined by $f \times f^{-1}=\epsilon_{K}$.

Theorem 2. If $K(1) \neq 0$, the inverse f^{-1} exists if and only if $f(1) \neq 0$.
Proof. If $K(1) \neq 0$ and f^{-1} exists, then $\left(f \times f^{-1}\right)(1)=\epsilon_{K}(1)$, or
$f(1) f^{-1}(1) K(1)=1 / K(1)$, so $f(1) \neq 0$. Conversely, if $K(1) \neq 0$ and $f(1) \neq 0$, then the defining relation $f \times f^{-1}=\epsilon_{K}$ can be used to construct f^{-1} by induction: $f^{-1}(1)=1 / f(1)(K(1))^{2}$, and if $f^{-1}(n)$ has been constructed for $1 \leqslant n \leqslant c$, then

$$
f^{-1}(c+1)=\frac{-1}{f(1) K(1)} \sum_{\substack{a b=c+1 \\ b<c+1}} f(a) f^{-1}(b) K((a, b))
$$

Corollary (Inversion Formula). If $K(1) \neq 0$, then $\mu^{*} \equiv E^{-1}$ exists, and for any functions f and $g, f \times E=g$ if and only if $f=g \times \mu^{*}$.

Theorem 3. The inverse of a multiplicative function is multiplicative if and only if $K(n)$ is multiplicative.

Proof. As noted earlier, $K(1)=1$ is equivalent to $K(n)$ being multiplicative. Thus, assume that $K(1)=1$ and suppose that f is multiplicative. Then $f(1)=1$ and $f^{-1}(1)=1 / f(1)(K(1))^{2}=1$. Suppose we have shown that $f^{-1}(m n)=f^{-1}(m) f^{-1}(n)$ whenever $(m, n)=1$ and $1 \leqslant m n<r s$. If $(r, s)=1$, then

$$
\begin{aligned}
\epsilon(r s)= & \sum_{\substack{\left.a \\
b\right|_{s} ^{r}}} f(a b) f^{-1}(r s / a b) K((a b, r s / a b)), \\
0 & =\left\{\sum_{a \mid r} f(a) f^{-1}(r / a) K((a, r / a))\right\}\left\{\sum_{b \mid s} f(b) f^{-1}(s / b) K((b, s / b))\right\} \\
& \quad+f(1) f^{-1}(r s) K(1)-\left\{f(1) f^{-1}(r) K(1)\right\}\left\{f(1) f^{-1}(s) K(1)\right\}, \\
0 & =\epsilon(r) \epsilon(s)+f^{-1}(r s)-f^{-1}(r) f^{-1}(s) .
\end{aligned}
$$

Since $r s>1$, at least one of $\epsilon(r), \epsilon(s)$ is zero, and we have $f^{-1}(r s)=f^{-1}(r) f^{-1}(s)$.
Conversely, suppose the multiplicativity of f implies that of f^{-1}, so that $f(1)=f^{-1}(1)=1$. Then $\left(f \times f^{-1}\right)(1)=\epsilon_{K}(1)$, or $f(1) f^{-1}(1) K(1)=1 / K(1)$, and $K(1)=1$.

Theorem 4. The K-product of two multiplicative functions is multiplicative if and only if $K(n)$ is multiplicative.

Proof. The necessity is immediate if we consider the K-product at $n=1$. To prove that the condition is sufficient, assume that $K(1)=1, f$ and g are multiplicative, and $(m, n)=1$. Then

$$
\begin{aligned}
(f \times g)(m n) & =\sum_{a \mid m} f(a b) g(m n / a b) K((a b, m n / a b)) \\
& =\sum f(a b) g(m n / a b) K((a, m / a)(b, n / b)) \\
& =\sum f(a) f(b) g(m / a) g(n / b) K((a, m / a)) K((b, n / b)) \\
& =\left\{\sum_{a \mid m} f(a) g(m / a) K((a, m / a))\right\}\left\{\sum_{b_{n}} f(b) g(n / b) K((b, n / b))\right\} \\
& =(f \times g)(m) \cdot(f \times g)(n) .
\end{aligned}
$$

We now confine our attention to operations with multiplicative kernels. Suppose $I(n)$ is a multiplicative function which is never zero. Recall that $\mu^{*} \equiv E^{-1}$.

Definition. For positive integers m and n,

$$
A(n, m) \equiv\left\{\begin{aligned}
I(m) & \text { if } m \mid n \\
0 & \text { if } m \nmid n
\end{aligned}\right.
$$

and

$$
B(n, m) \equiv A(n, m) \times \mu^{*}(m)
$$

By applying the inversion formula on the latter definition, we have

$$
A(n, m)=\sum_{a b=m} B(n, a) K((a, b))
$$

The function $A(n, m)$ is multiplicative in m; that is, if $(r, s)=1$, then $A(n, r) A(n, s)=A(n, r s)$. If $r \mid n$ and $s \mid n$, this result follows by the multiplicativity of $I(n)$, and if at least one of r, s does not divide n, then $r s$ does not divide n, and both $A(n, r) A(n, s)$ and $A(n, r s)$ vanish. By Theorem $3, \mu^{*}$ is multiplicative, and it follows by Theorem 4 that $B(n, m)$ is multiplicative in m.

Notice that $B(1, m)=\sum_{d \mid n} A(1, d) \mu^{*}(m / d) K((d, m / d))=A(1,1) \mu^{*}(m) K(1)$ $=\mu^{*}(m)$.
4. In this section we develop some identities using the functions introduced above. For this purpose we require the following lemma.

Lemma. If $K(m)=O(1)$ and $\mu^{*}(m)=O(1)$, then for fixed $n B(n, m)=O(1)$.
Proof. Suppose $|K(m)|<M_{1}$ and $\left|\mu^{*}(m)\right|<M_{2}$. Then

$$
\begin{aligned}
|B(n, m)| & =\left|\sum_{d \mid m} A(n, d) \mu^{*}(m / d) K((d, m / d))\right| \\
& =\left|\sum_{\substack{d|m \\
d| n}} I(d) \mu^{*}(m / d) K((d, m / d))\right| \\
& \leqslant M_{1} M_{2} M(n) \tau(n)
\end{aligned}
$$

where $M(n)=\max _{d \mid n}|I(d)|$ is independent of m.
Definition. If $K(n)=O(1), i$ is a positive integer, and sis real $(s>1)$, then

$$
\zeta(i, s) \equiv \sum_{n=1}^{\infty} \frac{K((i, n))}{n^{s}}
$$

Remark. For any $s>1, \zeta(i, s)=O(1)$ uniformly in i if $K(n)=O(1)$.
Let $F(x, y)$ denote any function of two real variables. If n is a positive integer and x is real $(x \geqslant n)$, then

$$
\begin{align*}
\sum_{a b=n} F(a, b) & =\sum_{t \leqslant x} \frac{A(n, t) F(t, n / t)}{I(t)} \tag{4}\\
& =\sum_{t \leqslant x} \frac{F(t, n / t)}{I(t)} \sum_{t \mid d} B(n, d) K((d, t / d)) \\
& =\sum_{d \leqslant x} B(n, d) \sum_{c \leqslant x / d} \frac{K((c, d)) F(c d, n / c d)}{I(c d)} .
\end{align*}
$$

Theorem 5. If $K(n)=O(1), \mu^{*}(n)=O(1)$, then

$$
n^{-s} \sum_{a b=n} I(a) b^{s}=\sum_{d=1}^{\infty} B(n, d) \zeta(d, s) d^{-s}, \quad s>1
$$

Proof. In (4), take $F(x, y)=I(x) y^{s}, s>1$. Then

$$
\begin{equation*}
\sum_{a b=n} I(a) b^{s}=n^{s} \sum_{d \leqslant x} B(n, d) \sum_{c \leqslant x / d} K((c, d))(c d)^{-s}, \quad x \geqslant n . \tag{5}
\end{equation*}
$$

But the inner sum on the right is equal to

$$
\begin{aligned}
\sum_{c \leqslant x / d} K((c, d))(c d)^{-s} & =\sum_{c=1}^{\infty} K((c, d))(c d)^{-s}-\sum_{c=[x / d]+1}^{\infty} K((c, d))(c d)^{-s} \\
& =\zeta(d, s) d^{-s}+O\left(\int_{x / d}^{\infty} d^{-s} y^{-s} d y\right) \\
& =\zeta(d, s) d^{-s}+O\left(1 / d x^{s-1}\right)
\end{aligned}
$$

Substituting this into (5), we obtain:

$$
\begin{aligned}
n^{-s} \sum_{a b=n} I(a) b^{s} & =\sum_{d \leqslant x} B(n, d)\left\{\zeta(d, s) d^{-s}+O\left(1 / d x^{s-1}\right)\right\} \\
& =\sum_{d \leqslant x} B(n, d) \zeta(d, s) d^{-s}+O\left((\log x) / x^{s-1}\right),
\end{aligned}
$$

by the lemma. Now let $x \rightarrow \infty$ and the proof is complete.
Among the special cases of Theorem 5 is the following well-known result (4, p. 184).

Corollary (Ramanujan). If $s>1$, then

$$
n^{1-s} \sigma_{s-1}(n)=\zeta(s) \sum_{d=1}^{\infty} c_{d}(n) d^{-s}
$$

where $\zeta(s)$ is the Riemann zeta function and $c_{d}(n)$ is Ramanujan's trigonometric sum.

Proof. Take $K=E$ and $I(n)=n$. Then the K-product is the ordinary convolution and μ^{*} is the Möbius function, so the boundedness hypotheses are satisfied. Moreover, $\zeta(n, s)$ is the Riemann zeta function when $K=E$.

Finally, by (3, p. 237)

$$
B(n, d)=\sum_{a \mid d} A(n, a) \mu(d / a)=\sum_{\substack{a|d \\ a| n}} a \mu(d / a)=c_{d}(n) .
$$

Since $B(1, m)=\mu^{*}(m)$, taking $n=1$ in the above theorem, we obtain:
Corollary. If $K(n)=O(1)$ and $\mu^{*}(n)=O(1)$, then

$$
1=\sum_{d=1}^{\infty} \mu^{*}(d) \zeta(d, s) d^{-s}, \quad s>1
$$

Theorem 6. If $K(n)=O(1), \mu^{*}(n)=O(1), s>1$, and p is prime, then

$$
\sum_{a b=n} I(a) a^{-s} K((a, p))=\sum_{d=1}^{\infty} B(n, d) d^{-s} K((d, p)) \zeta(d p, s)
$$

Proof. In (4), take $F(x, y)=I(x) x^{-s} K((x, p))$. Then

$$
\sum_{a b=n} I(a) a^{-s} K((a, p))=\sum_{d \leqslant x} B(n, d) \sum_{c \leqslant x / d} K((c, d)) K((c d, p))(c d)^{-s} .
$$

But $K((c, d)) K((c d, p))=K((c, d p)) K((d, p))$ by (1). After this substitution the arguments are similar to those in the proof of Theorem 5.

An interesting special case arises if $K(p)=0$. Then, since $K(1)=1$, the right side is the series $\sum B(n, d) \zeta(d p, s) d^{-s}$, summed over $d,(d, p)=1$. And if $I=E$, the left side is $n^{-s} \sum d^{s}$, summed over $d \mid n$ and $(d, p)=1$.

I am very grateful to my teacher and friend, Professor M. V. Subbarao, of the University of Alberta, for his guidance.

References

1. Eckford Cohen, Arithmetical functions associated with unitary divisors of an integer, Math. Z., 74 (1960), 66-80.
2. -_Unitary products of arithmetical functions, Acta Math., 7 (1961), 29-38.
3. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed. (Oxford, 1960).
4. S. Ramanujan, On certain trigonometrical sums and their application in the theory of numbers, Collected Papers (Cambridge, 1927), pp. 179-199.

University of Missouri and Texas Technological College

