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INVARIANT KÄHLER STRUCTURES

ON THE COTANGENT BUNDLES

OF COMPACT SYMMETRIC SPACES

IHOR V. MYKYTYUK

Abstract. For rank-one symmetric spaces M of the compact type all Kähler
structures F

λ, defined on their punctured tangent bundles T
0
M and invariant

with respect to the normalized geodesic flow on T
0
M , are constructed. It is

shown that this class {F λ} of Kähler structures is stable under the reduction
procedure.

§1. Introduction

Let G/K be a Riemannian symmetric space, where G is a semisimple

Lie group, with the standard G-invariant metric g. This metric defines the

geodesic flow with the Hamiltonian H on the tangent bundle T (G/K) as

a symplectic manifold with the symplectic 2-form Ω (that comes from the

canonical symplectic structure on the cotangent bundle using the metric to

identify these two bundles).

Geometric constructions which come from geometric quantization nat-

urally lead to complex structures defined on the punctured tangent bundle

T 0(G/K) = T (G/K)−{zero section}. Such structure JS for the spheres was

found by Souriau [So]. Later it was observed by Rawnsley [Ra1], that the

norm function
√

H is strictly plurisubharmonic with respect to the above

complex structure JS and thus defines the Kähler metric on T 0Sn with Ω as

the Kähler form. He also observed that JS is invariant with respect to the

Hamiltonian flow X√
H of the norm function

√
H (the normalized geodesic

flow) and used the Kähler structure JS to quantize the geodesic flow on the

spheres [Ra2].

Subsequently, Furutani and Tanaka [FT] defined a Kähler structure JS

with the analogous properties on the punctured tangent bundle of complex
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and quaternionic projective spaces CP n, HP n and used them for quantiza-

tion. In [IM] Ii and Morikawa describe these structures on the punctured

tangent bundles (of Riemannian manifolds G/K) by means of horizontal

and vertical lifts.

In [Sz1] Szőke explored the relationship of JS and a so-called adapted

complex structure JA (associated with the Riemannian metric g) on the

respective tangent bundle T (G/K). He showed that for all compact, rank-

one symmetric spaces (also for the Cayley projective plane CaP 2) the family

of complex structures obtained by pushing forward the adapted complex

structure with respect to an appropriate family of diffeomorphisms has a

limit and this limit complex structure coincides with JS .

The purpose of this paper is to describe all G-invariant Kähler struc-

tures on T 0(G/K) (with Ω as the Kähler form) preserved by the normalized

geodesic flow X√
H . We prove that such Kähler structures F exist only on

the punctured tangent bundles of rank-one symmetric spaces of the com-

pact type. There is a one-to-one correspondence between the space of such

structures and the space of smooth functions with positive real part of

the form λ ◦
√

H (Theorem 12). In particular, the structure JS coincides

with F λ, where λ(r) = r. Moreover, among these structures there exists

a unique metric compatible structure (see Definition 4) F λ, λ = 1 defined

on T 0(G/K) (Proposition 19). The Hamiltonian H is strictly plurisub-

harmonic with respect to this complex structure F 1 and
√

H satisfies the

Monge-Ampere equation on T 0(G/K). This class {F λ} of Kähler structures

is stable with respect to reduction procedure. In particular, the reduction

procedure under the action of U(1) for JS on T 0S2n+1 gives the Kähler

structure JS on T 0
CP n, under the action of Sp(1) for JS on T 0S4n+3 gives

the Kähler structure JS on T 0
HP n. As an application of the methods devel-

oped in section 2, we obtain a description of the adapted complex structures

on the tangent bundle T (G/K) of any homogeneous space of a compact Lie

group G (Proposition 21).

The author announced the main results of the present work in the work-

shop “Representation Theory and Complex Analysis”, 23–29 April 2000,

Oberwolfach, Germany (Abstracts, pp.19–20).
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§2. G-invariant Kähler structures on T(G/K)

2.1. Positive-definite polarizations

Here we will review few facts about polarizations. For more detailed

account of the material below, see for instance [Ga, GS]. Let (X,Ω) be

a (real) symplectic manifold, F be a (smooth) complex subbundle of the

complexified tangent bundle T CX. F is (defines) a complex structure on

X if F is involutive (i.e. is closed under the Lie bracket: [F, F ] ⊂ F ),

F ∩ F = 0 and F + F = T CX. We say that a subbundle F is integrable if

1) F ∩F has constant rank; 2) the subbundles F and F +F are involutive.

A subbundle F is Lagrangian if Ω(F, F ) = 0 and dimC F = 1
2 dimR X.

A polarization of X is a complex integrable Lagrangian subbundle F of

T CX. A polarization F is positive-definite if −iΩx(Z,Z) > 0 for all nonzero

Z ∈ F (x) and x ∈ X.

Definition 1. [GS] A symplectic manifold is a (positive) Kähler
manifold if it possesses a positive-definite polarization.

To reconcile this definition with the standard one we will use the next lemma

(see [GS, Lemma 4.3]):

Lemma 1. Let F be a positive-definite polarization on a (real) sym-
plectic manifold X. Then for every x ∈ X there exists a unique linear
mapping Jx : TxX → TxX such that

1) J2
x = −Idx;

2) F (x) = {Y + iJx(Y ), Y ∈ TxX};
3) Ωx(Jx(Y1), Jx(Y2)) = Ωx(Y1, Y2) for any Y1, Y2 ∈ TxX;
4) the quadratic form Bx(Y1, Y2) = Ωx(JxY1, Y2) is symmetric and

positive-definite.

By Lemma 1, F is an (integrable) complex subbundle of (0, 1) vectors of

the complex structure J and the quadruple (X, J,B,Ω) is a Kähler manifold

in the usual sense.
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Definition 2. [GSt] Suppose that F is a complex structure on X
and D ⊂ X is some domain. A smooth real function f on D satisfies the
homogeneous complex Monge-Ampere equation if (∂∂f)(dim X)/2 = 0.

2.2. G-invariant complex structures

Let M be a homogeneous space of a real reductive connected Lie group

G, i.e. M = G/K. Suppose that K is a (closed) reductive subgroup of G.

We denote by g and k the Lie algebras of the groups G and K respectively.

There exists a faithful representation of g such that its associated bilinear

form Φ is nondegenerate on g (if g is semi-simple we can take as Φ the

Killing form associated with the adjoint representation of g). The form Φ is

nondegenerate on k. Let 〈, 〉 = cΦ, where c ∈ R is a nonzero constant. This

form 〈, 〉 defines the G-invariant pseudo-Riemannian metric g on G/K. The

metric g identifies the cotangent bundle T ∗M and the tangent bundle TM

and thus we can also talk about the canonical 1-form θ on TM , that is the

form defined by

θ(Y )
def
= g(x, p∗Y ), Y ∈ Tx(TM),(1)

where p : TM → M denotes the natural projection. The form θ and the

symplectic form Ω
def
= dθ are G-invariant with respect to the natural action

of G on TM (extension of the action of G on M).

Denote by m the orthogonal complement to k in g with respect to 〈, 〉, i.e.

g = k ⊕ m is the AdK-invariant direct sum decomposition of g. Consider

the trivial vector bundle G × m with the two Lie group actions (which

commute) on it: the left G-action, lh : (g, w) 7→ (hg,w) and the right K-

action rk : (g, w) 7→ (gk,Ad k−1(w)). Let π : G × m → G ×K m be the

natural projection. It is well known that G ×K m and TM are isomorphic.

Using the corresponding G-equivariant diffeomorphism φ : G×K m → TM ,

[(g, w)] 7→ d
dt

∣∣∣
0
g exp(tw)K and the projection π define the G-equivariant

submersion Π : G × m → TM , Π = φ ◦ π. Denote by θ̃ the 1-form Π∗θ and

by Ω̃ its differential dθ̃. Let ξl be the left-invariant vector field on the Lie

group G defined by a vector ξ ∈ g.

Lemma 2. The 1-form θ̃ on the manifold G × m has the form

θ̃(g,w)(ξ
l(g), u) = 〈w, ξ〉,(2)

Ω̃(g,w)((ξ
l
1(g), u1), (ξ

l
2(g), u2)) = 〈ξ2, u1〉 − 〈ξ1, u2〉 − 〈w, [ξ1, ξ2]〉,(3)
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where g ∈ G,w ∈ m, ξ, ξ1, ξ2 ∈ g, u, u1, u2 ∈ m = Twm. The kernel
K ⊂ T (G×m) of the 2-form Ω̃ is generated by the global (left) G-invariant
vector fields ζL, ζ ∈ k on G × m, ζL(g, w) = (ζ l(g), [w, ζ]).

Proof. The formula for the form θ̃ is an evident consequence of (1).
To prove the formula for Ω̃ fix the basis {ηj} in g and the corresponding
dual basis {ωj} in g∗. Then θ̃ =

∑
j fjω

L
j , where fj(g, w) = 〈w, ηj〉 is a

smooth function and ωL
j is the pullback along the projection G × m → G

of the left G-invariant 1-form ωl
j on the Lie group G. Now it is sufficient to

see that dfj(g, w)(ξl(g), u) = 〈u, ηj〉 and to use the Maurer-Cartan formula:
dωl

j(ξ
l, ηl) = −ωj([ξ, η]). Since Ω is a symplectic form, the kernel of Ω̃ is

the kernel of Π∗.

Let F be a polarization on TM . Since F is an integrable subbundle of

T C(TM), it is defined by the differential ideal I(F ) ⊂ ΛT C∗(TM) (closed

relatively to the exterior differentiation). The kernel F of the differential

ideal Π∗I(F ) is an integrable subbundle of T C(G × m). We will denote F
also by Π−1

∗ (F ). This subbundle is uniquely defined by two conditions: 1)

dimC F = dimR G; 2) Π∗(F) = F . It is evident that Ω̃(F ,F) = 0 and the

subbundle F contains KC. Moreover, F is right K-invariant.

We can substantially simplify matters by working on the trivial vector

bundle G × m with the subbundle F rather than on the tangent bundle

T (G/K) with the polarization F . To this end we need

Lemma 3. Let F be an integrable complex subbundle of T C(G × m)
such that 1) F is right K-invariant; 2) KC ⊂ F ; 3) dimC F = dimR G;
4) Ω̃(F ,F) = 0. Then F = Π∗(F) is a polarization on TM .

Conversely, any polarization F on TM defines an integrable subbundle
F = Π−1

∗ (F ) with properties 1)–4).

Proof. Since F is right K-invariant and the kernel K of Π∗ is contained
in F , the image F = Π∗(F) of F is a well defined subbundle of T C(TM) of
dimension dimG−dimK. F ∩F has constant rank because K ⊂ F is a real
subbundle. It then immediately follows from 4) that the subbundle F is
Lagrangian. To prove the smoothness and involutiveness of F we notice that
Π is a submersion, i.e. for any point (g, w) ∈ G×m there exist a neighbor-
hood U of (g, w), coordinates x1, . . . , xN on U and coordinates x1, . . . , xN ′

on the open set U ′ = Π(U) such that xj(g, w) = 0, j = 1, . . . , N and Π|U in
these coordinates has a form Π : (x1, x2, . . . , xN ) 7→ (x1, x2, . . . , xN ′). Let
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Y (x1, . . . , xN ) =
∑N

j=1 aj(x1, . . . , xN )∂/∂xj be any section of F|U . The
subbundle K is spanned on U by ∂/∂xj , j = N ′ + 1, . . . , N and F|U is
preserved by these ∂/∂xj . Therefore, the smooth vector field

Y0(x1, . . . , xN ) =

N∑

j=1

aj(x1, . . . , xN ′ , 0, . . . , 0)∂/∂xj ,(4)

is also a section of F|U . (F is preserved by ∂/∂xj iff F is preserved by the
corresponding local one-parameter group [Ga].) Thus, Π∗Y0(x1, .., xN ′) =∑N ′

j=1 aj(x1, .., xN ′ , 0, .., 0)∂/∂xj is a smooth section of F |U ′. Involutiveness

of F follows easily from (4). In the same manner we obtain that Π∗(F +F)
is involutive, i.e. F is a polarization.

Remark 4. If the Lie subgroup K is connected, condition 1) of the
lemma is a consequence of the integrability of F and 2). In this case any
leaf of K is K-orbit and our lemma may be obtained as a simple modification
of [Ga, Lemma in s. III.17] or the proof of [GS, Theorem 3.5].

Proposition 5. Let F be a polarization on TM , F = Π−1
∗ (F ). Then

1) F is G-invariant iff F is left G-invariant;
2) F is a complex structure on TM iff F∩F = KC (F+F = T C(G×m));
3) F is a positive-definite polarization on TM iff −iΩ̃(Z,Z) ≥ 0 for all

vector fields (sections) Z ∈ ΓF and Ω̃(Z,Z) = 0 ⇔ Z ∈ ΓKC ⊂ ΓF .

Proof. Taking into account that the submersion Π is G-equivariant we
conclude that the subbundles F and Π∗(F) are (left) G-invariant simulta-
neously. If F ∩ F = KC then Π∗(F) ∩ Π∗(F) = 0, so that F is a complex
structure. The latter assertion of the lemma is evident.

Thus we see that there is one-to-one correspondence between the set of

all G-invariant polarizations F on TM and the set of all integrable (left) G-

invariant subbundles F ⊂ T C(G×m) for which conditions 1)–4) of Lemma 3

hold.

Let F be a G-invariant polarization, F = Π−1
∗ (F ). Our interest in

the next subsection centers on what will be shown to be an important

G-invariant subbundle of F . Define this subbundle P ⊂ F as a comple-

mentary G-invariant subbundle to KC in F such that P(e, w) ⊂ mC×mC ⊂
T C

e G×T C
w m. Since K is generated by the vector fields ζL, ζ ∈ k, ζL(g, w) =

(ζ l(g), [w, ζ]) the subbundle P is unique. By definition, F = KC +P. More-

over, these two subbundles K,P (and F by definition) are right K-invariant

because the decomposition g = k ⊕ m is AdK-invariant.
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2.3. G-invariant complex structures on the tangent bundle

of a symmetric space

We continue with the previous notation but throughout the remainder

of this section it is assumed in addition that M = G/K is a symmetric

space, in particular, [m,m] ⊂ k.

The next lemma and proposition describe all positive-definite G-

invariant polarizations on the tangent bundle TM to a symmetric space

M in terms of smooth family of C-linear operators on mC.

Lemma 6. Let F = Π−1
∗ (F ), where F is a G-invariant positive-definite

polarization on TM , F = KC +P. Suppose that G/K is a symmetric space
([m,m] ⊂ k). Then for every w ∈ m there exists a unique nondegenerate
C-linear mapping Pw : mC → mC such that the subbundle P is generated
by nowhere vanishing on G × m (left) G-invariant vector fields ξL, ξ ∈ m,
where ξL(g, w) = (ξl(g), iPw(ξ)). Moreover, Adm k ·Pw ·Adm k−1 = PAd k(w)

for all w ∈ m, k ∈ K, where Adm k = Adk|m.

Proof. Define the real subspaces V1, V2 of T(e,w)(G × m) putting V1 =
{(ξ, 0), ξ ∈ m ⊂ TeG} and V2 = {(0, u), u ∈ m = Twm}. Note that P(e, w) ⊂
V C

1 ⊕ V C
2 and the spaces P(e, w), V C

1 , V C
2 have the same dimensions.

Now to prove the existence of Pw it suffices to prove that P(e, w) ∩
V C

k = 0, k = 1, 2. By (3) Ω̃(Vk, Vk) = 0, k = 1, 2 ([m,m] ⊂ k = m⊥).
Therefore Ω̃(Z,Z) = 0 for all Z ∈ P(e, w) ∩ V C

k and by Proposition 5
Z ∈ (P ∩ KC)(e, w) = 0.

By the definition of the right K-action the mapping rk∗ takes each
(ξl(g), u) at (g, w) to ((Ad k−1(ξ))l(gk),Ad k−1(u)) at (gk,Ad k−1(w)),
where ξ ∈ g, w, u ∈ m, k ∈ K. Then P is right K-invariant iff Adm k ·
Pw · Adm k−1 = PAd k(w).

Let W ⊂ m be an open AdK-invariant subset of m. Let P : W →
GL(mC), w 7→ Pw be a smooth map such that Adm k·Pw·Adm k−1 = PAd k(w)

for all w ∈ W,k ∈ K. Denote by KW the restriction K|(G × W ).

Definition 3. We will say that complex subbundles F of T C(G×W )
and F of T C(Π(G × W )) are defined by the map P if 1) F = KC

W + P,
where P is generated by nowhere vanishing on G × W (left) G-invariant
vector fields ξL, ξ ∈ m, ξL(g, w) = (ξl(g), iPw(ξ)); 2) F = Π∗(F). Such
(left G-invariant) subbundles F and F will be denoted by F(P ) and F (P )
respectively.
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We wish to study the complex structures F (P ), which are not neces-

sarily positive-definite polarizations. Fix bases {Xβ} of k and {Wb} in m.

Let {wb} be the coordinates in m with respect to the basis {Wb}. For any

vector-function τ : W → mC, τ =
∑

b τbWb by −→τ we denote the vector field
−→τ (w)

def
=
∑

b τb(w) ∂
∂wb

. We will say that a vector field Y ∈ ΓT (G × m)

is horizontal (resp. vertical) if prv∗(Y ) = 0 (resp. if prh∗(Y ) = 0), where

prv : G × m → m (resp. prh : G × m → G) is the usual projection. For any

ξ ∈ m denote by P (ξ) the vector-function P (ξ) : w 7→ Pw(ξ).

Proposition 7. Suppose that M = G/K is a symmetric space. Let
F = F(P ) be a complex subbundle of T C(G × W ) defined by P . Then the
subbundle F = Π∗(F) is

1) involutive iff [ξL, ηL] ⊂ ΓKC
W , i.e. the Lie bracket identities[

−−→
P (ξ),

−−→
P (η)

]
= −−−−−−→

[w, [ξ, η]] hold on W for all ξ, η ∈ m;

2) Lagrangian iff for each w ∈ W Pw is symmetric with respect to the
bilinear form 〈, 〉 on m;

3) a complex structure iff 1) holds and the real part Re Pw of the linear
mapping Pw is nondegenerate for all w ∈ W , i.e. F ∩ F = KC

W .

The subbundle F (P ) is a positive-definite polarization iff conditions 1),
2) hold and 〈(Re Pw)(ξ), ξ〉 > 0 for all w ∈ W and all nonzero ξ ∈ m.

Proof. We will try to explain what the various items in this proposition
mean. By Definition 3 the subbundle P is right K-invariant. Therefore the
subbundle KW (generated by this action of the Lie group K) preserves the
subbundle F : [ζL,P] ⊂ P, ζ ∈ k.

Let ξ, η ∈ m. Since the vector fields ξL, ηL are left G-invariant, their
horizontal and vertical components are independent of w ∈ W and g ∈ G

respectively: ξL(g, w) =
∑

b ξbW
l
b(g) + i

∑
b

(
Pw(ξ)

)
b

∂
∂wb

. Therefore the

horizontal component of [ξL, ηL] is the vector field [ξ, η]l. On the other
hand, any G-invariant section of F is defined by its horizontal component,
so from the relations [k,m] ⊂ m and [m,m] ⊂ k we obtain that [ξL, ηL] is a
section of F(P ) iff condition 1) of Proposition 7 holds.

Since K is the kernel of Ω̃, the subbundle F (P ) is Lagrangian iff

Ω̃(e,w)

(
(ξ, iPw(ξ)), (η, iPw(η))

)
= 〈η, iPw(ξ)〉 − 〈ξ, iPw(η)〉 − 〈w, [ξ, η]〉 = 0.

But m⊥[m,m], hence 〈ξ, iPw(η)〉 = 〈η, iPw(ξ)〉, i.e. we derive 2). Using

https://doi.org/10.1017/S0027763000008497 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008497
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analogous arguments we obtain that

−iΩ̃(e,w)

(
(ξ + iη, iPw(ξ + iη)), (ξ − iη,−iP w(ξ − iη))

)

= i〈ξ + iη,−iP w(ξ − iη)〉 − i〈ξ − iη, iPw((ξ + iη)〉

=

(
〈(P w + Pw)(ξ), ξ〉 + 〈(P w + Pw)(η), η〉

)

+ i

(
〈(P w − Pw)(ξ), η〉 − 〈(P w − Pw)(η), ξ〉

)
.

By condition 2) of the proposition, the linear operator P w−Pw is symmetric
and, therefore, F (P ) is positive-definite iff 〈(Re Pw)(ξ), ξ〉 > 0 for all ξ 6= 0
from m (see also Proposition 5). It is easy to check that condition 3) means
the following: F + F = T C(G × W ). Thus F + F = T C(Π(G × W )). Now
the proposition follows from Lemma 3 and Proposition 5.

Remark 8. Since P is right K-invariant [ζL,P] ⊂ P, ζ ∈ k. If the Lie
subgroup K is connected then P is right K-invariant iff [ζL,P] ⊂ P [Ga].
Therefore the condition Adm k · Pw · Adm k−1 = PAd k(w), w ∈ W,k ∈ K
with connected K in the definition of P can be replaced by the Lie bracket

identities:
−−−−−→
P ([ζ, ξ]) =

[−−−→
[w, ζ],

−−→
P (ξ)

]
, where ζ ∈ k, ξ ∈ m.

2.4. Invariant Kähler structures on punctured tangent bun-

dles of symmetric spaces

In this subsection we suppose in addition that M is a semisimple Rie-

mannian symmetric space, i.e. the connected Lie group G is semisimple and

the form 〈, 〉 on m is positive definite (for appropriate choice of the constant

c : 〈, 〉 = cΦ).

Let XH be the Hamiltonian vector field on TM = T (G/K) of the

Hamiltonian function H : TM → R, H(gK, Y ) = g(Y, Y ), Y ∈ TgK(G/K)

associated with the given metric g. This vector field XH (Ω(XH , ·) = −dH)

defines the geodesic flow on TM . Here we will describe all Kähler structures

F on TM−M invariant under the Hamiltonian flow of the function H a, a ∈
R, i.e. such that [XHa , F ] ⊂ F . In this case the vector field XHa generates

the local one-parameter group of (F -) biholomorphic mappings.

To simplify substantially the computation we will work on the trivial

vector bundle G×m as in the previous subsection. To this end we consider

on G × m the function H̃ and the vector field X̃H putting

H̃(g, w) = 〈w,w〉 and X̃H(g, w) = 2(wl(g), 0).(5)

https://doi.org/10.1017/S0027763000008497 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008497


200 I. V. MYKYTYUK

It is immediate that H̃ = Π∗H. Since the form 〈, 〉 is AdG-invariant, by (3)

Ω̃(X̃H(g, w), (ηl(g), u))=−〈2w, u〉−〈w, [2w, η]〉=−2〈w, u〉=−dH̃(ηl(g), u),

where η ∈ g, u ∈ m = Twm. Thus Π∗Ω(X̃H , ·) = −dH̃ = −Π∗dH. But

Ω is nondegenerate and therefore Π∗X̃H is a well-defined vector field and

Π∗X̃H = XH by definition.

Lemma 9. Let F be a polarization on TM , F = Π−1
∗ (F ). Let Z̃, Z

be Π-related vector fields on G × m and TM respectively, i.e. Π∗(Z̃) = Z.
Then F is Z-invariant iff subbundle F is Z̃-invariant.

Proof. The subbundle F locally is generated by smooth vector fields
Y such that the images Π∗Y are vector fields which generate (locally) F
(see the proof of Lemma 3). Now to prove the lemma we have to use the
well known assertion about Π-related vector fields [He, Prop.3.3]: for any
vector fields Y1, Y2 on G×m such that Π∗Y1,Π∗Y2 are (well defined) vector
fields we have: Π∗[Y1, Y2] = [Π∗Y1,Π∗Y2].

Lemma 10. Let F = F(P ) ⊂ T C(G × W ) be a G-invariant subbundle
defined by the map P . Then the subbundle F = Π∗(F) is invariant with
respect to the Hamiltonian vector field of the function H a, a ∈ R−{0} iff

P 2
w(ξ) = − ad2

w(ξ) − 2(a − 1)
〈w,Pw(ξ)〉
〈w,w〉 Pw(w) ∀ξ ∈ m,∀w ∈ W.(6)

Moreover, if [XHa , F ] ⊂ F then 1) a = 1/2 and 0 /∈ W ; 2) G/K is a rank-
one symmetric space; 3) for all w ∈ W : Pw(w) = λ(w)w, where λ(w) ∈ C.

Proof. By Lemma 9 it is sufficient to show that [X̃Ha ,F ] ⊂ F , where
X̃Ha = aH̃a−1X̃H . Since the vector field X̃Ha is right K-invariant,
[X̃Ha ,K] ⊂ K. Next, we have to calculate the commutators Y = [X̃Ha , ξL],
ξ ∈ m. Using the notation of the proof of Proposition 7 and putting
ηb(w) = (Pw(ξ))b we obtain:

Y =
[
2aH̃a−1(w)wbW

l
b(g), ξbW

l
b(g) + iηb(w)

∂

∂wb

]

= 2aH̃a−1(w)
(
[w, ξ]βX l

β(g) − iηb(w)W l
b(g)

)

− 4ai(a − 1)H̃a−2(w)〈w, η(w)〉wbW
l
b(g),
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i.e. the commutator Y is a horizontal vector field. But any G-invariant
section of F is defined by its horizontal part, and hence (Xk + Xm, 0) ∈
F(e, w) ⊂ gC × mC, where Xk ∈ kC, Xm ∈ mC, iff [w,Xk] + iPw(Xm) = 0
(see Definition 3). Since in our case Y (e, w) = 2a〈w,w〉a−1(Xk + Xm, 0)
with Xk = [w, ξ] and Xm = −iPw(ξ) − 2i(a − 1)〈w,w〉−1〈w,Pw(ξ)〉w we
obtain equation (6). On the other hand, the operator Pw : mC → mC is
nondegenerate. Therefore, the vector Pw(w) and the number ∆ = −2(a −
1)〈w,Pw(w)〉/〈w,w〉 are nonzero for all w ∈ W−{0}. Since adw(w) = 0,
the vector Pw(w) is an eigenvector of Pw with the eigenvalue ∆. More-
over, from (6) for ξ = Pw(w) it follows that ∆2Pw(w) = − ad2

w(Pw(w)) +
∆2Pw(w), i.e. ad2

w(Pw(w)) = 0. But Pw is nondegenerate, therefore the
kernels of ad2

w |m : m → m and adw |m : m → k coincide with the one-
dimensional space 〈w〉. Hence, 1) G/K is a rank-one symmetric space;
2) Pw(w) = λ(w)w, where λ : W → C is a smooth function. It then fol-
lows immediately from (6) for ξ = w 6= 0 that a = 1/2. 0 /∈ W because
dimm ≥ 2.

Remark 11. If the symmetric space G/K has rank one then any AdK-
invariant function λ(w) on W is a function of 〈w,w〉 [He], i.e. λ as a function
on G × W is a function of H̃. Moreover, any G-invariant function f on
T (G/K) is defined uniquely by some AdK-invariant function on m, i.e.
f = f(H).

We wish to describe now all G and X√
H -invariant positive-definite

polarizations on T (G/K). Denote by m0 the set of all nonzero elements of

m and by T 0M
def
= TM − {zero section} the punctured tangent bundle of

M . Put |w| =
√

〈w,w〉 for w ∈ m.

Theorem 12. Let M = G/K be a rank-one semisimple Riemannian
symmetric space. Assume that F is a G-invariant positive-definite polar-
ization defined on the G-invariant open subset Π(G × W ), 0 /∈ W of TM .
Let Pw : mC → mC, w ∈ W be the corresponding family of linear mappings.
If F is invariant with respect to the Hamiltonian vector field of the function√

H then G/K has the compact type and

Pw(ξ) =

√
− ad2

w (ξ) +
〈w, ξ〉
〈w,w〉λ(w)w,(7)

where λ : W → C, λ(w) = λ(|w|) is a function with a positive real part.
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Conversely, the complex subbundle F = F (P ), where P is determined
by (7) and G/K has the compact type, is a positive-definite polarization on
Π(G × W ).

Proof. We continue with the notation of the proof of Lemma 10. Since
the form 〈, 〉 is AdG-invariant and positive-definite on m, the direct sum
decomposition m = 〈w〉 ⊕ 〈w〉⊥ is ad2

w-invariant. This fact and (6) taken
together with the latter assertion of Proposition 7 implies that for all w ∈ W
1) the symmetric operator (− ad2

w) has in 〈w〉⊥ only positive eigenvalues,
i.e. G/K is a symmetric space of the compact type [He]; 2) the real part of

λ(w) is positive. Hence Pw =
√

− ad2
w on 〈w〉⊥, where

√
− ad2

w|〈w〉⊥ is a

unique positive definite square root of (− ad2
w)|〈w〉⊥.

It is easy to check that Pw satisfy the condition Adm k ·Pw ·Adm k−1 =
PAd k(w) for all w ∈ W,k ∈ K iff λ(w) is a AdK-invariant function because
Adk · adw = adAd k(w) ·Ad k.

Conversely, suppose that the complex subbundle F = F (P ) is defined
by the mapping P : m0 → GL(mC) (7) and G/K is a rank-one symmet-
ric space of the compact type. Taking into the account the proof of the
first part of the theorem, it is sufficient to show only that the subbundle
F is involutive. We prove this using the result [So, Ra1, FT]: for any
rank-one symmetric space G/K of the compact type with a classical Lie
group G, there exists the G-invariant Kähler structure (on the punctured
tangent bundle T 0(G/K)) JS which is invariant under Hamiltonian flow of
the function

√
H. For the Cayley plane F4/Spin9 such Kähler structure JS

exists by virtue of [Sz1, Theorem 3.2] (see also Proposition 22 from the next
section).

Let F S be a corresponding complex subbundle of (0, 1) vectors of the
complex structure JS , FS = Π−1

∗ (F S). By Lemma 6 and already proved
first part of this theorem, FS = FS(P S), where P S is defined by equa-
tion (7) with some AdK-invariant function λS : m0 → C with a positive
real part. Let K0 = K|(G × m0).

Denote by PS the subbundle of FS defined as P for F . Let PH be the
subbundle of PS of all vectors from PS tangent to level surfaces of H̃, in
particular, dH̃(PH) = 0. It is evident that PH has codimension one in PS

(H̃ = Π∗H : dH̃(K) = 0) and the subbundle KC
0 +PH (of codimension one

in FS) is involutive. Moreover, PH is generated by the local G-invariant
vector fields (ξl(w), iP S

w (ξ(w))), where ξ(w)⊥w (the subspace 〈w〉⊥ ⊂ m

is invariant with respect to P S
w |〈w〉⊥ =

√
− ad2

w|〈w〉⊥). It then follows
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immediately from the equality P S
w |〈w〉⊥ = Pw|〈w〉⊥ that PH ⊂ P, (KC

0 +
PH) ⊂ F .

The subbundleFS is generated by KC
0 +PH and the global nowhere van-

ishing on G×m0 left G-invariant vector field Y S = Y S(λS) ∈ ΓPS , Y S(g, w)
= H̃−1/2(w)(wl(g), iλS(w)w) (recall that P S

w (w) = λS(w)w). FS is involu-
tive iff [Y S,KC

0 + PH ] ⊂ FS . But

Y S(g, w) = H̃−1/2(w)(wl(g), 0) + H̃−1/2(w)(0, iλS(w)w)

=
1

2
H̃−1/2X̃H + H̃−1/2(w)(0, iλS(w)w).

By Lemma 9 the subbundle FS and, consequently, KC
0 +PH are preserved

by the vector field 1
2H̃−1/2X̃H (dH̃(X̃H) = 0 and Π∗(

1
2H̃−1/2X̃H) = X√

H).

Therefore FS is involutive iff [Z,KC
0 +PH ] ⊂ FS , where Y S = 1

2 |w|−1X̃H +
i|w|−1λS(w)Z, Z(g, w) = (0, w) (by Remark 11 λS is constant along sections
of KC

0 + PH). But for any section X of KC
0 + PH

dH̃([Z,X]) = ZdH̃(X) − XdH̃(Z) = −X(2H̃) = 0

and therefore [Z,KC
0 + PH ] ⊂ FS ∩ ker dH̃ = KC

0 + PH . Thus KC
0 + PH

is preserved by the vector field Z independent of λS . Hence KC
0 + PH is

invariant with respect to the vector field Y (λ) from F , i.e. F is involutive.

Remark 13. The formula similar to (7) with λ(w) = α|w|, α ∈ R
+

for the structure JS was found by Szőke in [Sz1] using the limit argu-
ments. The Kähler structure (7) with λ(w) = α|w|, α ∈ R

+ for a classical
rank-one symmetric space of the compact type is described in [IM] using a
Riemannian geometric method. The polarization Π∗(PH) + 〈XH〉 on the
punctured tangent bundle T 0Sn to the sphere was used by Ii [Ii] for the
geometric quantization of the geodesic flow. In [PM, Chapter 2] this po-
larization was obtained using a one-parameter family of polarizations on
TR

n+1 (invariant with respect to Hamiltonian flows of n + 1-dimensional
harmonic oscillators).

Denote by F λ the positive-definite polarization on Π(G × W ) ⊂ T 0M ,

where M = G/K is a rank-one symmetric space of the compact type,

determined by some function λ = λ(|w|) (7). By the theorem above, any

positive-definite polarization F on some G-invariant open subset D of T 0M

has the form F λ with the function λ : W → C, λ = λ(|w|), where G×W =

Π−1(D).
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As was observed by Rawnsley [Ra1] and Furutani-Tanaka [FT] for the

Kähler structure JS on T 0M , where M = G/K is a classical rank-one

symmetric space of the compact type, the strictly plurisubharmonic func-

tion 2
√

H satisfies the condition Ω = −i∂∂2
√

H. Moreover, the one-form

Im∂2
√

H is the canonical one-form θ. The question arises: what Kähler

structures F λ admit such a function?

Proposition 14. The Kähler structure F λ on G-invariant open sub-
set D of T 0(G/K) admits a function Q = q ◦

√
H such that −i∂∂Q = Ω,

where

q(r) =

∫
r
λ(r) + λ(r)

|λ|2(r) dr.(8)

This function is a unique G-invariant function with this property (up to
a constant of integration) if W (D) is connected. Moreover, if λ is a real
function then Im ∂Q = θ.

Proof. By definition ∂Q|F λ = dQ|F λ and ∂Q|F λ = 0. Denote by ∆̃
the one-form Π∗(∂Q) on G × W . Then for any ξ ∈ m, ζ ∈ k:

∆̃(g,w)(ξ
l(g),−iP w(ξ)) = 0, ∆̃(g,w)(ζ

l(g), [w, ζ]) = 0

and ∆̃(g,w)(ξ
l(g), iPw(ξ)) = |w|−1q′〈w, iPw(ξ)〉 = i|w|−1q′λ〈w, ξ〉

because the operator Pw is symmetric with respect to 〈, 〉 (here q ′ and λ
denote the derivative q′(|w|) and the number λ(|w|)). Now using defini-
tion (7) of Pw, the invariance of the space 〈w〉⊥ with respect to Pw we
obtain that ∆̃(e,w)(ξ0, 0) = 0, ∆̃(e,w)(0, ξ0) = 0 for all ξ0 ∈ 〈w〉⊥ ⊂ m;

∆̃(e,w)(ζ, 0) = 0, ζ ∈ k because [w, ζ]⊥w and

∆̃(e,w)(0, w) = |w|−1q′
λ

λ + λ
〈w,w〉, ∆̃(e,w)(w, iλw) = i|w|−1q′λ〈w,w〉.

Therefore for any η ∈ g, u ∈ m we have

∆̃(e,w)(η, u) =
q′

|w|(λ + λ)

(
i|λ|2〈w, η〉 + λ〈w, u〉

)

=
q′

|w|(λ + λ)

(
i|λ|2θ̃ +

1

2
λdH̃

)
(e,w)

(η, u)

(see definitions (2) and (5)). Since the 2-forms Ω̃ = dθ̃ and dH̃ ∧ θ̃ are
linearly independent on G × W (dimm ≥ 2), the function Q,Q = q ◦

√
H

satisfies the condition Ω = −id∂Q iff q ′|λ|2/(|w|(λ + λ)) ≡ 1. In this case
if λ is a real function then Im∂Q = θ.
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We denote by σ : T (G/K) → T (G/K) the involution which maps any

tangent vector Y at gK onto −Y at gK. It is evident that σ∗(F λ) = F λ iff

P λ
w = P λ

−w, i.e. if λ is a real function.

Theorem 15. Let M = G/K be a rank-one symmetric space of the
compact type and let q : R

+ → R be a smooth strictly increasing function.
For the class [q + C]C∈R of functions there exists a unique G-invariant
positive-definite polarization F = F (q) on the punctured tangent bundle
T 0M such that

1) F is invariant with respect to the Hamiltonian vector field X√
H of

√
H;

2) the one-form Im∂Q, with Q = (q ◦
√

H), is the canonical one-form θ;

3) σ is an antiholomorphic involution.

Moreover, for this polarization F (q): a) F = F λ, where λ(w) = 2|w|/q′(|w|),
w ∈ m0; b)

√
Q satisfies the homogeneous complex Monge-Ampere equation

on T 0M iff q(r) = c0r
2, c0 > 0, i.e. Q = c0H.

Proof. This theorem summarizes results which have already been
proved with the exception of the assertion b). To prove b) we note that
Im ∂Q is the canonical one-form θ on T 0M and, consequently, by [GSt, (5.2)
and (5.5)]

√
Q satisfies the homogeneous complex Monge-Ampere equation

iff Q is a homogeneous polynomial of degree 2 in the impulse-coordinates
on TM ' T ∗M .

Remark 16. Since the entire construction and the proof is compatible
with taking quotients with respect to a discrete group of G, the results of
subsections 2.3 and 2.4 are valid for such quotients as well.

Remark 17. The Kähler structure JS on T 0M with the complex sub-
bundle of (0, 1) vectors F S 1) is invariant with respect to X√

H ; for this

structure 2) Ω = −i∂∂2
√

H; 3) σ∗(F S) = F S [Ra1, FT]. Therefore,
F S = F λ, where λ(w) = |w| (for some constant c which defines 〈, 〉). For ex-

ample, if G/K = SO(n+ 1)/SO(n) then ad2
w(ξ) = −

(
〈〈w,w〉〉ξ − 〈〈w, ξ〉〉w

)

and
√

− ad2
w(ξ) = ‖w‖ξ − 〈〈w,ξ〉〉

‖w‖ w, where w, ξ ∈ m0, 〈〈w, ξ〉〉 = − 1
2 Trwξ

(the normalized trace form associated with the faithful standard represen-
tation). By [IM] JS is defined by the operator Pw(ξ) = α|w|ξ for some
α ∈ R. Now from (7) we find that Pw(ξ) = ‖w‖ξ and λ(w) = λS(w) =
‖w‖. In the same manner we can consider the symmetric space G/K =
SU(n + 1)/S(U(1) × U(n)) and using the commutator formula ad2

w(ξ) =
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−
(
〈〈w,w〉〉ξ − 〈〈w, ξ〉〉w + 3〈〈Jw, ξ〉〉Jw

)
and 〈〈Jw, Jw〉〉 = 〈〈w,w〉〉 obtain

that
√

− ad2
w(ξ) = ‖w‖ξ − 〈〈w,ξ〉〉

‖w‖ w + 〈〈Jw,ξ〉〉
‖w‖ Jw, where 〈〈w, ξ〉〉 = − 1

2 Trwξ

(w, ξ ∈ m0 ⊂ su(n+1)) and J : m → m determines the complex structure on

G/K. By [IM] JS is defined by the operator Pw(ξ) = α
(
|w|ξ + 〈Jw,ξ〉

|w| Jw
)

for some α ∈ R. Thus, by (7) λ(w) = λS(w) = ‖w‖. Similarly (see [IM]), for
the homogeneous space G/K = Sp(n+1)/(Sp(1)×Sp(n)) (the quaternion
Kähler manifold) the complex structure JS is defined by λ(w) = λS(w) =
‖w‖, where 〈〈w, ξ〉〉 = − 1

2 Trwξ (w, ξ ∈ sp(n + 1) ⊂ End (Hn+1)).

§3. G-invariant metric compatible complex structures on T(G/K)

3.1. The main lemma

We continue with the notation of section 2 but throughout this section,

unless otherwise indicated, it is assumed that G is a real reductive connected

Lie group and K its (closed) reductive subgroup. Suppose that the form

〈, 〉 on the Lie algebra g defines the G-invariant Riemannian metric g on

M = G/K. Since 〈, 〉 = cΦ (c is a nonzero constant), an arbitrary geodesic

γ : R → G/K through gK ∈ G/K can be written as g exp(tξ)K for some

ξ ∈ m. For the geodesic γ we can define a map γ̂ : C → T (G/K), (x+iy) 7→
yγ̇(x).

Definition 4. [DSz] Let FA be a complex structure on some domain
D ⊂ T (G/K). We will say that the complex structure FA on D is metric
compatible if for every geodesic γ in G/K the map γ̂ is holomorphic on
γ̂−1(D). If the domain D containes the zero section G/K of T (G/K) such
complex structure is called adapted.

For a Riemannian manifold G/K on some G-invariant domain D ⊂
T (G/K) which contains the neighborhood of the zero-section G/K there

exists an adapted structure FA and this structure on D is unique (metric

compatible structures are not uniquelly defined by the metric as we will

show below). FA is G-invariant. Moreover, FA has the following additional

properties [GSt, Sz2, Sz3, DSz]:

1) σ : Dσ → Dσ, where Dσ def
= D∩σ(D), is an antiholomorphic involution;

2) the one-form Im∂H is the canonical one-form θ;

3) FA is a Kähler structure with respect to the canonical symplectic form
Ω = dθ;

4) the function
√

H satisfies the homogeneous complex Monge-Ampere
equation on D−G/K;
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5) if the Lie group G is compact then the structure FA is defined on the
whole space T (G/K) (i.e. D = T (G/K)) and the complexification GC

of G acts on T (G/K) by biholomorphic transformations.

Note. For 2) it is important that T ∗(G/K) and T (G/K) are identified

using the metric g.

Lemma 18. Let F be a complex structure on some G-invariant domain
D ⊂ T (G/K) and F = Π−1

∗ (F ) (the integrable subbundle of T C(G × W )).
The complex structure F is metric compatible on D iff the (left) G-invariant
and right K-invariant vector field AL, AL(g, w) = (wl(g), iw) is a section
of F .

Proof. Let ξ ∈ m. Since g exp(x + ty)ξK = g expxξ exp tyξK, the
mapping γ̂ : x + iy 7→ (d/dt)0g exp(x + ty)ξK may be considered as the
restriction of a composition of the two maps γ̃ : C → G × m, x + iy 7→
(g expxξ, yξ) and Π : G × m → T (G/K). By definition the mapping γ̂ is
holomorphic if the vector γ̂∗(∂/∂x + i∂/∂y) belongs to F or, equivalently,
iff γ̃∗(∂/∂x + i∂/∂y) belongs to F . Now the assertion of the lemma follows
from the simple equalities:

γ̃∗(∂/∂x)(x, y) = (ξl(g expxξ), 0) ∈ Tg exp xξG × Tyξm

and γ̃∗(∂/∂y)(x, y) = (0, ξ) ∈ Tg exp xξG × Tyξm.

Proposition 19. Let M = G/K be a rank-one symmetric space of
the compact type. Then there exists a unique G-invariant metric compatible
structure F on the punctured tangent bundle T 0M such that F is invariant
with respect to the Hamiltonian vector field X√

H of
√

H. This structure

coincides with the structure F λ, where λ ≡ 1 on m0.
Moreover, for this structure 1) Ω = −i∂∂H; 2) Im ∂H is the standard

canonical one-form θ; 3)
√

H satisfies the homogeneous complex Monge-
Ampere equation on T 0M .

Proof. The proof follows immediately from Lemma 18 and Theorem 15
because Pw(w) = w iff q(r) = r2 + C.

Note. The metric compatible complex structure F 1 on T 0M cannot

be extended to TM to make it adapted. In fact F 1 is different from the

complex structure that is adapted to the G-invariant Riemannian metric g

on M = G/K. This can be read off for example by looking at the corre-

sponding J tensors. The J tensor of F 1 can be calculated from formula (7)
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in Theorem 12 and for the J tensor of the adapted (to the Riemannian

metric g) complex structure see [Sz1].

3.2. Adapted structures on T (G/K)

The all facts in this subsection are no doubt known [Sz2, IM]. But

our approch, which we will use in the next subsections, is new. In this

subsection G is a compact connected Lie group.

Let GC and KC be the complexifications of the (algebraic) Lie groups G

and K ⊂ G respectively. In particular, K is a maximal compact subgroup in

the (algebraic) Lie group KC and the intersection of K with each connected

component of KC is not empty [On, Ch.5]. The group GC considered as a

real Lie group we denote GR. The canonical complex structure Fc on GR is

defined by left GR-invariant (0, 1) vector fields ξ l + i(Iξ)l, where ξ ∈ g and

I is a complex structure on gC. Fix a positive-definite form 〈, 〉 = cΦ on g.

Since G and K are maximal compact Lie subgroups of GC and KC re-

spectively, by the Mostow’s result [Mo1, Th. 4] topologically KC = Kexp(ik)

and GC = G exp(im) exp(ik) ([ik, [ik, ik]] ⊂ ik), i.e. the mappings

G × m × k → GC,(g, w, ζ) 7→ g exp(iw) exp(iζ),(9)

K × k → KC,(k, ζ) 7→ k · exp(iζ)

are diffeomorphisms. Then the mapping

G ×K m → GC/KC, [(g, w)] 7→ g exp(iw)KC(10)

is a G-equivariant diffeomorphism [Mo2, Lemma 4.1]. This mapping sup-

plies manifold T (G/K) with the complex structure F K
c .

Lemma 20. Let G be a compact Lie group, Fc be the two-sided invari-
ant complex structure on TG ' G × g induced by the complex structure on
GC. Then Fc is generated by the left G-invariant vector fields ξL

c , ξ ∈ g,

ξL
c (g, w) =

(
ξl(g),

z(sin z + i cos z)

(sin z + i cos z) − i
(ξ)

)
, where z = adw .(11)

Proof. We have to calculate the image of the GR-invariant vector field
ξl + i(Iξ)l, ξ ∈ g under the diffeomorphism φ : GC → G × g, g exp(iw) 7→
(g, w). By (9) exp(iw) exp(tξ) = g(t) exp(iv(t)), where g0 = e, v0 = w.
Then from

exp tξ =
(
exp(−iw)g(t) exp iw

)(
exp(−iw) exp iv(t)

)
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we obtain two real equations ξ = e−i adw(g′0)+
1 − e−i adw

adw
(v′0) for the tangent

vectors g′0, v
′
0 ∈ g.

Replacing ξ 7→ iξ we obtain an analogous equation for iξ. It remains
to find the solutions of these simple equations and rewrite them in the
form (11).

Since the vector field AL, AL(g, w) = (wl(g), iw) is a section of Fc, Fc

is an adapted structure. To prove that this structure is a positive-definite

polarization we have to consider the Lie group G with the two-side invariant

metric g as a symmetric space. Then we obtain on mG = {(w,−w) ∈ g×g}
the family of positive-definite operators (with respect to the form 〈, 〉)

Pw(ξ,−ξ) =

(
adw cos(adw)

sin(adw)
(ξ),−adw cos(adw)

sin(adw)
(ξ)

)
,

(The submersion Π : G×G×mG → G× g has the form (g1, g2, (w,−w)) 7→
(g1g

−1
2 , 2Adg2

w)). Now by Lemma 18 and Proposition 7 we get

Corollary 20.1. [Sz2] Fc is a positive-definite polarization and the
adapted structure on TG.

Because of the evident relation exp(iw) exp w = expw exp(iw), w ∈
m on the complex Lie group GC we can conclude that the vector field

AL, AL(g, w) = (wl(g), iw) is a section of Π−1
∗ (F K

c ), i.e. by Lemma 18 F K
c

is an adapted structure.

Corollary 20.2. [Sz2] F K
c is an adapted structure defined on the

whole T (G/K).

We can rewrite the vector fields (11) in a more convenient form. It is

clear that the subbundle Fc on G×g is generated by left G-invariant vector

fields

ξ̂c(g, w) = (
((sin z + i cos z) − i

z(sin z + i cos z)
(ξ)
)l

(g), ξ),(12)

where ξ, w ∈ g, z = adw.

Proposition 21. Let G be a compact connected Lie group. Let FK

be the subbundle on G×m ⊂ G× g generated by KC and vector fields (12),
where ξ ∈ m. Then the subbundle F K = Π∗(FK) determines a Kähler
structure on T (G/K). This structure is adapted and F K = F K

c .
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We will prove the proposition in the next section using the reduc-

tion [Ag]. Here note only that the case K = {e} is already proved.

If [m,m] ⊂ k formula (12) can be simplified:

Corollary 21.1. If [m,m] ⊂ k then FK = KC + PK , where PK is
generated by the left G-invariant vector fields ξL, ξ ∈ m on G × m:

ξL(g, w) = (ξl(g), iP K
w (ξ)), where P K

w (ξ) =
z cos z

sin z
(ξ), z = adw .(13)

Note that the formula similar to (13) was obtained in [DSz] in terms

of the Jacobi operator and the curvature tensor, and in [IM] by means

of horizontal and vertical lifts of vector fields for the rank–one classical

symmetric spaces of the compact type.

3.3. Invariant structures on T 0(G/K)

Let M = G/K be a rank-one symmetric space of the compact type.

Following [Sz1] we consider the family Ψα
ε of (left) G-equivariant and (right)

K-equivariant diffeomorphisms

Ψα
ε : G × m0 → G × m0, Ψα

ε (g, w) =
(
g, ε

exp |αw|
|αw| w

)
, α ∈ R

+.(14)

We will prove that the following limit subbundle F ′′
α = limε→0 Ψα

ε∗FK on

G×m0 exists and F ′′
α = F(P α) (7) with P α defined by the function λ(w) =

α|w|. It is easy to check that (Ψα
ε∗ξ

L)(g, w) = (ξl(g), iP α,ε
w (ξ)) for all ξ ∈ m,

|w| > ε/α, where P α,ε
w : m → m are the linear operators given by

Pα,ε
w (ξ) =

1

δε(|w|) · P K
δε(|w|)w(ξ) +

(
1 − 1

|αw|δε(|w|)

) 〈w, ξ〉
|w| αw

with δε(|w|) = ln(|ε−1αw|)/|αw| > 0. Now we obtained that

lim
ε→0

(Ψα
ε∗ξ

L)(g, w) = (ξl(g), i

(√
− ad2

w (ξ) +
〈w, ξ〉
|w| αw

)
)

because P K
w (ξ) =

adw cos(adw)

sin(adw)
(ξ). Since all subbundles Ψα

ε∗FK are in-

volutive, by Proposition 7:
[−−−−→
Pα,ε(ξ),

−−−−→
Pα,ε(η)

]
(w) = −[w, [ξ, η]]. To prove

that the subbundle F(P α) is also involutive remark that adw cot(adw) =

ŵ coth ŵ, where ŵ =
√

− ad2
w. Hence for wε

t = w + t · aεw, aε ∈ R we have

d

dt

∣∣∣∣
t=0

coth(δε(|wε
t |)ŵε

t ) = −aε · sinh−2(δε(|w|)ŵ) · O(δε(|w|)) as ε → 0.
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On the other hand, if wε
t = Ad kε

t (w), where kε
t = exp tζε, ζε ∈ k, then

d

dt

∣∣∣∣
t=0

Ad kε
t coth(δε(|w|)ŵ) Ad(kε

t )
−1 = [adζε , coth(δε(|w|)ŵ)].

So that lim
ε→0

(
d
dt

∣∣∣
t=0

Pα,ε
wε

t

)
= d

dt

∣∣∣
t=0

(
lim
ε→0

Pα,ε
wε

t

)
for any smooth curve wε

t =

w + tP α,ε
w (ξ)

(
δ′ε(r) = O(δε(r)) as ε → 0, 〈w〉 ⊕ adw(k) = m

)
. Therefore

[−−−→
Pα(ξ),

−−−→
Pα(η)

]
(w) = −[w, [ξ, η]] on m0.

Proposition 22. The limit subbundle F ′′
α = limε→0 Ψα

ε∗FK on G ×
m coincides with F(P α), where P α

w (ξ) =
√

− ad2
w (ξ) +

〈w, ξ〉
|w| αw. This

subbundle F(P α) is involutive.

Remark 23. In [Sz1] it is proved that the limit structure Π∗(F ′′
1 ) 1)

is an X√
H -invariant complex structure 2) for classical rank-one symmet-

ric spaces coincides with the Kähler structure JS [So, Ra1, FT] (for an
appropriate metric 〈, 〉).

§4. The reduction

4.1. The reduction and polarizations

In this subsection we shall give an exposition of the results by Gotay

and Guillemin-Sternberg [Go, GS] modified and developed to our needs.

Suppose that X is the cotangent bundle T ∗N of a manifold N . Let p :

T ∗N → N be the canonical projection. Denote by G and S real reductive

connected Lie groups which act on N and suppose that these actions com-

mute. The actions of G, S on N naturally extend to the actions of G, S on

T ∗N . These actions on T ∗N are symplectic since they preserve the canon-

ical 1-form θ and thus also the symplectic 2-form Ω = dθ. For each vector

ξ belonging to the Lie algebra s of S the 1-parameter subgroup exp tξ in-

duces the Hamiltonian vector field ξ̂ on T ∗N with the Hamiltonian function

fξ = θ(ξ̂): dfξ = −ξ̂cdθ. Hence the action of S on X = T ∗N is Hamiltonian

(or Poisson) [Go, GS] and therefore defines the moment map J : X → s∗

from X to the dual space of the Lie algebra s by J(x)(ξ) = fξ(x). The map

J is S-equivariant, i.e. intertwines the action of S on X and the co-adjoint

action of S on s∗.
Suppose that the action of S on N is free and proper. Then every µ ∈ s∗

is a regular value of J [Go, Prop.2.2], in particular, J−1(µ) is a submanifold.
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For the reasons cited in the Introduction, we restrict our attention to the

submanifold X0 = J−1(0). X0 is G-invariant. Indeed, by the definition of

the 1-form θ: x ∈ X0 iff x(p∗(ξ̂x)) = 0,∀ξ ∈ s. But the actions of G and

S on N commute and therefore the vector fields ξ̂, p∗(ξ̂) are G-invariant.

Next, by equivariance, X0 is stable under the action of S so that the orbit

space X ′
0 = X0/S is a well defined smooth manifold and the projection

mapping π is a principal S-fibration. Since the fibers are the leaves of the

null-foliation, there exists a unique symplectic form Ω′
0 on X ′

0 such that

π
∗Ω′

0 = j∗Ω, j being the inclusion mapping of X0 into X. Since the actions

of G and S on X = T ∗N commute, there exists a unique action of G on X ′
0

such that the projection π is G-equivariant.

Let Ω′ = dθ′ be the canonical symplectic structure on T ∗N ′, where

N ′ = N/S.

Proposition 24. [Go] The reduced phase space (X ′
0,Ω

′
0) is symplec-

tomorphic to (T ∗N ′,Ω′). Moreover, under this identification of X ′
0 with

T ∗N ′ we have the following identity for the canonical 1-forms: π
∗θ′ = j∗θ.

The construction of this symplectomorphism in [Go] is based on the fact

that the pullback bundle

p∗S(T ∗N ′) = J−1(0),(15)

where pS : N → N/S is the canonical submersion. Quotienting by S in (15)

then gives T ∗N ′ ' X ′
0. Since the actions of S and G on N commute, the

G-action on X ′
0 ' T ∗N ′ is the extension of natural action of G on the

quotient space N/S. From this and (15) we obtain

Proposition 25. Let H be a function on X = T ∗N invariant under
the actions of G and S. Assume that H is a homogeneous polynomial
of degree 2 in the impulse coordinates. Then the reduced function H ′ on
X ′

0 = T ∗N ′, i.e. such that π
∗H ′ = j∗H, is G-invariant and a homogeneous

polynomial of degree 2 in the impulse coordinates.

Let F be a positive-definite S-invariant polarization on X and S be a com-

pact Lie group.

Theorem 26. [GS] There is canonically associated with F a positive-
definite polarization F ′ on the reduced space X ′

0.
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This polarization F ′ is described as follows [GS]: For each point x ∈ X0

let F0(x) = (T C
x X0) ∩ F (x). Then F0 is an S-invariant subbundle of T CX0

of the dimension (dimX ′
0)/2 and F ′ = π∗(F0) (the intersection of F (x)

with the complexified kernel of π∗(x), generated by ξ̂(x), vanishes). It is

evident that if F is G-invariant then F ′ also is G-invariant, because the

actions of G and S on N commute.

4.2. The reduced polarizations on CP n and HP n

In this subsection we will prove that the Kähler structures F λ on the

punctured tangent bundles to the symmetric spaces CP n and HP n may be

obtained using the reduction from the analogous structures on the punc-

tured tangent bundles to the spheres. Below we will consider the bundles,

mappings on these three types of manifolds and will use the notation intro-

duced earlier for T (G/K) but with indexes R, C, H for the sphere, complex

and quaternionic projective spaces respectively.

Let G′′ be the Lie group SO(2n+2) and K ′′ be its subgroup isomorphic

to SO(2n + 1). On the 2n + 1-dimensional sphere N = G′′/K ′′ we have a

transitive action of the subgroup G ⊂ G′′ isomorphic to SU(n + 1). The

intersection G ∩ K ′′ is the subgroup K ' SU(n). Therefore N = G/K =

SU(n + 1)/SU(n). The complex projective space CP n is the homogeneous

space N ′ = G/K ′ = SU(n + 1)/S(U(1) × U(n)), i.e N ′ = N/S, where S

is a Lie subgroup of G isomorphic to U(1) (we consider the right action

of S). Consider also the natural left G-action on N . It is clear that these

actions of G and S commute. Let ΦR and ΦC be the normalized trace forms

−1
2 Tr of the real semisimple Lie algebras g′′ = so(2n+2) and g = su(n+1)

respectively (associated with the faithful standard representations). Using

the forms ΦR and ΦC we identify the cotangent bundles T ∗N = T ∗(G′′/K ′′)
and T ∗N ′ = T ∗(G/K ′) with the corresponding tangent bundles X = TN

and X ′
0 = TN ′ as in subsection 2.2. Let θR and θ′

C
be the canonical 1-forms

on TN and TN ′ (depending of these identifications). Denote by HR and

H ′
C

the corresponding to ΦR and ΦC Hamiltonians of the geodesic flows on

the manifolds TN = T (G′′/K ′′) and TN ′ = T (G/K ′) respectively. But

identifying T ∗N = T ∗(G/K) with TN = T (G/K) using the form ΦC we

obtain another canonical 1-form θC and the Hamiltonian HC on TN . It is

clear that CRCθC = θR and CRCHC = HR for some constant CRC.

Let g = k ⊕ s ⊕ m′ be the orthogonal direct sum decomposition of g

with respect to the form ΦC of g, where k is the Lie algebra of the Lie

subgroup K ⊂ G. Let m = s ⊕ m′. Denote by k′ the Lie algebra of
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K ′ ⊂ G: k′ = k ⊕ s. Since [k′,m] ⊂ m, we can consider the trivial vec-

tor bundle G × m with the right K ′-action rk′ : (g, w) 7→ (gk′,Ad k′−1(w)).

Let J : T (G/K) → s∗ be the moment map associated with the (right)

S-action on N = G/K. Using the (left) G-equivariant submersion Π :

G × m → T (G/K), (g, w) 7→ d
dt

∣∣∣
0
g exp(tw)K and Lemma 2 we obtain that

(J ◦ Π)(g, w)(η) = θ̃C(g,w)(η
l(g), [w, η]) = ΦC(w, η) for any η ∈ s. Therefore

Π(G×m′) = J−1(0) = X0 and, consequently, X ′
0 = TN ′ ' G×K′ m′. More-

over, by (2) π
∗θ′

C
= j∗θC. Because the mapping T (G/K) → T (G′′/K ′′),

d
dt

∣∣∣
0
g exp(tξ)K 7→ d

dt

∣∣∣
0
g exp(tξ)K ′′, g ∈ G, ξ ∈ m, is a diffeomorphism (G

acts transitively on G′′/K ′′) and HR = CRCHC, the reduced Hamiltonian

H ′
R

on X ′
0 coincides with CRCH ′

C
. To find the constant CRC consider the

standard embedding su(n+1) → so(2n+2), ξ = (A+ iB) 7→ ξ ′′ =
(

A |−B
B | A

)

of g in g′′. Let k′′ = so(2n+1) be the Lie algebra of K ′′ ⊂ G′′. Since for the

trace-forms (on g and g′′) Tr ξ2 = Tr (ξ′′)2
m′′ , where ξ ∈ m ⊂ g and ()m′′ is

the projection into m′′ along k′′ in g′′ determined by the orthogonal direct

sum decomposition g′′ = k′′ ⊕ m′′ [He], we obtain that CRC = 1. Note that

Tr ξ2 = 1
2Tr (ξ′′)2.

Let FR = FR(q), where q : R
+ → R is a smooth strictly increasing

function, be the Kähler structure on T 0N ⊂ X such that the one-form

Im∂(q ◦
√

HR) is the canonical one-form θR. By Theorem 15 the structure

FR is S-invariant, by Theorem 26 there exists the reduced Kähler structure

F ′
R

on T 0N ′ ⊂ X ′
0 such that F ′

R
= π∗(FR0), i.e. π

∗(Im ∂(q ◦
√

H ′
R
)) =

j∗(Im ∂(q ◦
√

HR)) (to prove this it is sufficient to use the definition of

∂ : ∂H|F = dH|F , ∂H|F = 0). But π
∗θ′

C
= j∗θC so that Im ∂(q ◦

√
H ′

R
) =

CRCθ′
C

is the canonical one-form on T 0N ′ up to the constant CRC = 1. Since

the considered Kähler structure FR and the function HR are G and X√
HR

-

invariant, F ′
R
, H ′

R
are G and X√

H′

R

-invariant. Therefore by Theorem 15,

F ′
R

is the structure F ′
C

= F ′
C
(q) on T 0N ′ such that −i∂∂(q ◦

√
H ′

C
) = Ω.

Theorem 27. Let N = S2n+1 and FR = FR(q) be the Kähler structure
on (T 0N, dθR). The reduced manifold (J−1(0) ∩ T 0N)/S, where S ' U(1),
is isomorphic to (T 0N ′, dθ′

C
), N ′ = CP n with the reduced Kähler structure

F ′
R

= F ′
C
(q).

For the Kähler structure JS ∈ {FR(q)} on T 0S2n+1 the reduced Kähler
structure coincides with the structure JS on T 0

CP n.

Proof. The first part of the theorem is proved. Taking into account
Remark 17 to prove the latter assertion it is sufficient to see that the Kähler
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structure JS on T 0N is defined by the function λS =
√

HR = ‖ · ‖ and
qS(r) = 2r, (the latter depends essentially of the forms ΦR, ΦC which we
used to identify T ∗N and TN , T ∗N ′ and TN ′).

Now let G′′ be the Lie group SO(4n + 4) and K ′′ be its subgroup

isomorphic to SO(4n+3). On the 4n+3-dimensional sphere N = G′′/K ′′ we

have the transitive action of the subgroup G ⊂ G′′ isomorphic to Sp(n+1).

The intersection G∩K ′′ is the subgroup K ' Sp(n). Therefore N = Sp(n+

1)/Sp(n). The quaternionic projective space HP n is the homogeneous space

N ′ = Sp(n + 1)/(Sp(1) × Sp(n)), i.e N ′ = N/S, where S is a Lie subgroup

of G isomorphic to Sp(1) (we consider the right action of S). Let ΦR and

ΦH be the normalized trace forms − 1
2 Tr of the real semisimple Lie algebras

g′′ = so(4n+4) and g = sp(n+1) respectively (associated with the faithful

standard representations by real and quaternionic matrices respectively).

Using the forms ΦR and ΦH we identify the cotangent bundles T ∗N =

T ∗(G′′/K ′′) and T ∗N ′ = T ∗(G/K ′) with the corresponding tangent bundles

X = TN and X ′
0 = TN ′. Let θR and θ′

H
be the canonical 1-forms on TN

and TN ′ (depending on these identifications). Denote by HR and H ′
H

the

corresponding to ΦR and ΦH Hamiltonians of the geodesic flows on TN and

TN ′ respectively. It is evident now that we are in the similar situation as

above when we considered the pair (S2n+1, CP n). Replacing, where it is

necessary, C 7→ H, and finding CRH = 1, we obtain

Theorem 28. Let N = S4n+3 and FR = FR(q) be the Kähler structure
on (T 0N, dθR). The reduced manifold (J−1(0)∩T 0N)/S, where S ' Sp(1),
is isomorphic to (T 0N ′, dθ′

H
), where N ′ = HP n, with the reduced Kähler

structure F ′
R

= F ′
H
(q).

For the Kähler structure JS ∈ {FR(q)} on T 0S4n+3 the reduced Kähler
structure coincides with the structure JS on T 0

HP n.

4.3. The reduction and adapted structures

Let G be a real reductive connected Lie group, K its (closed) reductive

subgroup. We can identify TG with X = G × g using the left action of G

on TG. Consider the right K-action on G×g. Since the canonical 1-form θ

on G×g has form (2), J(g, w)(ζ) = 〈w, ζ〉, ζ ∈ k is the moment map for this

K-action. It is evident that X0 = G×m and, consequently, X ′
0 = J−1(0)/K

is the space G ×K m isomorphic to T (G/K).

Let us return to the proof and notation of Proposition 21. The sub-

bundle FK is generated by KC and the subbundle Fc ∩ T C(G × m). By
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Theorem 26 and Lemma 20 F K = Π∗(FK) is a positive-definite polariza-

tion, by Lemma 18 F K is an adapted structure defined on whole T (G/K).

Since such adapted structure is unique [LSz], F K = F K
c .
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[LSz] L. Lempert and R. Szőke, Global solutions of the homogeneous complex

Monge-Ampere equation and complex structures on the tangent bundle of Rieman-

nian manifolds, Math. Ann., 290 (1991), 689–712.

[Mo1] G.D. Mostow, Some new decomposition thorems for semisimple groups, Mem.

Amer. Math. Soc., 14 (1955), 31–54.

[Mo2] , On covariant fiberings of Klein spaces, Amer. J. Math., 77 (1955),

247–278.

[On] A.L. Onishchik and E.B. Vinberg, Lie groups and algebraic groups, Springer, 1990.

[PM] A.K. Prykarpatsky and I.V. Mykytiuk, Algebraic integrability of nonlinear dynam-

ical systems on manifolds. Classical and quantum aspects, Math. and its Appl.,

443, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998.

[Ra1] J.H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford, 28

(1977), 403–415.

https://doi.org/10.1017/S0027763000008497 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008497
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