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1, Introduction. Two spaces of analytic functions are considered, each 
comprised of functions analytic on the open disk NB(0) of radius R 
(0 < R < + 0 0 ) centred at the origin. The first space 5 consists of all analytic 
functions on NR(0) topologized according to the metric of uniform convergence 
on compact sets. As the second space we allow any Fréchet space U of analytic 
functions on NR(0) for which the topology is stronger than that induced by 
g. Our objective is then to present a scheme for constructing simultaneous 
automorphisms on g and U. 

The term Fréchet space is used as in Bourbaki (4, pp. 59, 110) to signify 
a metrizable, complete, locally convex, topological linear space over the real 
or complex field; however, attention here will naturally be confined to the 
complex field. By an automorphism on a topological linear space X we mean 
a linear homeomorphic mapping of X onto itself. A simultaneous automorphism 
on % and U is then a mapping T such that T is an automorphism on g and 
r |U is an automorphism on U. 

Although simultaneous automorphisms are of interest in their own right, 
we mention two connections with other areas of mathematics. In the first 
place, since the topology on U is stronger than that induced by g, the under
lying structure here corresponds to that for two-norm spaces (see 1). Simul
taneous automorphisms on 5 a n d U thus yield analogues of ''two-norm auto
morphisms" on U. In the second place, simultaneous automorphisms can be 
used to extend classical results on series expansions of bounded analytic 
functions—for example, the theorems of Steffensen and Fejér (see 6, chap. I, 
§§ 1 and 3). Briefly, the ideas are as follows. Certain properties are established 
for the partial sums in the Taylor expansions. The latter are expansions in 
g relative to the fundamental basis {8n} defined by 

(1.1) ôn(z) = zn (|s| < R; n = 0, 1, . . .), 

but the properties in question concern only the space 33 of bounded analytic 
functions on NB(0) under the usual sup norm. These properties in 33, as 
properties of bases in g, are preserved by mappings which are simultaneous 
automorphisms on the two spaces. 

In any Fréchet space the topology is completely determined by a sequence 
of semi-norms, and for U we shall use ||/||„ (/ £ U; v = 0, 1, . . .) to specify 
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such a sequence. The space g is itself a Fréchet space, and in this case the 
semi-norms are given by 

Mr{f) = max |/(2)| (/ 6 %j 
\z\<r 

for 0 < r < R. As is well known (see, for example, the corollary to Proposi
tion 9, p. 101 of 4), the condition that the topology on U is stronger than 
that induced by g can be expressed as follows: to each r (0 < r < R) there 
correspond a constant K and a positive integer v such that 

(1.2) Mr{f) < K ||/||F 

for all / in U. 
Included among the possibilities for U are the Banach space 33 and, more 

generally, the %p spaces (1 < p < +°°) consisting of all analytic functions/ 
on NR(0) having finite Lv norm, 

11/11 ={ f l/l^a}1/P 

(where a denotes 2-dimensional Lebesgue measure), the topology being that 
determined by this norm. In general, the semi-norms for U can all be taken 
equal to the norm whenever U is a Banach space, and the subscript v will 
be omitted altogether in this case. 

Our main results appear as Theorem 3 and Corollary 3.1, but their scope 
is perhaps best illustrated by the specialization to Pincherle sequences. For 
this we have the following corollary. 

COROLLARY 3.2. Let 

|8n(s) = zn[l + \n(z)] (|*| < R; n = 0, 1, . . .), 

\\n) being taken as any sequence of functions in 2p(l < p < +°°) which vanish 
at the origin and for which the Lp norms satisfy 

(1.3) limsup ||Xn||1/n < 1. 
w->co 

Iff is any function in g, having 
oo 

/(*) = E cnz
n 

as its Taylor expansion, then the series 

oo 

g(*0 = X) Cn fttOs) 
converges uniformly for z on compact subsets of NB (0), and the transformation T 
defined by g = Tf is a simultaneous automorphism on % and 2P. 

The techniques of proof make use of proper bases in g, and we summarize 
here the principal ideas. A basis in a topological linear space Ï is a sequence 
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\an} of elements of X such that to eve ry / in £ there corresponds a unique 
sequence {cn} of scalars for which 

CO 

(1-4) / = Z cnan. 

If {an} is a basis in g, we say that {a^} is a proper basis provided the series 
(1.4) converges in % when and only when {cn\ is the Taylor coefficient sequence 
of some function in g, i.e. when and only when 

(1.5) limsup \cn\
1,n < l/R. 

W->oo 

Proper bases can be characterized in terms of the following two conditions, 
applicable to any sequence {<j>n} of functions in g: 

(a) lim sup [Mr(<t>n)]
1/n < R (all r < R) 

and 

(0) Hm jliminf [Mr{cj>n)}
lln\ > R. 

For a basis \an) in 5 to be proper it is necessary and sufficient that {an\ satisfy 
both condition (a) and condition (0). (This result and the others which we 
proceed to state have been established in (2).) 

Let us suppose now that {an} is a proper basis in g. Condition (a), by itself, 
is necessary and sufficient for the series ^cn<j)n to converge in g for all sequences 
{cn\ of complex numbers satisfying (1.5). Hence, assuming {4>n} to be any 
sequence of functions in g for which (a) holds, we can define a mapping P 
of % into itself by tak ing/ as in (1.4) and setting 

oo 

(1.6) Pf=T.Cn 4>n-

Under these hypotheses P is a continuous linear mapping of $ into itself, 
and we shall refer to P as the endomorphism mapping {an} onto {#w}. A salient 
feature of proper bases is that if {an\ and {f$n} are proper bases in g, then 
the endomorphism mapping {an} onto {fin} is, in fact, an automorphism on %. 

2. A continuity condition for mappings of g into U. Let us fix 
{an} as a proper basis in g and {<t>n) as a sequence of functions in % satisfying 
condition (a). The endomorphism mapping {an} onto {(j)n) will then be denoted 
by P , as above. 

Our concern here lies in determining when P is a continuous linear mapping 
of g into U, and a criterion for this will now be derived by an argument 
paralleling that used in proving Lemma 4 of (2). 

LEMMA 1. For P to be a continuous linear mapping of % into U it is necessary 
and sufficient that all <t>n belong to U and that 

(2.1) limsup \\<t>n\\\'
n <R (v = 0 , 1 , . . . ) . 

The expansions in (1.6) then converge in U for all f in $. 
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Proof. In view of the fact that there exists an automorphism on % mapping 
{an\ onto {<5W|, there is no loss of generality in supposing, as we do, that 
an = dn {n = 0, 1, . . .)• Also, for notational brevity we shall fix v arbitrarily 
and omit this subscript in the semi-norm notation. 

Then, assuming (2.1) to hold, we can choose p such that 

(2.2) limsup ||0W | |1M < P < i^. 

Since this implies the existence of a real number C for which \\<t>n\\ K Cpn 

(n = 0, 1, . . .), it follows that the series in (1.6) converges in U (the converg
ence is, in fact, absolute). Hence, P maps % into U. To show that this mapping 
is continuous, we choose r as any number such that p < r < R and use the 
Cauchy inequalities on the Taylor coefficients cn of / to write 

\cn\ < Mr{f)/rn {n = 0, 1, . . .). 

Continuity then results from the inequality 

\\Pf\\<^-pMr{f). 

Conversely, let us assume that P is a continuous linear mapping of % into 
U. If {cn} is any sequence of complex numbers for which the series in (1.4) 
converges, then cndn —> 0 in g and the continuity of P forces 

(2.3) \cn\-||*»||->0. 

It is easily seen from this that condition (2.1) must hold. Indeed, if (2.1) 
were not to hold, then for any sequence of positive numbers rk increasing 
strictly to R we could find a sequence of positive integers nk such that 

ll«nfcir
/n* > r* (k = 0 ,1 , . . . ) , 

the semi-norm appearing here being taken as one for which (2.1) fails. Setting 
cnk = VH^JI and cn = 0 (n ^ nk) 

would then serve to specify {cn} as a sequence for which (1.5) holds (so that 
the series in (1.4) converges) but for which condition (2.3) is violated. This 
contradiction completes the proof. 

A particularly simple condition for P to map % continuously into 11 is 
available whenever U is comprised of bounded functions and the topology 
on U is weaker than that given by the sup norm. 

THEOREM 1. Suppose that U consists of bounded functions and that the topology 
on U is weaker than that determined by the sup norm. If the functions 4>n (n = 0,1,...) 
belong to U and are uniformly continuous on NR(0), then P is a continuous 
linear mapping of g into U. 

Proof. It suffices to assume that U is a subspace of 33, and we then introduce 
the mappings P t (0 < t < 1) defined by 
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(Ptf)(z) = (P/)(te) (\z\<R) 

for all / in $. Thus, 

where 

*.'(*) = *»(te) (|*| < # ; n = 0, 1 , . . . ) . 

From condition (a), with r = tR, we obtain 

limsup | |0^| |1 M < i^, 
W->oo 

and Lemma 1 assures us that P\ maps ^ continuously into 11. 
The proof is completed by means of the Banach-Steinhaus theorem (5, 

p. 55, Theorem 18). In the first place, the family of mappings P t (0 < t < 1) 
is pointwise bounded, since obviously | | i \ / | | < \\Pf\\ for all t and each / i n 
%. In the second place, the uniform continuity of the functions (j>n results in 

\\m\\Pthn-Pbn\\ = 0 (» = 0 , 1 , . . . ) , 

so that {Pt} converges to P on a total subset of %. Consequently, P is a 
continuous linear mapping of % into U. 

3. Application of proper bases to the construction of simultaneous 
automorphisms. We confine our attention henceforth to sequences {an} 
and {fin} in % for which the difference functions 

(3.1) <t>n = fin- Oin (fl = 0, 1, . . .) 

belong to U and satisfy (2.1). Corresponding to any prescribed semi-norm 
for U there then exists a number p such that (2.2) holds. In conjunction with 
(1.2) this shows that for any r (0 < r < R) there are positive constants K 
and p (<R) such that 

(3.2) Mr{4>n) <KP
n (» = 0, 1, . . .), 

These inequalities lead at once to the following lemma. 

LEMMA 2. Let {an) and \fin) be sequences in % for which the functions <j>n of 
(3.1) belong to U and satisfy (2.1). Then the sequence {fin\ satisfies condition (a) 
if and only if {an} does. 

Proof. By symmetry of the given data it suffices to establish that condition 
(a) holds for {fin) whenever it holds for {an}. We thus assume that {an) satisfies 
condition (a). Then, fixing r (0 < r < R) arbitrarily, we can choose the 
constant p in (3.2) large enough so that 

l imsup[ ik r r K)] 1 / n <p. 
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Hence, for large n, 

Mr(fin) < Mr(an) + MMn) < (1 + K)pn, 

and it follows that {/3n} satisfies condition (a). 

Lemma 2 can be paraphrased for condition (0), but this direct counterpart 
turns out to be false; it fails, for example, when U = $ a n d 

-an(z) = <j>n(z) = zn (\z\ < R; n = 0, 1, . . .)• 

On the other hand, the resulting assertion is valid for 8P spaces (1 < £ < + 0 0 ) 
and, more generally, for all U which are Banach spaces. We have, in fact, the 
following lemma. 

LEMMA 3. Let {an\ and {fin} be sequences in % for which the functions <t>n of 
(3.1) belong to U and satisfy 

(3.3) s u p r i i m s u p | | ^ | | l M ] <R. 

Then the sequence {/3n} satisfies condition (13) if and only if {an} does. 

Proof. The hypothesis (3.3) is clearly equivalent to the existence of a number 
p (<R) such that 

lim sup ||0n||îM < P 
n->oo 

for all v (>0) . This, in turn, implies that for each r (0 < r < R) 

(3.4) l imsup[M r (<^) ] 1 M <p, 
ft->oo 

in view of (1.2). 
Assuming now that {an} satisfies condition (/3), let us take a as any number 

such that p < a < R. For r sufficiently near R we then have 

liminf [Mr(an)]
1/n > a, 

W-»oo 

and together with (3.4) this yields 

Mr (fin) > Mr(an) - Mr(4>n) > <*" ~ P* 

for large n. There results 

lim inf [MT((3n)]
1/n > a lim [1 - (p/a)n]1/n = a. 

n-$co W-»oo 

Hence, {/3n} satisfies condition (£), and the lemma follows by symmetry. 

Inasmuch as conditions (a) and (/3) are necessary and sufficient for a basis 
in g to be proper, Lemmas 2 and 3 give rise to the following theorem. 

THEOREM 2. Let {an} and {fin) be bases in % for which the functions <j>n of (3.1) 
belong to U and satisfy (3.3). Then for \$n} to be proper it is necessary and 
sufficient that \an) be proper. 
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Our method for generating simultaneous automorphisms hinges on the 
following simple result. 

LEMMA 4. Let T — S + P , where S is a simultaneous automorphism on % 
and U and P is a continuous linear mapping of % into U. / / T is an automor
phism on 5> then T is, in fact, a simultaneous automorphism on ^ o^nd U. 

Proof. Since the topology on U is stronger than that on %, P maps U con
tinuously into itself, and the same is therefore true of T. We observe next 
that T actually maps U onto itself. Indeed, if g is any point of U, so that 
g = Tf for some / in g, then Sf{= g — Pf) lies in U, and this forces / to lie 
in U. The open mapping theorem (5, p. 57, Theorem 2) then guarantees that 
T\U is an automorphism on U. 

Proper bases furnish a convenient tool for dealing with the conditions 
encountered in Lemma 4. Initially S can be taken as the identity mapping / , 
and subsequent choices for 5 can be made from among the simultaneous 
automorphisms T which result. However, to simplify the statements, we shall 
treat explicitly only the case oî S = I. 

THEOREM 3. Let {an} and {l3n} be proper bases in $, and let T be the endo-
morphism mapping \an\ onto {fin}- If the functions <$>n = $n — an (n — 0, 1, . . .) 
belong to U and satisfy the condition 

l i m s u p | | ^ | | J / w < i ? (. = 0 , 1 , . . . ) , 
«->oo 

then T is a simultaneous automorphism on % and U. 

Proof. For / any function in g, having 
oo 

/ = X ) Cn OLn 

as its expansion in the basis {an}, Tf is given by 
CD OO OO 

Tf = ^ Cn Pn = X Cn Oin + X ) Cn <&*• 
n=0 n=0 n=0 

Thus, T = I + P, where P is defined as in (1.6). By Lemma 1, P maps g 
continuously into U, and the theorem follows from Lemma 4. 

A further result of the same sort is now immediate from Theorem 2. 

COROLLARY 3.1. Let {an} and {f3n} be bases in § for which the functions 
<i>n — $n — a» (w = 0, 1, . . .) belong to U and satisfy the condition 

supTlimsupll^ll1/*] <R. 

If one of the given bases is proper, then both are, and the endomorphism T mapping 
{an) onto {fin} is a simultaneous automorphism on % and U. 
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We turn finally to the Pincherle case, presented in § 1 as Corollary 3.2. 
Here the functions <j>n have the form 

<t>n{z) = zn\n{z) (|*| < R; n = 0, 1, . . .), 

where \\n) is a sequence of functions in 2P which vanish at the origin and 
satisfy (1.3). A simple application of the Cauchy inequalities shows that the 
coefficients in the Taylor expansions 

CO 

A»(«) = E **** (« = 0 , 1 , . . . ) 

have the property that 
CO 

lim sup 2 \hnk\ r
k = 0 (r < R). 

Hence, by the theorem of Boas (3, Theorem 2), {/3n} is a basis (in fact, a 
proper basis) in %. The evident inequalities 

H^IK^HXnll (« = 0,1,...) 
ensure, moreover, that 

l imsup| |4>„| |1 / n<i?, 

and Corollary 3.2 now appears as a consequence of either Theorem 3 or 
Corollary 3.1. 
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