ELEMENTARY GENERALIZATIONS OF
 HILBERT'S THEOREM 90

Ian G. Connell
(received May 7, 1965)

Introduction. Let K, k be fields and $K \mid k$ a finite galo:s extension with galois group G. The multiplicative group K^{*} of K is a G-module, that is, a module over the integral group ring ZG , the module action of an element $\sigma \in G$ being its effect as an automorphism. It is shown in [2, p. 158] that the first cohomology group vanishes ${ }^{\dagger}$:

$$
\begin{equation*}
H^{1}\left(G, K^{*}\right)=0 . \tag{1}
\end{equation*}
$$

When G is cyclic, $H^{1}\left(G, K^{*}\right)$ can be calculated in another way so that comparison with (1) gives Hilbert's

THEOREM 90. If G is cyclic with generator σ and x is an element of K^{*} of norm 1 (i.e., $N_{K} \mid k=1$) then there : exists $\mathrm{y} \in \mathrm{K}^{*}$ such that $\mathrm{x}=\frac{\sigma \mathrm{y}}{\mathrm{y}}$.

Here we extend this method to non-cyclic groups giving: for example, a theorem 90^{\prime} for abelian extensions. To each finite group G, or more accurately, to each presentation of G, there is attached a 'theorem 90' which tends to become more intricate as G does.

I wish to thank the referee for drawing my attention to the paper of Gruenberg [1]. The proof of our main proposition would be shortened by quoting results from [1], but we decided not to do so since the present proof is self-contained and entirely elementary.
\dagger See the next section for the definition of H^{1}
Canad. Math. Bull. vol. 8, no. 6, 1965

Explicit calculation of H^{1}. Let G be an arbitrary group and A a G-module ${ }^{\dagger}$ written additively. (When $A=K^{*}$ we will have to switch to multiplicative notation.) A cocycle is a function $f: G \rightarrow A$ satisfying

$$
\begin{equation*}
f(\sigma \tau)=\sigma f(\tau)+f(\sigma) \quad \forall \sigma, \tau \in G ; \tag{2}
\end{equation*}
$$

the cocycles under pointwise addition form an abelian group, denoted $Z(G, A)$. If there exists an $a \in A$ such that

$$
\begin{equation*}
\mathrm{f}(\sigma)=\sigma \mathrm{a}-\mathrm{a} \quad \forall \sigma \in \mathrm{G} \tag{3}
\end{equation*}
$$

then f is a coboundary. The coboundaries form a subgroup $B(G, A)$ and the quotient group

$$
H^{1}(G, A)=Z(G, A) / B(G, A)
$$

is called the first cohomology group (of G with coefficients in A). It follows immediately from (2) that

$$
\begin{equation*}
f(1)=0, \quad f\left(\sigma^{-1}\right)=-\sigma^{-1} f(\sigma) . \tag{4}
\end{equation*}
$$

Let G be given by generators $\sigma_{1}, \ldots, \sigma_{m}$ and relations $R_{1}=R_{2}=\ldots=1$, and put $f\left(\sigma_{i}\right)=a_{i}$. By repeated application of (2), f is uniquely determined by the a_{i} so that $f \rightsquigarrow\left(a_{1}, \ldots, a_{m}\right)$ gives rise to the abelian group monomorphism $\theta: Z(G, A) \rightarrow A^{m}=A \times A \times \ldots \times A$ (direct product with m factors), with the obvious interpretation when m is infinite. We wish to characterize the elements of $\operatorname{Im} \theta$ by means of the relations $R_{i}=1$.

Every element in the free group F generated by the symbols σ_{i} is uniquely expressible in the form $X_{1} \ldots x_{r}$ where each x_{j} is a σ_{i} or a σ_{i}^{-1} and no σ_{i} occurs next to

[^0]σ_{i}^{-1}, so no cancellation can take place. As a technical convenience we assume that each R_{i} is such a reduced word; this is no real restriction. By a consequence of the R_{i} we mean an element in the normal subgroup of F generated by the R_{i}.

If f is a cocycle, the relation $R_{i}=x_{1} \ldots x_{r}=1$ in G gives rise, by (2) and (4), to the following relation in A :

$$
\begin{gather*}
R_{i}^{*}=0=x_{1} \cdots x_{r-1} f\left(x_{r}\right)+x_{1} \cdots x_{r-2} f\left(x_{r-1}\right) \tag{5}\\
\\
+\cdots+f\left(x_{1}\right)
\end{gather*}
$$

where $\dagger \quad f\left(x_{j}\right)=\left\{\begin{array}{lll}a_{i} & \text { if } & x_{j}=\sigma_{i} \\ -\sigma_{i}^{-1} & a_{i} & \text { if } \\ x_{j}=\sigma_{i}^{-1}\end{array}\right.$.

We will show that conversely an element $\left(a_{1}, \ldots, a_{m}\right) \in A^{m}$ satisfying all the relations (5) corresponds to a cocycle.

LEMMA. If a_{1}, \ldots, a_{m} satisfy all the relations $R_{i}^{*}=0$ then they satisfy $R^{*}=0$ where R is any consequence of the R_{i}.
\dagger Note that the relation $R_{i}^{*}=0$ obtained does not depend upon the bracketing of the x_{j}. For example $x_{1}\left(x_{2} x_{3}\right)=1$ and $\left(x_{1} x_{2}\right) x_{3}=1$ give rise respectively to

$$
0=x_{1}\left\{x_{2} f\left(x_{3}\right)+f\left(x_{2}\right)\right\}+f\left(x_{1}\right)
$$

and

$$
0=x_{1} x_{2} f\left(x_{3}\right)+\left\{x_{1} f\left(x_{2}\right)+f\left(x_{1}\right)\right\}
$$

which are the same.

Proof: R is a word in the R_{i}, their inverses and their conjugates. Thus if the a_{j} satisfy $R_{1}^{*}=0$ and $R_{2}^{*}=0$ it suffices to verify that they satisfy $R^{*}=0$ in the following four cases:
(i) $R=R_{1}^{-1}$
(ii) $R=R_{1} R_{2}$
(iii) $R=\sigma_{i}^{-1} R_{1} \sigma_{i}$
(iv) $R=\sigma_{i} R_{1} \sigma_{i}^{-1}$

The verifications are of a straightforward computational nature so we only indicate a few details. Let $R_{1}=x_{1} \ldots x_{r}$, $R_{2}=y_{1} \ldots y_{s}$.
(i) Multiplying

$$
0=R_{1}^{*}=x_{1} \cdots x_{r-1} f\left(x_{r}\right)+\cdots+f\left(x_{1}\right)
$$

by $-x_{r}^{-1} \cdots x_{1}^{-1}$ we obtain $R^{*}=0$.
(ii) Let $R_{1} R_{2}=x_{1} \cdots x_{r-t} y_{1+t} \cdots y_{s}$. (We must
allow for cancellation since this is how multiplication is defined in F.) Thus

$$
y_{1}=x_{r}^{-1}, \ldots, y_{t}=x_{r-t+1}^{-1} .
$$

We have

$$
\begin{aligned}
0 & =R_{1}^{*}=x_{1} \cdots x_{r-1} f\left(x_{r}\right)+\cdots+f\left(x_{1}\right) \\
& =R_{2}^{*}=y_{1} \cdots y_{s-1} f\left(y_{s}\right)+\cdots+f\left(y_{1}\right) ;
\end{aligned}
$$

adding the first to $x_{1} \ldots x_{r}$ times the second, rearranging and cancelling (according to the definition of $f\left(\sigma_{i}^{-1}\right.$) in (5)) we obtain $\left(R_{1} R_{2}\right)^{*}=0$.

In (iii) and (iv) one deals with the various cases when σ_{i} or σ_{i}^{-1} does or does not cancel x_{1} or x_{r}.

Now let a_{1}, \ldots satisfy the relations $R_{i}^{*}=0$ (and therefore any consequence $R^{*}=0$). Any element $\sigma \in G$ can be written as a word, usually in several ways, in the $\sigma_{i}: \sigma=x_{1} \ldots x_{r}, x_{j}=\sigma_{i}$ or σ_{i}^{-1} for some i. We define

$$
f(\sigma)=x_{1} \ldots x_{r-1} f\left(x_{r}\right)+\ldots+f\left(x_{1}\right)
$$

where $f\left(\sigma_{i}\right)=a_{i}$ and $f\left(\sigma_{i}^{-1}\right)=-\sigma_{i}^{-1} a_{i}$. To complete the discussion we must show that
(a) $f(\sigma)$ does not depend on how σ is written in terms of the generators, and
(b) $f(\sigma \tau)=\sigma f(\tau)+f(\sigma) \quad \forall \sigma, \tau \in G$.
(a) If also $\sigma=y_{1} \ldots y_{s}$ we have the relation (allowing for cancellation)

$$
R=x_{1} \cdots x_{r-t} y_{s-t}^{-1} \cdots y_{1}^{-1}=1
$$

which, by the lemma, we may suppose to be already in the list $R_{i}=1$ since this imposes no new conditions on the a_{i}. Now

$$
0=R^{*}=x_{1} \ldots y_{2}^{-1} f\left(y_{1}^{-1}\right)+\ldots+f\left(x_{1}\right)
$$

and this, properly juggled, gives the required equation $f\left(x_{1} \cdots x_{r}\right)=f\left(y_{1} \cdots y_{s}\right)$.
(b) follows by calculation (made simple by (a): one need no Ionger worry about cancellation since $f(\sigma)$ does not depend on how σ is written in terms of the generators).

If f is a coboundary then $\mathcal{I} \in \in A$ such that $f(\sigma)=(\sigma-1) \subset \forall \sigma$ and therefore $a_{i}=\left(\sigma_{i}-1\right) c$. Conversely if Jc such that $a_{i}=\left(\sigma_{i}-1\right) c$ $\forall i$ then $f\left(\sigma_{i}^{-1}\right)=-\sigma_{i}^{-1} a_{i}=\left(\sigma_{i}^{-1}-1\right) c$ and by induction on the length of the word one easily verifies that $f(\sigma)=(\sigma-1) c \forall \sigma \in G$. We have the

PROPOSITION. Let the group G be given by generators $\sigma_{1}, \ldots, \sigma_{m}$ and relations $R_{1}=\ldots=1$ and let A be a G-module. Then $Z(G, A)$ is the subgroup of the direct product ${ }^{\dagger} A^{m}$ consisting of those $\left(a_{1}, \ldots, a_{m}\right)$ satisfying the relations $R_{1}^{*}=\ldots=0$, as described in (5). $B(G, A)$ consists of those $\left(a_{1}, \ldots, a_{m}\right)$ for which there exists a $c \in A$ such that $a_{i}=\left(\sigma_{i}-1\right) c$ for all i.

As a simple illustration of the use of this proposition, let G act trivially ${ }^{f}$ on A; then $(0, \ldots, 0)$ is the only element in $B(G, A)$, and $H^{1}(G, A)$ consists of those $\left(a_{i}, \ldots\right) \in A^{m}$ satisfying the relations $\mathrm{R}_{\mathrm{i}}^{*}=0$.

First, if G is free with generators $\sigma_{1}, \ldots, \sigma_{m}$ there are no relations imposed on the a_{i} so $H^{1}(G, A)=A^{m}$.

Secondly let G be finitely generated abelian, say
$G=G_{1} \times \ldots \times G_{m}$ where G_{i} is cyclic with generator σ_{i} and has order n_{i} for $1 \leq i \leq r$ and infinite order for $r+1 \leq i \leq m$. The relations are $\sigma_{i}^{n_{i}}=1 \quad(1 \leq i \leq r)$ and $\sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1}=1$

[^1]© So by (2), $H^{1}(G, A)=$ Hom group (G, A).
($1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{m}$). Only the first set of relations impose restrictions and we have
$$
H^{1}(G, A)=A_{1} \times \ldots \times A_{r} \times A^{m-r}
$$
where $A_{i}=\left\{a \in A: n_{i} a=0\right\}$.

Theorem 90 for non-cyclic extensions. We assume without proof the result already quoted that $H^{1}\left(G, K^{*}\right)=0$, i.e., every cocycle is a coboundary. If $\sigma \in G$ let K_{σ} denote the fixed field of the subgroup generated by σ. A typical relation in the definition of the finite group G is $\sigma^{n}=1$ where $\sigma=\sigma_{i_{1}} \sigma_{i_{2}} \ldots \sigma_{i_{r}}$ is a product of generators; the corresponding relation (5) is, in multiplicative notation,

$$
\sigma^{\mathrm{n}-1} \mathrm{a} \cdot \sigma^{\mathrm{n}-2} \mathrm{a} \ldots \sigma \mathrm{a} \cdot \mathrm{a}=1,
$$

where $a=f(\sigma)=\left(\sigma_{i_{1}} \cdots \sigma_{i_{r-1}} a_{i_{r}}\right) \cdots\left(\sigma_{i_{1}} a_{i_{2}}\right) a_{i_{1}}$, which can be put in the convenient form

$$
\mathrm{N}_{\mathrm{K} \mid \mathrm{K}_{\sigma}} \mathrm{a}=1 .
$$

Of course if $n=1$ this means that $a=1$. For example, the relations $\sigma_{1}^{n}=1, \quad\left(\sigma_{1} \sigma_{2}\right)^{n}=1$ and $\sigma_{1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2}^{-1}=1$ give rise to

$$
N_{K \mid K_{\sigma_{1}}} a_{1}=1, N_{K \mid K_{\sigma_{1} \sigma_{2}}}\left(\sigma_{1} a_{2} \cdot a_{1}\right)=1
$$

and $\frac{\sigma_{1}{ }^{a} 2}{a_{2}}=\frac{\sigma_{2} a_{1}}{a_{1}}$, respectively.

We conclude with some explicit examples (omitting the simple details of the proofs).

Theorem 90 for abelian extensions. Let $G=G_{1} \times \ldots \times G_{m}$ where G_{i} is cyclic of order n_{i} with generator σ_{i}, so G is described by generators $\sigma_{1}, \ldots, \sigma_{m}$ and relations
$\sigma_{i}^{n_{i}}=\sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1}=1$. If $a_{1}, \ldots, a_{m} \in K^{*}$ are such that

$$
\begin{equation*}
N_{K \mid K_{\sigma_{i}}} a_{i}=1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sigma_{i}^{a_{j}}}{a_{j}}=\frac{\sigma_{j}^{a_{i}}}{a_{i}} \tag{7}
\end{equation*}
$$

then there exists a $c \in K^{*}$ such that

$$
a_{i}=\frac{\sigma_{i} c}{c}, \quad i=1, \ldots, m
$$

Note that a single c works for all the a_{i}. When $m=1$ the compatibility conditions (7) evaporate and we have the original theorem 90.

It will be observed that different presentations of G give rise to different variants of theorem 90. Thus for the cyclic group of order 6 we have the original theorem and also the theorem which arises from writing this group as the direct product of cyclic groups of orders 2 and 3.

Theorem 90 for the dihedral groups. (G is given by generators σ, τ and relations $\sigma^{p}=\tau^{2}=(\sigma \tau)^{2}=1$.) If $a, b \in K^{*}$ are such that

$$
N_{K \mid K_{\sigma}} a=N_{K \mid K_{T}} b=N_{K \mid K_{\sigma T}} \quad(a \cdot \sigma b)=1
$$

then there exists a $c \in K^{*}$ such that

$$
a=\frac{\sigma c}{c}, \quad b=\frac{T c}{c}
$$

Theorem 90 for the symmetric group $S_{3} . \quad\left(S_{3}\right.$ is given by generators σ, τ and relations $\sigma^{2}=\tau^{2}=(\sigma \tau)^{3}=1$.) If $a, b \in K^{*}$ are such that

$$
N_{K \mid K_{\sigma}} a=N_{K \mid K_{T}} \quad b=N_{K} \left\lvert\, K_{\sigma T} \quad \frac{a}{b}=1\right.
$$

then $\mathcal{I} c \in K^{*}$ such that

$$
a=\frac{\sigma c}{c}, \quad b=\frac{\tau c}{c}
$$

REFERENCES

1. K. W. Gruenberg, Resolutions by Relations, London Math. Soc. J., vol. 35 (1960), pp. 481-494.
2. J. P. Serre, Corps Locaux, Paris, 1962.

Mc Gill University

[^0]: t All modules are assumed to be unitary.

[^1]: $\dagger \mathrm{m}$ may be infinite.

