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Abstract
The paper is concerned with common shock models of claim triangles. These are usually constructed as
linear combinations of shock components and idiosyncratic components. Previous literature has discussed
the unbalanced property of such models, whereby the shocks may over- or under-contribute to some
observations. The literature has also introduced corrections for this. The present paper discusses “auto-
balanced” models, in which all shock and idiosyncratic components contribute to observations such that
their proportionate contributions are constant from one observation to another. The conditions for auto-
balance are found to be simple and applicable to a wide range of model structures. Numerical illustrations
are given.
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1. Introduction
Common shock models were introduced to the actuarial literature by Lindskog & McNeil (2003).
The concept has been used in models of claim triangles by Meyers (2007) and Shi et al. (2012). It
has also been used by Furman & Landsman (2010) in capital modelling and by Alai et al. (2013,
2016) in mortality modelling. Avanzi et al. (2018) discussed the application of common shocks to
claim arrays in generality, e.g. shocks with respect to accident, development and payment periods,
and others.

Avanzi et al. (2016) generated a multivariate Tweedie distribution for a claim triangle by means
of common shocks. In a subsequent publication, the same authors (2021) noted that, if a common
shock model was constructed by adding a multiple of a single common shock to each cell of a
triangle, then it might be found to contribute proportionately heavily to some cells and only lightly
to others. Such triangles were said to be unbalanced (with respect to the shocks). Equally, it might
have been said that the common shock model was unbalanced with respect to the data.

Those authors defined, in response, a procedure that tended to equalise the common shock
proportionate contributions over the cells of the triangle. The common shock model was then
balanced, or at least more balanced.

The present paper continues to work within the algebra of common shocks in the general
setting of Avanzi et al. (2018) and identifies certain models that are auto-balanced, i.e. within
themselves, balanced without any adjustment by an equalisation procedure.

Section 2 covers some preliminaries relating to the Tweedie family of distributions and com-
mon shock models in generality. Section 3 discusses the application of these general common
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shock models to Tweedie distributed shocks and idiosyncratic components, and section 4 derives
the first two moments of observations in these models.

Section 5 derives conditions that define the subset of these Tweedie common shock models
that are auto-balanced. A number of numerical illustrations of auto-balance models are set out in
section 6, and section 7 then concludes.

2. Framework and Notation
2.1. Notation
Although the papers of Avanzi et al. (2016, 2021) on balance worked in the context of claim
triangles, the present paper will adopt the more general framework of Avanzi et al. (2018).

A claim arrayA will be defined here as a 2-dimensional array of random variables Xij, indexed
by integers i, j, with 1≤ i≤ I, 1≤ j≤ J for some fixed integers I, J. For any given pair i, j, the
random variable Xij may or may not be present.

The subscripts i, j typically index accident period (row) and development period (column),
respectively, and the Xij represent observations on claims, commonly claim counts or amounts. In
the special case I = J and = {Xij : 1≤ i≤ I, 1≤ j≤ I − i+ 1

}
, the array reduces to the well-known

claim triangle.
Define t = i+ j− 1, so that t = 1, 2, . . . , I + J − 1. Observations with common t lie on the t-th

diagonal ofA.
Subsequent sections will often involve the simultaneous consideration of multiple business

segments, with one array for each segment. A segment could be a line of business.
It will be necessary in this case to consider a collection A= {A(n), n= 1, 2, . . . ,N

}
of claim

arrays, where A(n) denotes the array for segment n. It will be assumed initially that all A(n) are
congruent, i.e. are of the same dimensions I, J, and that they have missing observations in the
same i, j locations, but this assumption will be relaxed in section 5.2.

The i, j observation of A(n) will be denoted X(n)
ij ; the entire i-th row of A(n) will be denoted

R(n)
i ; the entire j-th column will be denoted C(n)

j .
It will also be useful to consider diagonals ofA(n), where the t-th diagonal is defined as the sub-

set
{
X(n)
ij ∈A(n) : i+ j− 1= t

}
and represents claim observations from the t-th calendar period,

t = 1 denoting the calendar period in which the first accident period falls. The entire t-th diagonal
ofA(n) will be denoted D(n)

t .

2.2. Tweedie family of distributions
2.2.1. Univariate Tweedie
The Tweedie family is a sub-family of the exponential dispersion family (EDF). The latter has two
well-known representations, the additive and reproductive forms (Jørgensen, 1987). The defini-
tion of “reproductive” varies from place to place in the literature, and so, for the avoidance of
ambiguity, the meaning adopted here is that of Jørgensen (1997, Chapter 3), for which there is a
duality relation between additive and reproductive. This renders them merely different forms of
representation of a single EDF.

In common with Avanzi et al. (2016), the present note commences within the context of the
additive representation, which has the pdf

p (X = x; θ , λ) = a (x, φ) exp
{
xθ − λb (θ)

}
, (1)

where θ is a canonical parameter, λ > 0 is a index parameter, and b (θ) is called the cumulant
function.
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This distribution has cumulant generating function

K (t) = λ
[
b (θ + t) − b (θ)

]
, (2)

giving

E [X]= λb′ (θ), (3)

Var [X]= λb′′ (θ) (4)

The Tweedie sub-family is obtained by the selection

b(θ)= bp(θ)= 1
2− p

[(1− p)θ]
2−p
1−p , pε(− ∞, 0]

⋃
(1,∞), p �= 1, 2

= exp θ , p= 1,
= −ln (−θ) , p= 2. (5)

If X is distributed according to (1) with b (θ) = bp (θ), then it will be denoted X ∼w∗
p (θ , λ).

A useful alternative form of (5) in the case p �= 1, 2 is

bp (θ) = α − 1
α

[
θ

α − 1

]α

, (6)

where α = (2− p
)
/
(
1− p

)
.

Remark 2.1. It is required that sgn (θ) = sgn (α − 1) if (6) is to be defined for α negative or
fractional.

Remark 2.2. It follows from (3) to (6) that, for Tw∗
p with p �= 1,

E [X]= λ

[
θ

α − 1

]α−1
. (7)

Var [X]= λ

[
θ

α − 1

]α−2
, (8)

and so

θ = (α − 1)
E [X]
Var [X]

. (9)

It now follows from (7) and (9) that
1

CoV2 [X]
= E [X]

E [X]
Var [X]

= λ

[
θ

α − 1

]α

, (10)

where CoV[X] denotes the coefficient of variation (CoV) of X.
It may be checked by means of (5) that (7), (8) and (10) continue to hold when p= 1 provided

that the right-hand sides are interpreted as the limiting case as α → ∞. This yields

E [X]=Var [X]= 1
CoV2 [X]

= λeθ for p= 1. (11)

Thus, for fixed α, i.e. fixed p, Tweedie distributions with the same θ are those with the same
mean-to-variance ratio.

It will sometimes be found useful in subsequent development to re-parameterise Tw∗
p (θ , λ) in

terms of (μ, v), where μ = E [X] , v= CoV2 [X]. It will also be useful to denote σ 2 =Var[X]=
μ2v. The re-parameterisation is as set out in the following lemma. These alternative representa-
tions of the Tweedie sub-family are also found in Avanzi et al. (2016).
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Lemma 2.1. If X ∼ Tw∗
p (θ , λ), then it may be re-parameterised as X ∼ Tw∗

p

(
α−1
μv ,μαvα−1

)
.

Proof. See Appendix A.

The following lemma derives some closure properties of the Tweedie family under scaling and
addition of variates.

Lemma 2.2. Suppose that, for stochastically independent variates V1,V2, Vi ∼ Tw∗
p (θ , λi) , i= 1, 2.

Then

kVi ∼ Tw∗
p
(
θ/k, λikα

)
, i= 1, 2 for constant k= 0 and p �= 1, (12)

V1 +V2 ∼ Tw∗
p (θ , λ1 + λ2). (13)

Proof. By simple manipulation of the cgf (2), using (5) and (6). The results can also be found in
Jørgensen (1997).

2.2.2 Multivariate Tweedie
Following Furman & Landsman (2010), Avanzi et al. (2016) consider variates of the form

X(n)
ij = θ

θ
(n)
ij

Wij + Z(n)
ij , (14)

whereWij ∼ Tw∗
p (θ , λ) , Z(n)

ij ∼ Tw∗
p

(
θ

(n)
ij , λ(n)

ij

)
with θ

(n)
ij = θ when p= 1. Then,

X(n)
ij ∼ Tw∗

p

(
θ , λ + λ

(n)
ij

)
for p �= 1 (15)

X(n)
ij ∼ Tw∗

p

⎛
⎝θ

(n)
ij , λ

⎛
⎝ θ

θ
(n)
ij

⎞
⎠

α

+ λ
(n)
ij

⎞
⎠ for p �= 1. (16)

These results may be checked against Lemma 2.2. Since the marginals are Tweedie, the multi-
dimensional variate

(
X(1)
ij , . . . , X(N)

ij

)
is multivariate Tweedie. It should be noted that, if the

multiplier of Wij is non-zero and other than that shown in (14), then X(n)
ij is not Tweedie unless

p= 0 (normal distribution).
The need to restrict the multiplier of Wij to the form shown in (14) is shown by Furman &

Landsman (2010) to follow from the fact that Cauchy’s functional equation b
(
xy
)= b (x) f

(
y
)+

g
(
y
)
has the following as the only solutions that are non-constant, continuous, and non-trivial:

b (x) = a ln x+ d for f
(
y
)= 1, g

(
y
)= a ln y; or

b (x) = axc + d for f
(
y
)= xc, g

(
y
)= d

(
1− xc

)
It is interesting to take the (μ, v)-parameterisation of (16), using Lemma 2.1, to obtain

X(n)
ij ∼ Tw∗

p

⎛
⎝ α − 1

μ
(n)
ij v(n)

ij
,
(
μ

(n)
ij v(n)

ij

)α

⎛
⎝1
v

+ 1
v(n)
ij

⎞
⎠
⎞
⎠ for p �= 1, (17)

where the suffixes on μ, v correspond to those on θ , λ.
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Table 1. Special cases of common shock.

Type of dependence PartitionP (n)

Array-wide
{
P (n)
1

}
withP (n)

1 =A(n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cell-wise
{
P (n)
1 ,P (n)

2 , . . .
}
with P (n)

1 =
{
X(n)
11

}
,P (n)

2 =
{
X(n)
12

}
, . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Row-wise
{
P (n)
1 , . . . ,P (n)

I

}
with P (n)

i =R(n)
i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Column-wise
{
P (n)
1 , . . . ,P (n)

J

}
with P (n)

j = C(n)
j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diagonal-wise
{
P (n)
1 , . . . ,P (n)

I+J−1
}
with P (n)

t =D(n)
t

2.3. Common shockmodels
The general common shock framework of Avanzi et al. (2018) is as follows.

Let P(n) be a partition of A(n) ∈A, i.e. P(n) =
{
P(n)
1 , . . . ,P(n)

P

}
where the P(n)

p are subsets of

A(n) with P(n)
p ∩P(n)

q = ∅ for all p, q= 1, . . . , P, p �= q and
⋃p

p=1 P (n)
p =A(n)

p . Suppose that all
partitions are the same in the sense that, for each p, the

(
i, j
)
positions of the elements of A(n)

included in P(n)
p are the same for different n.

Now consider the following dependency structure on the elements X(n)
ij :

X(n)
ij = α

(n)
ij Wπ(i,j) + β

(n)
ij W(n)

π(i,j) + φ
(n)
ij Z(n)

ij (18)

where π
(
i, j
)= p such that X(n)

ij ∈P(n)
p , a unique mapping;Wπ(i,j),W

(n)
π(i,j), Z

(n)
ij are independent

stochastic variates, and α
(n)
ij , β(n)

ij , φ(n)
ij � 0 are fixed and known constants (“mixture constants”); a

convenient terminology for theWπ(i,j),W
(n)
π(i,j), Z

(n)
ij comprises umbrella common shocks, array-

specific common shocks, and idiosyncratic components, respectively. The π
(
i, j
)
will be referred

to as partition subsets.
It is evident that Wp is a common shock across all n, but affecting only subsets P(n)

p for fixed
p; W(n)

p is similarly a common shock across P(n)
p , but now for fixed n and p; and Z(n)

ij is an
idiosyncratic component of X(n)

ij , specific to i, j and n.
The common shock W(n)

p creates dependency between observations within the subset P(n)
p

of array A(n). Since the partitions P(n) are the same across n, the common shock Wp creates
dependency between observations in the subsets P(n)

p of the same or different arrays.
Particular selections of partitions P(n) are of special interest, as set out in Table 1.

Remark 2.3. Since multiplication of a Tw∗
p variate by a constant produces another Tw∗

p vari-
ate for p �= 1 (Lemma 2.2), the multiplier φ

(n)
ij in (18) may be absorbed into Z(n)

ij so that (18)
simplifies to

X(n)
ij = α

(n)
ij Wπ(i,j) + β

(n)
ij W(n)

π(i,j) + Z(n)
ij for p �= 1. (19)

This will be taken as the general common shock structure for the remainder of this paper.
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3. Multivariate Tweedie for a General Common Shock Model
The cell structure (14) used by Avanzi et al. (2016) is a special case of the general common shock
formula (19) with P(n) as in the cell-wise example of Table 1, α

(n)
ij = θ/θ

(n)
ij , β(n)

ij = 0, φ(n)
ij = 1.

Since (14) generates a multivariate Tweedie, the objective will now be to identify the most general
case of (19) that also generates a multivariate Tweedie. This is done in Appendix A, leading to the
following result.

Lemma 3.1. Suppose thatWπ(i,j) ∼ Tw∗
p

(
θπ(i,j), λπ(i,j)

)
,W(n)

π(i,j) ∼, Tw∗
p

(
θ

(n)
π(i,j), λ

(n)
π(i,j)

)
, Z(n)

ij ∼
Tw∗

p

(
θ

(n)
ij , λ(n)

ij

)
with θπ(i,j) = θ

(n)
π(i,j) = θ

(n)
ij in the case p= 1. Then, X(n)

ij is Tweedie distributed if

and only if α(n)
ij = θπ(i,j)/θ

(n)
ij , β(n)

ij = θ
(n)
π(i,j)/θ

(n)
ij . In fact,

X(n)
ij ∼ Tw∗

p

(
θ

(n)
ij , λπ(i,j) + (n)

π(i,j) + λ
(n)
ij

)
for p= 1. (20)

X(n)
ij ∼ Tw∗

p

⎛
⎝θ

(n)
ij ,

⎛
⎝θπ(i,j)

θ
(n)
ij

⎞
⎠

α

λπ(i,j) +
⎛
⎝θ

(n)
π(i,j)

θ
(n)
ij

⎞
⎠

α

λ
(n)
π(i,j) + λ

(n)
ij

⎞
⎠ for p �= 1. (21)

Corollary 3.1. In the case p= 2 (i.e. α = 0), the result (21) reduces to (20).

The following result is obtained by re-parameterisation of Lemma 3.1 according to Lemma 2.1.

Corollary 3.2. In Lemma 3.1, the coefficients α
(n)
ij , β(n)

ij may be re-parameterised as

α
(n)
ij = μ

(n)
ij

μπ(i,j)

v(n)
ij

vπ(i,j)
, (22)

β
(n)
ij = μ

(n)
ij

μ
(n)
π(i,j)

v(n)
ij

v(n)
π(i,j)

, (23)

and the result (21) may be re-parameterised as

X(n)
ij ∼ Tw∗

p

⎛
⎝ α − 1

μ
(n)
ij v(n)

ij
,
(
μ

(n)
ij v(n)

ij

)α

⎛
⎝ 1
vπ(i,j)

+ 1
v(n)
π(i,j)

+ 1
v(n)
ij

⎞
⎠
⎞
⎠ for p �= 1, (24)

Corollary 3.3. The mixture coefficients α
(n)
ij , β(n)

ij do not depend on p (or α).

The model obtained from the general common shock model (19) by the substitutions of
Lemma 3.1 or Corollary 3.2 for α

(n)
ij , β(n)

ij will be referred to as the general multivariate Tweedie
common shock model.

Henceforth, results will be expressed in the (μ, v) parameterisation.

Example 3.1. Corollary 3.2 may be illustrated for the case p �= 1 with the choice of row-wise depen-
dence from Table 1, where P(n)

i =R(n)
i , and so π

(
i, j
)= i. In this case, (19) and (24) become

X(n)
ij =

⎛
⎝μ

(n)
ij

μi

v(n)
ij

vi

⎞
⎠Wi +

⎛
⎝μ

(n)
ij

μ
(n)
i

v(n)
ij

v(n)
i

⎞
⎠W(n)

i + Z(n)
ij (25)
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and

X(n)
ij ∼ Tw∗

p

⎛
⎝ α − 1

μ
(n)
ij v(n)

ij
,
(
μ

(n)
ij v(n)

ij

)α

⎛
⎝ 1
vi

+ 1
v(n)
i

+ 1
v(n)
ij

⎞
⎠
⎞
⎠ , (26)

with Wi ∼ Tw∗
p

(
α−1
μivi ,μ

α
i v

α−1
i

)
,W(n)

i ∼ Tw∗
p

(
α−1

μ
(n)
i v(n)i

,
(
μ

(n)
i

)α(
v(n)
i

)α−1
)
.

According to (25), the observation in the
(
i, j
)
cell consists of three contributions:

(1) a shock that impacts all cells of row i in all arrays;
(2) a shock that impacts all cells of row i in just the n-th array;
(3) an idiosyncratic component that impacts just the

(
i, j
)
cell.

All three components are Tw∗
p distributed, as is the total observation, and all have the same

canonical parameter θ
(n)
ij = α−1

μ
(n)
ij v(n)ij

.

4. Moments of Observations in a Multivariate Tweedie Common Shock Model
Consider the general multivariate Tweedie common shock model, with observations represented
by (20) or (21). The first two moments of this observation are as in the following lemma.

Lemma 4.1. For X(n)
ij an observation in a general multivariate Tweedie common shock model,

E
[
X(n)
ij

]
= μ

(n)
ij

⎛
⎝ v(n)

ij

vπ(i,j)
+ v(n)

ij

v(n)
π(i,j)

+ 1

⎞
⎠ , (27)

Var
[
X(n)
ij

]
=
(
σ

(n)
ij

)2 ⎛⎝ v(n)
ij

vπ(i,j)
+ v(n)

ij

v(n)
π(i,j)

+ 1

⎞
⎠ . (28)

Note that these results hold without restriction on p.

Proof. See Appendix A.

The result just below then follows.

Proposition 4.1. For a general multivariate Tweedie common shock model,

(a) E
[
X(n)
ij

]
and Var

[
X(n)
ij

]
are the same multiples of E

[
Z(n)
ij

]
and Var

[
Z(n)
ij

]
, respectively;

(b) The common multiple decomposes into its two common shock and single idiosyncratic compo-
nents in the same proportions for E

[
X(n)
ij

]
and Var

[
X(n)
ij

]
, respectively. The multiples do not

depend on p (or α).

5. Balance of a General Multivariate Tweedie Common Shock Model
5.1. Condition for auto-balance
As foreshadowed in section 1, a common shockmodel is regarded as balanced if the proportionate
contribution of each shock and idiosyncratic component to cell expectation is constant over all
cells. Now, in the case of general multivariate Tweedie common shock model, the cell expectation
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is given by (27), where the three components within the bracket correspond to the two common
shock and the idiosyncratic contributions, respectively.

Hence, auto-balance occurs if and only if, for each n, the ratios v(n)
ij /vπ(i,j) and v

(n)
ij /v(n)

π(i,j) are
independent of i, j. This leads to the necessary and sufficient condition set out in the following
proposition.

Proposition 5.1. A general multivariate Tweedie common shock model will be auto-balanced if and
only if the following two conditions hold:

(a) v(n)
ij = C(n)vπ(i,j); and

(b) v(n)
ij =K(n)v(n)

π(i,j),

for all i, j, n, where C(n),K(n) < 0 are quantities that depend on only n.
For this auto-balanced case,

E
[
X(n)
ij

]
= κ(n)μ(n)

ij (29)

Var
[
X(n)
ij

]
= κ(n)

(
σ

(n)
ij

)2
, (30)

CoV2
[
X(n)
ij

]
=
(
κ(n)

)−1
v(n)
ij , (31)

where κ(n) =K(n) + C(n) + 1, which does not depend on p (or α).

Proof. See Appendix A.

The following remark illustrates that, despite the restrictions of Proposition 5.1 on CoVs, the
auto-balanced general multivariate Tweedie common shock model retains richness of structure.

Remark 5.1. The CoVs of umbrella common shocks for partition subsets are unrestricted. For
a particular array, the CoVs of the array-specific common shocks over partition subsets must be
commonmultiples of the umbrella common shocks for the corresponding partition subsets. These
CoVs may thus vary by both array and partition subset. Within each array, the idiosyncratic CoVs
must be common multiples of the CoVs of the array-specific common shocks for the correspond-
ing partition subsets. Thus, the idiosyncratic CoVs may also vary by both array and partition
subset, but not within a partition subset of an array. Under these constraints, the total cell CoVs
within a particular array are commonmultiples of the idiosyncratic CoVs. Themultiples may vary
by array.

Remark 5.2. For the model of Proposition 5.1, the expected cell values E
[
X(n)
ij

]
are all constant

multiples of the idiosyncratic expectations μ
(n)
ij , where the multiples depend on only the array

number n. Likewise, cell variances Var
[
X(n)
ij

]
are the same constant multiples of the squared

idiosyncratic variances
[
σ

(n)
ij

]2
.

There may be occasions on which one wishes to omit either the umbrella or array-specific
common shocks from the model of Lemma 3.1. In such cases, the proof of Proposition 5.1 in
Appendix A is simply modified to obtain the following result.

Remark 5.3. Suppose that the umbrella common shock is omitted from the general multivari-
ate Tweedie common shock model for particular array n= n∗. Then, Proposition 5.1 holds with
condition (a) omitted for n= n∗, and C(n∗) omitted from κ(n∗). Similarly, if the array-specific
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common shock is omitted for array n= n∗, then the proposition holds with condition (b) omitted
for n= n∗, and K(n∗) omitted from κ(n∗).

5.2 Model extensions
The general multivariate Tweedie common shock model set out in Lemma 3.1 contains two
common shock components, the umbrella and array-specific, and both affect the same partition
subsets π

(
i, j
)
. The model can be generalised by adding further shocks and allowing different

shocks to affect different subsets.
Section 2.3 introduced the partition P(n) of the claim array A(n). Of course, the array may be

partitioned in various ways, e.g. accident years, calendar years, etc., as illustrated in Table 1, and a
set of common shocks associated with each partition.

Accordingly, consider R distinct partitions P(n)
[r] , r = 1, . . . , R of each array A(n). Subsets of

P(n)
[r] will be denoted by P(n)

[r]1,P
(n)
[r]2, . . . . For each r, let π[r]

(
i, j
)
denote the partition subset that

contains cell
(
i, j
)
. Next generalise (19) to the following:

X(n)
ij =

R∑
r=1

α
(n)
ij,[r]Wπ[r](i,j) +

R∑
r=1

β
(n)
ij,[r]W

(n)
π[r](i,j)

+ Z(n)
ij , (32)

where Wπ[r](i,j),W
(n)
π[r](i,j)

are umbrella and array-specific common shocks affecting partition

subset π[r]
(
i, j
)
and all Wπ[r](i,j),W

(n)
π[r](i,j)

, Z(n)
ij are independent. Adopt the notation vπ[r](i,j) =

CoV2
[
Wπ[r](i,j)

]
, v(n)

π[r](i,j)
= CoV2

[
W(n)

π[r](i,j)

]
.

By convention, and despite the �R
r=1 notation, it will be permitted that some of the variates

Wπ[r](i,j),W
(n)
π[r](i,j)

may be absent from (32), but it is assumed that at least one or the other is

present for each r. It will be assumed that the same termsWπ[r](i,j),W
(n)
π[r](i,j)

are present for each

i, n. Let χ and χ(n), respectively, denote the number ofWπ[r](i,j) andW
(n)
π[r](i,j)

terms present.

Example 5.1. A possible model is as follows:

X(n)
ij = α

(n)
ij,[1]Wπ[1](i,j) + β

(n)
ij,[1]W

(n)
π[1](i,j)

+ β
(n)
ij,[2]W

(n)
π[2](i,j)

+ Z(n)
ij , (33)

where the π[r]
(
i, j
)
are defined by P(n)

[1] , the diagonal-wise partition and P
(n)
[2] , the row-wise partition

from Table 1. The model thus includes a diagonal-wise umbrella common shock, and both diagonal-
wise and row-wise array-specific common shocks.

Lemma 3.1 and Corollary 3.2 extend easily to this more general situation, as set out in the
following proposition.

Proposition 5.2. Suppose that, in the model (32),Wπ[r](i,j) ∼ Tw∗
p

(
θπ[r](i,j), λπ[r](i,j)

)
,W(n)

π[r](i,j)
∼,

Tw∗
p

(
θ

(n)
π[r](i,j)

, λ(n)
π[r](i,j)

)
, Z(n)

ij ∼ Tw∗
p

(
θ

(n)
ij , λ(n)

ij

)
with θπ[r](i,j) = θ

(n)
π[r](i,j)

= θ
(n)
ij in the case p= 1.

Then, X(n)
ij is Tweedie distributed if and only if α(n)

ij,[r] = θπ[r](i,j)/θ
(n)
ij , β(n)

ij,[r] = θ
(n)
π[r](i,j)

/θ
(n)
ij . In fact,

X(n)
ij ∼ Tw∗

p

(
θ

(n)
ij ,

R∑
r=1

λπ[r](i,j) +
R∑

r=1
λ

(n)
π[r](i,j)

+ λ
(n)
ij

)
for p= 1. (34)
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X(n)
ij ∼ Tw∗

p

⎛
⎝θ

(n)
ij ,

R∑
r=1

⎛
⎝θπ[r](i,j)

θ
(n)
ij

⎞
⎠

α

λπ[r](i,j) +
R∑

r=1

⎛
⎝θ

(n)
π[r](i,j)

θ
(n)
ij

⎞
⎠

α

λ
(n)
π[r](i,j)

+ λ
(n)
ij

⎞
⎠ for p �= 1.

(35)

As in Corollary 3.2, these results may be expressed in the alternative form:

α
(n)
ij,[r] =

μ
(n)
ij

μπ[r](i,j)

v(n)
ij

vπ[r](i,j)
, (36)

β
(n)
ij,[r] =

μ
(n)
ij

μ
(n)
π[r](i,j)

v(n)
ij

v(n)
π[r](i,j)

, (37)

X(n)
ij ∼ Tw∗

p

⎛
⎝ α − 1

μ
(n)
ij v(n)

ij
,
(
μ

(n)
ij v(n)

ij

)α

⎛
⎝ R∑

r=1

1
vπ[r](i,j)

+
R∑

r=1

1
v(n)
π[r](i,j)

+ 1
v(n)
ij

⎞
⎠
⎞
⎠ for p �= 1, (38)

The establishment of conditions for auto-balance requires the notion of connectedness of
cells of an array. Cells

(
i, j
)
and

(
k, 
)
of array A(n) will be said to be connected if there

exists a sequence of subsets
{
P(n)
[rg]sg , g = 1, . . . ,G

}
such that

(
i, j
) ∈P(n)

[r1]s1 ,
(
k, 
) ∈P(n)

[rG]sG and

P(n)
[rg]sg ∩P(n)

[rg+1]sg+1
�= ∅, g = 1, . . . ,G− 1. By congruence of the arraysA(n), if

(
i, j
)
and

(
k, 
)
are

connected within one array, they will be connected in all others.
It is evident that connectedness between two cells is an equivalence relation, and so each array

A(n) partitions into equivalence classes Eh, h= 1, . . . ,H which, by congruence, do not depend on
n. The cells within any one equivalence class will be connected to all other cells in the class and
disconnected from all cells in all other classes.

Further, since all cells within a single partition subset are connected to all other cells in that
subset, an equivalence class must consist of a union of partition subsets. It will sometimes be
convenient to denote an equivalence class Eh by E

(
i, j
)
for any cell

(
i, j
)
contained in the class.

Proposition 5.3 now gives the necessary and sufficient condition for auto-balance in the case of
model (32).

Proposition 5.3. Consider a Tweedie common shock model (32), subject to the parameter restric-
tions imposed by Proposition 5.2. The model will be auto-balanced if and only if the following two
conditions hold:

(a) v(n)
ij = C(n)vπ[r](i,j); and

(b) v(n)
ij =K(n)v(n)

π[r](i,j)
;

for all i, j, n, r, where C(n),K(n) < 0 are quantities that depend on only n.
For this auto-balanced case,

E
[
X(n)
ij

]
= κ(n)μ(n)

ij (39)

Var
[
X(n)
ij

]
= κ(n)

(
σ

(n)
ij

)2
, (40)

CoV2
[
X(n)
ij

]
=
(
κ(n)

)−1
v(n)
ij , (41)

where κ(n) =K(n)χ + C(n)χ(n) + 1, which does not depend on p (or α).
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Proof. A slight modification of the proof of Proposition 5.1.

This result sets the relationships of the idiosyncratic components with the common shock
components in the same cells. However, auto-balance of the Tweedie common shock model of
Proposition 5.3 imposes constraints on the common shocks, as stated in the following result.

Proposition 5.4. The auto-balance conditions of Proposition 5.3 imply that, for any given n, r, i, j,
vπ[r](k,) and v

(n)
π[r](k,)

are constant (though not necessarily with each other) over all
(
k, 
) ∈ E (i, j).

In short, common shock CoVs are constant over equivalence classes.

Proof. See Appendix A.

A few examples of connectedness in common shock models follow. As a preliminary, one may
note that, in the case R= 1 in (32), there is a single partition of the arrays. The subsets of a par-
tition are disjoint, by definition, and so there is no connectedness of cells in distinct subsets. The
equivalence classes Eh are the partition subsets themselves. By Proposition 5.4, common shock
CoVs are constant over just partition subsets, which is the case by their definition.

Example 5.2: cell-wise common shocks. The array partition for cell-wise shocks is given in Table 1,
where it is seen that the partition subsets are the cells themselves. Hence, Proposition 5.4 states that
common shock CoVs are constant over cells within a partition. This is a vacuous statement, which
imposes no restriction on these CoVs.

Example 5.3: row-wise common shocks. By the same type of argument as in Example 5.2, the
common shock CoVs are constant over the partition subsets, which are rows.

Example 5.4: simultaneous row-wise and diagonal-wise common shocks. This is the case R= 2
in (32), where the partition subsets π[1]

(
i, j
)
are rows and π[2]

(
k, 
)
diagonals.

It is possible to show that all
(
i, j
)
,
(
k, 
)
are connected. If i= k, then, the two points are con-

nected by virtue of lying within the same row. If i+ j= k+ , then they are connected within
the same diagonal. If neither of these conditions holds, then, without loss of generality, one may
assume that i+ j> k+ . Onemay connect the cell

(
i, j
)
to
(
k+  − i

)
in the same row and thence

to
(
k, 
)
in the same diagonal.

Thus, the array contains only one equivalence class, namely the entire array. It then follows
from Proposition 5.4 that the umbrella and array-specific common shock CoVs must be constant
across all cells in each array if the model is to be balanced.

Example 5.5: a more exotic case. In this case, R= 3. Let P(n)
[1] be the row-wise partition of Example

5.3, i.e. P(n)
[1]i =R(n)

i (see Table 1). Now let P(n)
[∗] denote the diagonal-wise partition P(n)

[∗]t =D(n)
t

and define P(n)
[2] ,P

(n)
[3] as

{
D(n)
t ∩R(n)

i : i≤ i0, all t
}
and

{
D(n)
t ∩R(n)

i : i< i0, all t
}
, respectively,

for some chosen i0. Then, P(n)
[2] represents a diagonal effect in “low” accident periods and P(n)

[3] a
diagonal effect in “high” accident periods.

In this case, rows are connected (as before), and the semi-diagonals constituting P(n)
[2] are

also connected, just as in Example 5.4. Similarly, the semi-diagonals in P(n)
[3] are also connected.

However, there is no connection between P(n)
[2] ,P

(n)
[3] , with the result that the equivalence classes

are P(n)
[2] ,P

(n)
[3] .
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A further model extension is possible. Section 2.1 assumed congruence of all arrays A(n), and
this property has been useful in one or two of the proofs of auto-balance. Now that the conditions
for auto-balance have been established; however, the assumption of congruence can be seen to be
unnecessary.

Proposition 5.5. Consider the model of Proposition 5.2, which is sufficiently general to include the
earlier model of section 5.1. The conditions for auto-balance are given in Proposition 5.3, on the
assumption of congruence of all arrays A(n). Now delete arbitrary cells from any or all of the A(n),
not necessarily the same cells for each n. Then, the model will be auto-balanced if and only conditions
(a) and (b) of Proposition 5.3 hold for all i, j, n, r for which the v terms exist on both sides of the
equations.

Proof. Consider the situation before the deletion of cells, and suppose that conditions (a) and (b)
of Proposition 5.3 hold for all i, j, n, r, ensuring auto-balance. This means that the proportionate
contribution of each shock and idiosyncratic component to cell expectation is constant over all
cells observed. Now delete the nominated cells from each array. The auto-balance condition is
unaffected in respect of the remaining cells.

6. Numerical Examples
6.1 Data sets
Three synthetic data sets were used to illustrate the auto-balance of three different claim models
when conditions in Proposition 5.1 hold.

All data sets are Tweedie distributed with power parameter p = 1.8, and each data set con-
sists of two triangles with dimension 15×15. It follows that each cell of each triangle follows a
compound Poisson-Gamma distribution (Jørgensen, 1987, section 5). The value of 1.8 is simply a
selection by the authors, but Appendix B demonstrates its reasonableness.

Patterns over different development periods of the idiosyncratic and common shock compo-
nents are different between triangles and from each other. Parameters have been intentionally
selected to reflect different degrees of contribution of umbrella and array-specific shocks within
each triangle and between triangles.

Data set 1 is used to illustrate the claim model with cell-wise common shocks described in
Example 5.2. There is no restriction on the common shock CoVs as the partition subsets are cells
themselves. Column-wise CoVs have been chosen only for the purpose of simplification.

The claimmodel with row-wise umbrella and array-specific shocks in Example 5.3 is illustrated
using data set 2. The partition subsets are rows, and hence, the model is specified with row-wise
common shock CoVs.

The exotic case described in Example 5.5 is illustrated using the third data set. This data set has
split diagonal-wise umbrella shocks which apply to two segments of accident periods {i ≤ 10} and
{i < 10}. The array-specific shocks are row-wise. As described in Example 5.5, all cells within a
row in an array are connected due to the array-specific shocks, and all cells within the same semi-
diagonal are connected due to the split umbrella diagonal shocks. The two equivalence classes in
each triangle are all cells with {i ≤ 10} and {i > 10}, respectively. CoVs of common shocks are
specified to be constant for all cells within each of these equivalence classes.

Parameter specifications of these synthetic data sets are provided in Appendix C.

6.2. Common shock contributions
It is worthy of note that the conditions for auto-balance of common shock models aim to provide
equality of expected proportionate contribution of each shock and idiosyncratic component to
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Table 2. Expected common shock proportions to cell expectations of synthetic data.

Data set 3 – Split diagonal
Data set 1 – Cell-wise Data set 2 – Row-wise umbrella shock and row-wise

Shock dependence dependence array-specific shock

Umbrella Triangle 1: 11.4%, all cells Triangle 1: 3.6%, all cells Triangle 1: 3.9%, all cells


Triangle 2: 0.8%, all cells Triangle 2: 0.8%, all cells Triangle 2: 1.9%, all cells


Array-specific Triangle 1: 1.0%, all cells Triangle 1: 0.7%, all cells Triangle 1: 0.9%, all cells
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Triangle 2: 3.9%, all cells Triangle 2: 3.9%, all cells Triangle 2: 5.8%, all cells

cell expectation over all cells. Hence, it is sufficient to demonstrate the auto-balance of common
shock models using the expected value and CoV of each shock and idiosyncratic component. If
one wishes to assess the balance of common shock contributions using simulated data, simulations
could be carried out using the specified expected values, CoVs, and power parameter p. This sec-
tion provides the results of common shock contributions on both expected values and simulated
values.

Following (19), (22), and (23), the expected proportionate contribution of umbrella and array-
specific shocks to cell expectation overall all cells can be calculated by

μ
(n)
ij

v(n)
ij

vπ(i,j)

/
E
[
X(n)
ij

]
,

and

μ
(n)
ij

v(n)
ij

v(n)
π(i,j)

/
E
[
X(n)
ij

]
,

respectively, and where E
[
X(n)
ij

]
is calculated using (27).

The expected common shock proportions for all three synthetic data sets arising from the
parameter specifications in Appendix C are provided in Table 2.

It is observed that each shock contributes equally to cell expectation across all cells and auto-
balance is achieved. It can also be easily verified that the remaining contribution to cell expectation
which belongs to the idiosyncratic component satisfies (29) with the shockmultiples C(n) andK(n)

provided in Appendix C.
For simulated data, the proportionate contribution of umbrella and array-specific shocks to

cell total is calculated using the mixture coefficients and simulated values as

μ
(n)
ij

μπ(i,j)

v(n)
ij

vπ(i,j)
Wπ(i,j)/X

(n)
ij ,

and

μ
(n)
ij

μ
(n)
π(i,j)

v(n)
ij

v(n)
π(i,j)

W(n)
π(i,j)/X

(n)
ij ,

respectively, and where X(n)
ij is the sum of simulated components.

Tables 3 and 4 show the contributions of umbrella shock and array-specific shock to cell total
for triangle 1 in data set 3. The equivalent tables for the remaining data sets and triangles are
provided in Appendix C.
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Table 3. Proportionate contributions of umbrella shock to cell total – Triangle 1, data set 3.

Table 4. Proportionate contributions of array-specific shock to cell total – Triangle 1, data set 3.

The tables are heat maps in which colouring toward the red end of the spectrum indicates shock
contributions that are larger than the triangle average; the blue end of the spectrum indicates shock
contributions that are smaller.

Due to the random nature of simulation, the proportionate contribution of a shock to a cell
total in the simulated data is not constant across all cells. However, it can be observed from
Tables 3, 4 and Appendix C that these contributions are neither systematically skewed toward
cells with small values in high development periods, nor are they overwhelmed in cells with larger
values from early development periods, as occurs in unbalanced common shock models.

Split umbrella diagonal shocks are clear in Table 3 where diagonal patterns are visible and apply
to only the relevant subset of accident periods. Row-wise array-specific shocks are also exhibited
in Table 4. As shown in Appendix C for data set 1 where shocks are cell-wise, no clear patterns
are observed for proportionate contributions of umbrella and array-specific shocks provided. On
the other hand, row-wise shock patterns are evident for data set 2 which was simulated from a
row-wise dependence model.

7. Conclusions
Section 5.1 derives auto-balance conditions for Tweedie common shock models. These are found
to be relatively simple, depending only on the coefficients of variation of the common shock and
idiosyncratic components of observations, specifically, the relations between these CoVs. In the
case of auto-balance, the means and variances of observations assume particularly simple forms.

The common shock models considered are of quite general form such as row-wise or diagonal-
wise, etc., or shocks that affect even quite irregular shapes within a triangle. Section 5.2 extends the
range of models further with the inclusion of an indefinite number of shocks within the model.
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Shocks or a hybrid type, such as intersections of subsets of rows and columns, are also included.
Auto-balance conditions are derived for all of these.
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Appendix A
Proof of Lemma 2.1. Divide (10) by (7) to obtain

θ

α − 1
= 1

μv
. (A.1)

Substitute (A.1) into (10) to obtain

λ = 1
v

(μv)α = μαvα−1 . (A.2)

The lemma follows from (A.1) and (A.2).

Proof of Lemma 3.1. Consider the last two summands of (19), i.e. β(n)
ij W(n)

π(i,j) + Z(n)
ij for p �= 1.

By (16),

β
(n)
ij W(n)

π(i,j) + Z(n)
ij ∼ Tw∗

p

⎛
⎝θ

(n)
ij ,

⎛
⎝θ

(n)
π(i,j)

θ
(n)
ij

⎞
⎠

α

λ
(n)
π(i,j) + λ

(n)
ij

⎞
⎠ ,

provided that β(n)
ij = θ

(n)
π(i,j)/θ

(n)
ij .

Similarly,

X(n)
ij = α

(n)
ij Wπ(i,j) +

(
β

(n)
ij W(n)

π(i,j) + Z(n)
ij

)

∼ Tw∗
p

⎛
⎝θ

(n)
ij ,

⎛
⎝θπ(i,j)

θ
(n)
ij

⎞
⎠

α

λπ(i,j) +
⎛
⎝θ

(n)
π(i,j)

θ
(n)
ij

⎞
⎠

α

λ
(n)
π(i,j) + λ

(n)
ij

⎞
⎠ , (A.3)

provided that α(n)
ij = θπ(i,j)/θ

(n)
ij .

The case p= 1 is similarly treated. This proves the sufficiency of the conditions on α
(n)
ij β

(n)
ij .

For necessity, consider the cgf of (n)
ij in the case p �= 0, 1, 2. It is

KX(n)
ij

(t) =KWπ(i,j)

(
α

(n)
ij t
)

+KW(n)
π(i,j)

(
β

(n)
ij t
)

+KZ(n)
ij

(t) . (A.4)

Consider the first summand on the right:

KWπ(i,j)

(
α

(n)
ij t
)

= λπ(i,j)

[
bp
(
θπ(i,j) + α

(n)
ij t
)

− bp
(
θπ(i,j)

)]

= λπ(i,j)bp
(
θπ(i,j)

) ⎡⎣
⎛
⎝1+ α

(n)
ij

θπ(i,j)
t

⎞
⎠

α

− 1

⎤
⎦ . (A.5)

by (2) and (6).
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Similarly for the other two summands in (A.4), whereupon

KX(n)
ij

(t) = bp
(
θπ(i,j)

)
⎧⎨
⎩ξ1

⎡
⎣
⎛
⎝1+ α

(n)
ij

θπ(i,j)
t

⎞
⎠

α

− 1

⎤
⎦+ ξ2

⎡
⎣
⎛
⎝1+ β

(n)
ij

θ
(n)
π(i,j)

t

⎞
⎠

α

− 1

⎤
⎦+ ξ3

⎡
⎣
⎛
⎝1+ 1

θ
(n)
ij

t

⎞
⎠

α

− 1

⎤
⎦
⎫⎬
⎭ ,

(A.6)

for constants ξk < 0, k= 1, 2, 3, and, if this is be Tw∗
p , it must be equal to

KX(n)
ij

(t) = bp
(
θπ(i,j)

)
ξ
[
(1+ ηt)α − 1

]
, (A.7)

for some constants ξ , η < 0.
Note that, for p �= 0, 1, 2, one finds α ∈ (−∞, 0) ∪ (0, 1). For identity between (A.6) and (A.7)

to hold, all three of the terms raised to power α in (A.6) must be equal, yielding

α
(n)
ij

θπ(i,j)
= β

(n)
ij

θ
(n)
π(i,j)

= 1
θ

(n)
ij

.

This proves the necessity of the of the conditions on α
(n)
ij β

(n)
ij (as well as re-establishing their

sufficiency).
The cases p= 0, 1, 2, respectively, may be dealt with by a similar analysis of cgf KX(n)

ij
(t).

Proof of Lemma 4.1. For p �= 1, the value of E
[
X(n)
ij

]
is obtained from (7) with θ , λ replaced by

the two arguments on the right side of (24). This immediately yields (27).
For p= 1, by (11) and (20),

E
[
X(n)
ij

]
=
(
λπ(i,j) + λ

(n)
π(i,j) + λ

(n)
ij

)
exp θ

(n)
ij = λ

(n)
ij exp θ

(n)
ij

⎛
⎝λπ(i,j)

λ
(n)
ij

+
λ

(n)
π(i,j)

λ
(n)
ij

+ 1

⎞
⎠ ,

which is equal to (27) when (11) is used again, and it is recalled from Lemma 3.1 that θπ(i,j) =
θ

(n)
π(i,j) = θ

(n)
ij .

Evaluation of Var
[
X(n)
ij

]
for p �= 1 follows the same logic but with (7) replaced by (8), leading

to

Var
[
X(n)
ij

]
=
(
μ

(n)
ij

)2
v(n)
ij

⎛
⎝ v(n)

ij

vπ(i,j)
+ v(n)

ij

v(n)
π(i,j)

+ 1

⎞
⎠ ,

which is identical to (28).

Proof of Proposition 5.1. As stated in the preamble to the proposition, a necessary and sufficient
condition for balance is that, for each n,

v(n)
i

v(n)
π(i,j)

must be independent of i, j; and (A.8)

v(n)
ij

vπ(i,j)
must be independent of i, j. (A.9)
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These are exactly conditions (a) and (b).
Substitution of conditions (a) and (b) of the proposition in (27) and (28) yields (29)–(31) imme-

diately.

Proof of Proposition 5.4. Commence with condition (a) of Proposition 5.3 for fixed i, j, n and r =
r1 and note that vπ[r1](i,j)

is constant over all cells
(
k, 
) ∈ π[r1]

(
i, j
)
. This implies that v(n)

k is
constant over the same set.

Now, choose any fixed but arbitrary r = r∗. Either there is a partition subset π[r∗]
(
k, 
)
that

lies within the equivalence class E (i, j) or there is not. If not, then all subsets of partition P(n)
[r∗] are

disconnected from
(
i, j
)
.

Consider just the former (connected) case, and let cell
(
k, 
)
be arbitrary within the subset.

The cells
(
i, j
)
and

(
k, 
)
are connected and so, by definition, there exists a sequence of sub-

sets
{
P(n)
[rg]sg , g = 1, . . . ,G

}
such that

(
i, j
) ∈P(n)

[r1]s1 = π[r1]
(
i, j
)
,
(
k, 
) ∈P(n)

[rG]sG = π[r∗]
(
k, 
)
and

P(n)
[rg]sg ∩P(n)

[rg+1]sg+1
�= ∅, g = 1, . . . ,−1.

Consider the case g = 1, for which π[r1]
(
i, j
)
andP(n)

[r2]s2 intersect. It follows thatP
(n)
[r2]s2 contains

at least one cell
(
k2, 2

)
which lies within π[r1]

(
i, j
)
so that v(n)k22 = C(n)Vπr1 (k2,2) by condition (a)

of Proposition 5.3. But recall that p(n)
[r2s2] is just a partition subset and so can be represented as

π[r2]
(
k2, 2

)
, and so, by the same condition, v(n)

k22 = C(n)vπ[r2](k2,2)
. From this, it follows that

vπ[r2](k2,2)
= vπ[r1](i,j)

.
The argument can be extended along the chain of subsets connecting

(
i, j
)
to
(
k, 
)
, yielding the

result that vπ[rg+1](kg+1,g+1) = vπ[rg](kg ,g) for g = 1, . . . ,G− 1, where
{(
kg , g

)
, g = 1, . . . ,G

}
is

a connected sequence of cells with
(
k1, 1

)= (i, j) and (kG, G)= (k, ). One may now conclude
that vπ[r1](i,j)

= vπ[r1](k1,1)
= vπ[rG](kG,G)

= vπ[r∗](k,).
Recall that r1, r∗ were chosen arbitrarily; for given r∗, π[r∗]

(
k, 
)
was chosen arbitrarily subject

to connectedness to
(
i, j
)
; and

(
k, 
)
is an arbitrary cell in π[r∗]

(
k, 
)
. It follows that, for any choice

of r1, r∗, vπ[r1](i,j)
= vπ[r∗](k,) for any cell

(
k, 
)
that is connected to

(
i, j
)
. This proves the propo-

sition in respect of vπ[r](k,). The proof in respect of v(n)
π[r](k,)

is entirely parallel.

Appendix B
Suppose that Y is a compound Poisson Gamma variate

Y =
N∑
i=1

Xi,

where N ∼ Poisson () and X is Gamma distributed with pdf

βα

� (α)
x−α−1x−βx, α 〈0, β〉 0.
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Then, Y is Tweedie distributed with the Tweedie α parameter equal to the α in the Gamma pdf
(Jørgensen, 1987, section 5). This distribution is parameterised by

E [Y]= κ
−α

β
= μ,

Var [Y]= κ
−α (−α + 1)

β2 = σ 2 .

It follows that

CoV2 [Y]= 1− α

−α
κ−1 = 1(

2− p
)
κ
,

where the relation between p and α has been used.
In addition,

CoV [Xi]= (−α)1/2

If N denotes the number of claims paid in a cell of a loss triangle, and Xi the amount paid in
respect of that claim, then Y denotes the total claim amount in the cell. A reasonable assumption
for one of the longer-tailed lines of business might be that CoV [Xi]= 2, in which case α = −1/4
and then p= 1.8.

Note that, since α is assumed constant over all cells, E [Y] varies over cells according to varia-
tions in κ , β , and CoV [Y] varies with κ . Accordingly, cell-specific values of κ , β may be selected
to generate any desired cell-specific values of E [Y] , CoV [Y].
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Appendix C

Parameter specifications of synthetic data

Data set 3 (split diagonal umbrella shock
Data set 1 (cell-wise dependence) Data set 2 (row-wise dependence) and row-wise array-specific shock)

Power parameter p= 1.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Umbrella shock multiple C(1) = 0.64
C(2) = 0.34

C(1) = 0.444
C(2) = 0.34

C(1) = 0.454
C(2) = 0.384



Array-specific shock multiple K(1) = 0.334
K(2) = 0.454

K(1) = 0.294
K(2) = 0.454

K(1) = 0.314
K(2) = 0.54



Umbrella shock – Expected value μπ(i,j) = {100, 500, 1, 000, 1, 000, 1, 000, 1, 000,
500, 250, 100, 50, 50, 50, 50, 50, 50}
for j = 1, . . . , 15, respectively, of partition
subsets

{{
X(n)
1j

}
: all n

}
.

μπ(i,j) = 100 for partition subsets{
R(n)
1 : all n

}
.

μπ(i,t−i+1) = {100, 102, 104, 106, 108, 110,
113, 115, 117, 120, 117, 119, 121, 124, 126}
for t = 1, . . . , 15, respectively, of partition
subsets

{
D(n)
t : all n, i≤ 10

}
.



μπ(i,j) = 1.02μπ(i−1,) for partition subsets{{
X(n)
ij

}
: i> 1, all j, all n

}
.

μπ(i,j) = 1.02μπ(i−1,j) for partition
subsets

{
R(n)
i : i > 1, all n

}
.

μπ(i,t−i+1) = {146, 149, 152, 153, 158}
for t = 11, . . . , 15, respectively, of partition
subsets

{
D(n)
t : all n, i< 10

}
.



Umbrella shock – CoV √vπ(i,j) = 1
0.62 ∗{0.1, 0.06, 0.05, 0.05,

0.06, 0.06, 0.1, 0.15, 0.2, 0.3, 0.45, 0.6,
0.75, 0.9, 0.9}
for j = 1, . . . , 15, respectively, of partition
subsets

{{
X(n)
ij

}
: all n, all i

}
.

√vπ(i,j) = 1
0.442 ∗ {0.1, 0.09, 0.08, 0.09,

0.1, 0.1, 0.11, 0.09, 0.12, 0.1, 0.08, 0.09,
0.08, 0.08}
for j = 1, . . . , 15, respectively, of
partition subsets

{
R(n)
i : all n

}
.

√vπ(i,j) = 0.1
0.452 for partition subsets{

R(n)
i ∪D(n)

t : all n, all t, i≤ 10
}
,

or in short, all cells with i≤ 10.√vπ(i,j) = 0.08
0.452 for partition subsets{

R(n)
i ∪D(n)

t : all n, all t, i < 10
}
,

or in short, all cells with i< 10.
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Array-specific shock – Expected
value

μ
(1)
π(i,j) = {25, 50, 100, 100, 100, 25, 20, 20, 10,

10, 10, 10, 10, 10, 10}
for j = 1, . . . , 15, respectively, of partition
subsets

{
X(n)
1j

}
.

μ
(1)
(i,j) = 1.02μ(1)

π(i−1,j) for partition subsets{{
X(n)
ij

}
: i> 1, all j

}
.

μ
(2)
π(i,j) = {1, 000, 1, 000, 1, 000, 500, 200,

20, 10, 5, 5, 5, 5, 5, 5, 5, 5 } for j = 1, . . . , 15
respectively of partition subsets

{{
X(2)
ij

}
: all i

}
.

μ
(1)
π(i,j) = 25 for partition subsetR(n)

1 .

μ
(1)
π(i,j) = 1.02μ(1)

π(i−1,j) for partition subsets
{
R(1)
i : i > 1,

}
.

(2)
π(i,j) = 1, 000 for partition subsets

{
R(2)
i : all i

}
.



Array-specific shock – CoV
√
v(n)
π(i,j) =

√
C(n)

K(n)
√vπ(i,j) for all partition subsets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Idiosyncratic component –
Expected value

μ
(1)
1j = {500, 1, 000, 1, 500, 2, 000, 2, 000, 1, 000, 700, 500, 400, 200, 100, 50, 25, 15, 10} for j = 1, ...., 15, respectively.

μ
(1)
ij = 1.02μ(1)

i−1,j for i= 2, ...., 15, and all j.

μ
(2)
ij = {3, 000, 4, 000, 1, 000, 500, 400, 300, 200, 100, 100, 100, 100, 50, 50, 50, 50} for j = 1, ....15, respectively, and all i.



Idiosyncratic component – CoV
√
v(n)
ij =

√
1
K(n)

√
v(n)
π(i,j) for all partition subsets.
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Data set 1 (cell-wise dependence) – Proportionate contributions of shocks to cell total: triangle 1, umbrella shock (top);
triangle 1, array-specific shock (bottom)
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Data set 1 (cell-wise dependence) – Proportionate contributions of shocks to cell total: triangle 2, umbrella shock (top);
triangle 2, array-specific shock (bottom).
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Data set 2 (row-wise dependence) – Proportionate contributions of shocks to cell total: triangle 1, umbrella shock (top);
triangle 1, array-specific shock (bottom)
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Data set 2 (row-wise dependence) – Proportionate contributions of shocks to cell total: triangle 2, umbrella shock (top);
triangle 2, array-specific shock (bottom)
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Data set 3 (exotic case) – Proportionate contributions of shocks to cell total: triangle 2, umbrella shock (top); triangle
2, array-specific shock (bottom)
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