Birational transformations with isolated fundamental points

By J. A. Todd.
(Received 4th June, 1937. Read 5th June, 1937.)

1. It is well known that the canonical system of curves on an algebraic surface is only relatively invariant under birational transformations of the surface. That is, if we have a birational transformation \mathbf{T} between two surfaces F and F^{\prime}, and if K and K^{\prime} denote curves of the unreduced canonical systems on F and F^{\prime}, then

$$
\mathbf{T}(K-E) \equiv K^{\prime}-E^{\prime}
$$

where E and E^{\prime} denote the sets of curves, on F and F^{\prime} respectively, which are transformed into the neighbourhoods of simple points on the other surface.

More generally, on a variety V_{d} of d dimensions, the canonical system of V_{d-1} 's, and the canonical systems of lower dimensions which I have recently described ${ }^{1}$, are only relative invariants under birational transformation of V_{d}, and it becomes an important problem to determine the way in which the presence of fundamental elements of various kinds affects the transformation of the canonical varieties. For a threefold this question has been solved by B. Segre ${ }^{2}$ in a recent memoir, but the general problem is of considerable complexity, and is not yet solved.

There is, however, one case in which the problem is tractable, and it is with this that the present paper is concerned. This is the case in which the transformation T between V_{d} and V_{d}^{\prime}, and its inverse, possess fundamental points, but no fundamental varieties of higher dimension. Thus, assuming V_{d} and V_{d}^{\prime} to be free from singularities, a simple linear system of V_{d-1} 's on V_{d}, free from base points, will be transformed by T into a linear system on V_{d}^{\prime} with at most a finite number k^{\prime} of base points $A^{\prime}{ }_{v}\left(\nu=1, \ldots, k^{\prime}\right)$, and a linear system on $V^{\prime}{ }_{d}$ which is simple and free from base-points will

[^0]be transformed by \mathbf{T}^{-1} into a linear system on V_{d} with a finite number k of base-points $A_{\mu}(\mu=1, \ldots, k)$. We suppose that the points $A_{\mu}, A^{\prime}{ }_{\nu}$ are all distinct.

We shall obtain below the relations which hold between the canonical systems on V_{d}^{\prime} and the transforms of the canonical systems on V_{d} under a transformation \mathbf{T} of this character, and, as an application will show, for $d \leqq 6$, the arithmetic genus of V_{d} is unaltered by a birational transformation of this kind.
2. If P is a point of V_{d}, and if Q^{\prime} is a point of V_{d}^{\prime}, then the aggregate of all pairs of points (P, Q^{\prime}) can be represented by an algebraic variety $\Phi_{2 d}$ of $2 d$ dimensions (non-singular if V_{d} and V_{d}^{\prime} are free from singularities). The points of $\Phi_{2 d}$ which represent pairs $\left(P, Q^{\prime}\right)$ such that $Q^{\prime}=\mathbf{T}(P)$ form an algebraic variety $V^{\prime \prime}{ }_{d}$, of d dimensions. Since \mathbf{T} is a birational transformation it clearly induces a birational transformation T_{1} between V_{d} and $V^{\prime \prime}{ }_{d}$, and a second birational transformation T_{2} between $V^{\prime \prime}{ }_{d}$ and V_{d}, and T itself is the product $\mathbf{T}_{2} \mathbf{T}_{1}$ of \mathbf{T}_{1} and \mathbf{T}_{2} (the product symbol being read from right to left, as in the calculus of matrices). If. P is a point of V_{d} fundamental for the transformation \boldsymbol{T} then it is evidently fundamental also for \mathbf{T}_{1}. On the other hand, \mathbf{T}_{1}^{-1} has no fundamental points on $V^{\prime \prime}{ }_{d}$, since each point of $\Phi_{2 d}$ represents a unique pair of points (P, Q^{\prime}) and hence determines a unique point on V_{d}. In the same way, the transformation \mathbf{T}_{2} from $V^{\prime \prime}{ }_{d}$ to V_{d}^{\prime} has no fundamental points on $V^{\prime \prime}{ }_{d}$, and the fundamental points of \mathbf{T}_{2}^{-1} on $V^{\prime}{ }_{d}$ are precisely those of \mathbf{T}^{-1}.

We can therefore express any transformation \mathbf{T} with only isolated fundamental points as the product of two transformations each of which has the property that it only possesses fundamental points on one of the two varieties concerned. We shall now suppose (until §7) that \mathbf{T} itself is of this type, i.e. that T^{-1} has no fundamental points on V_{d}^{\prime}.
3. Suppose then that \mathbf{T}^{-1} is free from fundamental points, while \mathbf{T} has k fundamental points $A_{\mu}(\mu=1, \ldots, k)$ on V_{d}. The neighbourhood of a fundamental point A_{μ} is mapped by \mathbf{T} on a $V_{d-1}, \mathfrak{Z}_{\mu}$ lying on V_{d}^{\prime}. Since the points A_{μ} and A_{ν} are distinct if μ and ν are different, it follows that the varieties $\mathfrak{X}_{\mu}, \mathfrak{X}_{\nu}$ have no common points, which we express symbolically in the form

$$
\begin{equation*}
\left(\mathfrak{Z}_{\mu} \mathfrak{Z}_{v}\right) \equiv 0 . \tag{1}
\end{equation*}
$$

On the other hand, the virtual intersection of \mathfrak{X}_{μ} with itself will not in general be zero.
4. Let $|S|$ be a simple linear system of V_{d-1} 's on V_{d}, of freedom $d+1+k$ at least, free from base-points. A general linear subsystem $\left|S^{(h+1)}\right|$ of $|S|$ of freedom $h+1$ will contain ∞^{h} members with double points, and the locus of these double points, if $h<d$, will be a variety M_{h} of h dimensions, the Jacobian of $\left|S^{(h+1)}\right|$. The canonical variety of h dimensions X_{h} on V_{d} is expressible in terms of the Jacobian varieties M_{h} by the equivalence ${ }^{1}$,

$$
\begin{equation*}
X_{h} \equiv M_{h}+\sum_{i=1}^{d-h}(-)^{i}\binom{h+1+i}{h+1}\left(M_{h+i} S^{i}\right) \tag{2}
\end{equation*}
$$

Under the transformation $T,|S|$ becomes transformed into a linear system $\left|S^{\prime}\right|$ on V_{d}^{\prime}, free from base-points since \mathbf{T}^{-1} has no fundamental points on V_{d}^{\prime}, and M_{h} is transformed into a locus M_{h}^{\prime}. However, we cannot assert that M_{h}^{\prime} is the Jacobian of the transform of $\left|S^{(h+1)}\right|$, for if one of the varieties S passes through a fundamental point A_{μ} the corresponding variety S^{\prime} splits up into \mathfrak{A}_{μ} and a residual V_{d-1} whose intersection with \mathfrak{Z}_{μ} belongs to the locus of double points. on varieties of the linear system containing S^{\prime}.
5. Consider now the sub-system $\left|S_{1}\right|$ of $|S|$ which has simple basepoints at each of the points A_{μ}. By hypothesis, $\left|S_{1}\right|$ has freedom at least equal to $d+1$, and we assume that $|S|$ was chosen so generally that the points A_{μ} constitute the only base-points for $\left|S_{1}\right|$. The transform of a member of $\left|S_{1}\right|$ by T breaks up into the set of varieties. $\boldsymbol{\mathfrak { U }}_{\mu}$, each counted simply, and a residual locus $S^{\prime}{ }_{1}$. By considering the variation of $\mathbf{T}(S)$ as S approaches a variety of $\left|S_{1}\right|$ it is easily seen that

$$
\begin{equation*}
S^{\prime} \equiv S_{1}^{\prime}+\Sigma \mathfrak{A}_{\mu} \tag{3}
\end{equation*}
$$

Further, since $|S|$ has no base-points, $\left(S^{\prime} \mathfrak{Z}_{\mu}\right) \equiv 0$, and hence

$$
\begin{equation*}
\left(\mathcal{S}_{1}^{\prime} \mathfrak{U}_{\mu}\right) \equiv-\left(\mathfrak{A}_{\mu}^{2}\right) \tag{4}
\end{equation*}
$$

Now let $M_{h, 1}$ be the Jacobian of a linear sub-system $\left|S_{1}^{(h+1)}\right|$ of $\left|S_{1}\right|$ of freedom $h+1$. It is easily seen that the imposition of simple base-points on the members of $|S|$ is without effect on the varieties M_{h} except that $M_{d-1,1}$ has a double point at each simple base-point of $\left|S_{1}^{(d)}\right|$. Thus, if $M_{h, 1}^{\prime}$ denotes the transform of $M_{h, 1}$ by T, we have

$$
\begin{align*}
M_{h}^{\prime} & \equiv M_{h, 1}^{\prime} \quad(h=0,1, \ldots, d-2) \\
M_{d-1}^{\prime} & \equiv M_{d-1,1}^{\prime}+2 \sum \mathfrak{A}_{\mu} . \tag{6}
\end{align*}
$$

[^1]Also, since the varieties M_{h} have no assigned base-points, $\left(M_{h}^{\prime} \mathfrak{U}_{\mu}\right) \equiv 0$, so that

$$
\begin{align*}
\left(M_{h, 1}^{\prime} \mathfrak{\mathfrak { A }}_{\mu}\right) & \equiv 0 \quad(h=0,1, \ldots, d-2) . \tag{7}\\
\left(M_{d-1,1}^{\prime} \mathfrak{\mathfrak { A }}_{\mu}\right) & \equiv-2\left(\mathfrak{U}_{\mu}^{2}\right) . \tag{8}
\end{align*}
$$

Now it is easily seen that $M_{h, 1}^{\prime}$ is the Jacobian of the linear system $\left|S_{1}^{(h+1)}\right|$, the variable part of the transform of $\left|S_{1}^{(h+1)}\right|$ by \mathbf{T}. For if P^{\prime} is a point of $V^{\prime}{ }_{d}$, double for a locus S_{1}^{\prime} of $\left|S_{1}^{(h+1)^{\prime}}\right|$, and if P^{\prime} does not lie on any of the varieties \mathfrak{Z}_{μ}, then it is the image of a unique point P on V_{d}, which is a double point of the variety S_{1} which transforms into S_{1}^{\prime}; thus P lies on $M_{h, 1}$ and P^{\prime} lies on $M_{h, 1}^{\prime}$. If on the other hand P^{\prime}, a double point of $S^{\prime}{ }_{1}$, lies on \mathfrak{U}_{μ}, then the corresponding S_{1} has a double point at A_{μ}. This cannot happen if $h<d-1$, since then M_{h} does not pass through A_{μ}; and if $h=d-1$ then S_{1} must be the unique variety of $\left|S_{1}^{(d)}\right|$ which has a double point at A_{μ}. The complete transform of S_{1} by \mathbf{T} then contains \mathfrak{U}_{μ} doubly, and thus the locus \mathbb{S}_{1} consists of \mathfrak{Z}_{μ} and a residual variety $S^{\prime}{ }_{2}$. The point P^{\prime} is thus on the intersection of ${S^{\prime}}_{2}$ and \mathfrak{A}_{μ}. But

$$
\left(\mathcal{S}_{2}^{\prime} \cdot \mathfrak{\mathfrak { U }}_{\mu}\right) \equiv\left(\mathcal{S}_{1}^{\prime}-\mathfrak{z u}_{\mu} \cdot \mathfrak{\mathfrak { u }}_{\mu}\right) \equiv-2\left(\mathfrak{Z}_{\mu}^{2}\right) \equiv\left(M_{d-1,1}^{\prime} \mathfrak{\mathfrak { U }}_{\mu}\right)
$$

by (4) and (8). Thus $M_{d-1,1}^{\prime}$ and S_{2}^{\prime} meet \mathfrak{Z}_{μ} in equivalent loci. But any point of $M_{d-1,1}^{\prime}$ obviously lies on the Jacobian of $\left|S_{1}^{(d) \prime}\right|$, and hence these intersections coincide. It follows that, for all values of $h(<d), M_{h, 1}^{\prime}$ is the Jacobian of the system $\left|S_{1}^{(h+1)^{\prime}}\right|$.
6. The canonical system $X^{\prime}{ }_{h}$ on V_{d}^{\prime} is, by (2), given by

$$
\begin{equation*}
X_{h}^{\prime} \equiv M_{h, 1}^{\prime}+\sum_{i=1}^{d-h}(-)^{i}\binom{h+1+i}{h+1}\left(M_{h+i, 1}^{\prime} S_{1}^{\prime i}\right) \tag{9}
\end{equation*}
$$

When $h=d-1$ this becomes

$$
X_{d-1}^{\prime} \equiv M_{d-1,1}^{\prime}-(d+1) S_{1}^{\prime}
$$

Using (3) and (6) we obtain

$$
X_{d-1}^{\prime} \equiv M_{d-1}^{\prime}-(d+1) S^{\prime}+(d-1) \Sigma \mathfrak{U}_{\mu}
$$

But

$$
\begin{align*}
& \mathbf{T}\left(X_{d-1}\right) \equiv M_{d-1}^{\prime}-(d+1) S^{\prime}, \quad \text { and so } \\
& \mathbf{T}\left(X_{d-1}\right) \equiv X_{d-1}^{\prime}-(d-1) \Sigma \mathfrak{U}_{\mu} . \tag{10}
\end{align*}
$$

When $h<d-1$, on substituting in (9) from (3), (5) and (6), we get

$$
\begin{aligned}
& X^{\prime}{ }_{h} \equiv M_{h}^{\prime} \stackrel{d-h-2}{+\sum_{i=1}(-)^{i}}\binom{h+1+i}{h+1}\left(M_{h+i}^{\prime} \cdot\left(S^{\prime}-\Sigma \mathfrak{A}_{\mu}\right)^{i}\right) \\
& +(-)^{d-h-1}\binom{d}{h+1}\left(\left(M_{d-1}^{\prime}-2 \Sigma \mathfrak{U}_{\mu}\right) \cdot\left(S^{\prime}-\Sigma \mathfrak{U}_{\mu}\right)^{d-h-1}\right)+(-)^{d-h}\binom{d+1}{h+1}\left(\left(S^{\prime}-\Sigma \mathfrak{U}_{\mu}\right)^{d-h}\right) .
\end{aligned}
$$

But $\left(M_{k}^{\prime} \cdot \mathfrak{Z}_{\mu}\right) \equiv 0,\left(S^{\prime} \cdot \mathfrak{Z}_{\mu}\right) \equiv 0$, and so, using (1), $X^{\prime}{ }_{h} \equiv M^{\prime}{ }_{h}+\sum_{i=1}^{d-h}(-)^{i}\binom{h+1+i}{h+1}\left(M_{h+i}^{\prime} S^{\prime i}\right)-2\binom{d}{h+1} \Sigma\left(\mathfrak{Z}_{\mu}^{d-h}\right)+\binom{d+1}{h+1} \Sigma\left(\mathfrak{U}_{\mu}^{d-h}\right)$, i.e.

$$
\begin{equation*}
X^{\prime}{ }_{h} \equiv \mathbf{T}\left(X_{h}\right)-\left(2\binom{d}{h+1}-\binom{d+1}{h+1}\right) \Sigma\left(\mathfrak{Z}_{\mu}^{d-h}\right) . \tag{11}
\end{equation*}
$$

If we write $d-h$ for h in (11) we see that it can be written in the form

$$
\begin{equation*}
\mathbf{T}\left(X_{d-h}\right) \equiv X_{d-h}^{\prime}-\lambda_{h} \Sigma\left(\mathfrak{U}_{\mu}^{h}\right), \tag{12}
\end{equation*}
$$

where λ_{h} is found (after a little reduction) to be given by

$$
\begin{equation*}
\lambda_{h}=\binom{d}{h}-\binom{d}{h-1} . \tag{13}
\end{equation*}
$$

Since (11) holds for $0 \leqq h<d-1$, (12) holds for $1<h \leqq d$; but from (10) we see also that (12) holds when $h=1$, if we make the usual convention that $\binom{d}{0}=1$. Thus (12) may be regarded as giving the rule by which all the canonical systems on V_{d} are transformed.
7. It is now easy to deduce the formulae appropriate to the more general case in which \mathbf{T} and \mathbf{T}^{-1} both have fundamental points. To do this we introduce the variety $V^{\prime \prime}{ }_{d}$ of $\S 2$, and write $\mathbf{T}=\mathbf{T}_{2} \mathbf{T}_{1}$, where T_{1} is the transformation between V_{d} and $V^{\prime \prime}{ }_{d}$, and \mathbf{T}_{2} is the transformation between $V^{\prime \prime}{ }_{d}$ and $V_{d}^{\prime} ; \mathbf{T}_{1}$ and \mathbf{T}_{2}^{-1} are transformations of the type considered in §§3-6. Thus, if $\boldsymbol{\mathcal { B }}_{\mu}$ are the fundamental varietie ${ }_{\varepsilon}$ on $V^{\prime \prime}{ }_{d}$ corresponding to the fundamental points A_{μ} on V_{d}, and if $X^{\prime \prime}{ }_{h}$ is the canonical system of dimension h on $V^{\prime \prime}{ }_{d}$, then, by (12),

$$
\mathbf{T}_{1}\left(X_{d-h}\right) \equiv X^{\prime \prime}{ }_{d-h}-\lambda_{h} \Sigma\left(\mathcal{B}_{\mu}^{h}\right) .
$$

Similarly, if $\mathcal{B}^{\prime}{ }_{v}$ are the fundamental varieties on $V^{\prime \prime}{ }_{d}$ corresponding to the fundamental points A^{\prime} which \mathbb{T}_{2}^{-1} has on V_{d}^{\prime},

$$
\mathbf{T}_{2}^{-1}\left(X_{d-h}^{\prime}\right) \equiv X^{\prime \prime}{ }_{d-h}-\lambda_{h} \Sigma\left(\mathcal{B}_{\nu}^{\prime h}\right) .
$$

The transformation \mathbf{T}_{2} changes the varieties \boldsymbol{B}_{μ} into the varieties \mathfrak{Z}_{μ} which correspond to the fundamental points A_{μ} on V_{d}, while \mathbf{T}_{1}^{-1} transforms \mathcal{B}^{\prime}, into the fundamental variety $\mathfrak{Z X}_{\nu}{ }_{\nu}$ corresponding to the fundamental point $A^{\prime}{ }_{\nu}$ on $V^{\prime}{ }_{d}$. That is,

Hence

$$
\mathbf{T}_{2}\left(\mathcal{B}_{\mu}\right) \equiv \mathfrak{Z}_{\mu} ; \quad \mathbf{T}_{1}^{-1}\left(\mathcal{B}_{\nu}^{\prime}\right) \equiv \mathfrak{U}_{\nu}^{\prime}
$$

$$
\begin{aligned}
\mathbf{T}\left(X_{d-h}-\lambda_{h} \Sigma\left(\mathfrak{X}_{\nu}^{\prime h}\right)\right) & \equiv \mathbf{T}_{2} \mathbf{T}_{1}\left(X_{d-h}-\lambda_{h} \Sigma\left(\mathfrak{X}_{\nu}^{\prime h}\right)\right) \\
& \equiv \mathbf{T}_{2}\left(X_{d-h}^{\prime \prime}-\lambda_{h}\left[\Sigma\left(\mathfrak{B}_{\mu}^{h}\right)+\Sigma\left(\mathfrak{B}_{\nu}^{\prime h}\right)\right]\right) \\
& \equiv X_{d-h}^{\prime}-\lambda_{h} \Sigma\left(\mathfrak{U}_{\mu}^{h}\right)
\end{aligned}
$$

and so the general law of transformation is

$$
\begin{equation*}
\mathbf{T}\left(X_{d-h}-\lambda_{h} \Sigma\left(\mathfrak{X}_{\nu}^{\prime h}\right)\right) \equiv X_{d-h}^{\prime}-\lambda_{h} \Sigma\left(\mathfrak{X}_{\mu}^{h}\right) \tag{14}
\end{equation*}
$$

8. If ($h_{1}^{a_{1}} h_{2}^{\alpha_{2}} \ldots h_{d}^{a_{a}}$) is a partition of the integer d then the intersection of the canonical varieties $\left(X_{d-h_{1}}^{a_{1}} X_{d-h_{2}}^{a_{2}} \ldots X_{d-h_{s}}^{a_{s}}\right)$ is in general a finite set of points. The number of points in this set is a relative invariant of V_{d}, and is denoted by the symbol $\left\{h_{1}^{a_{1}} h_{2}^{a_{2}} \ldots h_{8}^{a_{t}}\right\}$. I have shown ${ }^{1}$ that the arithmetic genus of V_{d} can be expressed as a linear function of these invariants for all values of d, and have determined the explicit form of the expression for $d \leqq 6$. By way of application of the foregoing work we shall now verify that the arithmetic genus of V_{d} is unaltered by a transformation of the kind considered above, if $d \leqq 6$. This means that P_{a}, which is a priori given as a function of relative invariants of V_{d} is an absolute invariant for birational transformations of this particular type.

It is evidently sufficient to consider the case in which T has fundamental points on V_{d} only, and not on V_{d}^{\prime}. We first examine the effect of T on the intersections of the various canonical systems.

In the first place, since the points A_{μ} are not assigned basepoints for any of the systems $\left\{X_{h}\right\}$, it follows that $\left(\mathfrak{U}_{\mu} . \mathbf{T}\left(X_{d-h}\right)\right) \equiv \mathbf{0}$. Thus, from (1) and (12),

$$
\begin{equation*}
\left(\mathfrak{U}_{\mu} \cdot X_{d-h}^{\prime}\right) \equiv \lambda_{h}\left(\mathfrak{Z}_{\mu}^{h+1}\right) . \tag{15}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\mathbf{T}\left(X_{d-h} \cdot X_{d-l}\right) & \equiv\left(X_{d-h}^{\prime}-\lambda_{h} \Sigma\left(\mathfrak{U}_{\mu}^{h}\right)\right)\left(X_{d-l}^{\prime}-\lambda_{l} \Sigma\left(\mathfrak{U}_{\mu}^{l}\right)\right) \\
& \equiv\left(X_{d-h}^{\prime} \cdot X_{d-l}^{\prime}\right)-\lambda_{h}\left(\Sigma\left(\mathfrak{U}_{\mu}^{h}\right) \cdot X_{d-l}^{\prime j}\right)-\lambda_{l}\left(\Sigma\left(\mathfrak{U}_{\mu}^{l}\right) \cdot X_{d-h}^{\prime}\right) \\
& \equiv\left(X_{d-h}^{\prime} \cdot X_{d-l}^{\prime}\right)-\lambda_{h} \lambda_{l} \Sigma\left(\mathfrak{U}_{\mu}^{h+l}\right) .
\end{aligned}
$$

[^2]By repetition of this argument we see that
$\mathbf{T}\left(X_{d-h_{1}}^{a_{1}} X_{d-h_{2}}^{a_{2}} \ldots X_{d-h_{4}}^{a_{t}}\right) \equiv\left(X_{d-h_{1}}^{a_{1}} X_{d-h_{2}}^{a_{2}} \ldots X_{d-h_{4}}^{a_{2}}\right)-\lambda_{h_{1}}^{a_{1}} \lambda_{h_{2}}^{a_{\mathrm{I}}} \ldots \lambda_{h_{s}}^{a_{1}} \Sigma\left(\mathfrak{A}_{\mu}^{a}\right)$, where $a=h_{1} a_{1}+h_{2} a_{2}+\ldots+h_{s} a_{s}$.

Thus, if $\left\{h_{1}^{a_{1}} h_{2}^{a \overline{2}} \ldots h_{s^{\prime}}^{a}\right\}$ is the invariant of $V^{\prime}{ }_{d}$ corresponding to the invariant $\left\{h_{1}^{a_{1}} h_{2}^{a_{2}} \ldots h_{8}^{a_{i}}\right\}$ of V_{d}, it follows from (16) that

$$
\begin{equation*}
\left\{h_{1}^{a_{1}} h_{2}^{a_{2}} \ldots h_{8}^{a_{2}}\right\}=\left\{h_{1}^{a_{1}} h_{2}^{a_{2}} \ldots h_{\varepsilon}^{a_{s}}\right\}^{\prime}-\lambda_{h_{1}}^{a_{1}} \lambda_{h_{2}}^{a_{5}} \ldots \lambda_{h_{s}}^{a_{2}^{a}} \cdot \theta \tag{17}
\end{equation*}
$$

where

$$
\theta=\sum_{\mu=1}^{k}\left[\left(\mathfrak{U}_{\mu}^{d}\right)\right]
$$

is independent of the h 's and a 's.
Since P_{a} is a linear function of the invariants $\left\{h_{1}^{a_{1}} \ldots h_{s}^{a^{a}}\right\}$, in order to prove that P_{a} is the same for V_{d} and $V^{\prime}{ }_{d}$ it is enough, by (17), to show that the same linear function of the quantities $\lambda_{h_{1}}^{a_{1}} \ldots . \lambda_{h_{4}}^{a_{4}}$ is equal to zero. The λ 's are determined by (13), so that the verification is reduced to simple substitution in known formulae.

For a V_{3} it is known ${ }^{1}$ that

$$
24\left(P_{a}-1\right)=\{21\}
$$

and to prove the invariance of P_{a} it is thus only necessary to verify that $\lambda_{2} \lambda_{1}=0$; as is in fact the case, since $\lambda_{2}=0$.

For ${ }^{2}$ a V_{4},

$$
720\left(P_{a}+1\right)=-\{4\}+\{31\}+3\left\{2^{2}\right\}+4\left\{21^{2}\right\}-\left\{1^{4}\right\}
$$

Now when $d=4,(13)$ gives $\lambda_{1}=3, \lambda_{2}=2, \lambda_{3}=-2, \lambda_{4}=-3$, and

$$
-\lambda_{4}+\lambda_{3} \lambda_{1}+3 \lambda_{2}^{2}+4 \lambda_{2} \lambda_{1}^{2}-\lambda_{1}^{4}=3-6+12+72-81=0
$$

so that P_{a} is invariant for these transformations of a V_{4}.
For ${ }^{3}$ a V_{5},

$$
1440\left(P_{a}-1\right)=-\{41\}+\left\{31^{2}\right\}+3\left\{2^{2} 1\right\}-\left\{21^{3}\right\}
$$

while

$$
\lambda_{1}=4, \lambda_{2}=5, \lambda_{3}=0, \lambda_{4}=-5
$$

[^3]Thus, since

$$
-\lambda_{4} \lambda_{1}+\lambda_{3} \lambda_{1}^{2}+3 \lambda_{2}^{2} \lambda_{1}-\lambda_{2} \lambda_{1}^{3}=20+0+300-320=0
$$

P_{a} is invariant.
Finally, for ${ }^{1}$ a V_{6},

$$
\begin{aligned}
& 60480\left(P_{a}-1\right)= 2\{6\}-2\{51\}-9\{42\}-5\left\{41^{2}\right\}-\left\{3^{2}\right\}+11\{321\}+5\left\{31^{3}\right\}+10\left\{2^{3}\right\} \\
&+11\left\{2^{2} 1^{2}\right\}-12\left\{21^{4}\right\}+2\left\{1^{6}\right\}, \\
& \text { and } \quad \lambda_{1}=5, \lambda_{2}=9, \lambda_{3}=5, \lambda_{4}=-5, \lambda_{5}=-9, \lambda_{6}=-5 .
\end{aligned}
$$

Hence
$2 \lambda_{6}-2 \lambda_{5} \lambda_{1}-9 \lambda_{4} \lambda_{2}-5 \lambda_{4} \lambda_{1}^{2}-\lambda_{3}^{2}+11 \lambda_{3} \lambda_{2} \lambda_{1}+5 \lambda_{3} \lambda_{1}^{3}+10 \lambda_{2}^{3}+11 \lambda_{2}^{2} \lambda_{1}^{2}-12 \lambda_{2} \lambda_{1}^{4}+2 \lambda_{1}^{6}$ $=-10+90+405+625-25+2475+3125+7290+22275-67500+31250=0$ and P_{a} is invariant for V_{6}.
${ }^{1}$ II, formula (61).

Manchester University.

[^0]: ${ }^{1}$ J. A. Todd, "The geometrical invariants of algebraic loci," Proc. London Math. Soc. (2), 43 (1937), 127 ; "'lhe arithmetical invariants of algebraic loci," ibid. (2), 43 (1937), 190. We refer to these papers as I and II.

 2B. Segre, "Quelques resultats nouveaux dans la géométric sur une V_{3} algébrique," Mem. Acad. royale de Belgique (2), 14 (1936).

[^1]: ${ }^{1}$ II, formula (4).

[^2]: ${ }^{1}$ II, § 7.

[^3]: ${ }^{1}$ B. Segre, Mem. R. Acc. d'Italia, 5 (1934), 505.
 ${ }^{2}$ II, formula (37).
 ${ }^{3}$ II, formula (56).

