ON A PROBLEM BY R.A. HIRSCHFELD: COUNTEREXAMPLE

M. Edelstein

The following question was asked by R.A. Hirschfeld in [1]: "E and F are Banach spaces, F reflexive, D is a subset of E and T: $D \rightarrow F$ a nonlinear contraction, i.e.,

 $\|\mathbf{Tx}_1 - \mathbf{Tx}_2\|_F \le \|\mathbf{x}_1 - \mathbf{x}_2\|_E$ whenever $\mathbf{x}_1, \mathbf{x}_2 \in D$.

Can T be extended to a contraction $\widetilde{T}: E \rightarrow F$ (for E = F = Hilbert space the answer is yes)."

Counterexample.

Let E be the space of all ordered pairs $x = (x_1, x_2)$ of real numbers with $||x|| = \max(|x_1|, |x_2|)$ and let $D = \{(-1, 1), (1, 1), (1, -1)\}$. Let T map D onto the vertices of an equilateral triangle Δ of side-length = 2 in the Euclidean plane F.

It is clear that no extension \widetilde{T} of the desired type can exist. For $\widetilde{T}((0,0))$ must lie in each disc of radius one centered at the vertices of Δ and the intersection of these discs is empty.

REFERENCE

 R.A. Hirschfeld: Extension of nonlinear contractions. Research Problem 5, Bull. Amer. Math. Soc. 71, (1965), p. 495.

Dalhousie University

835