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On embedding closed categories

B.J. Day and M.L. Laplaza

This article contains one method of fully embedding a symmetric

closed category into a symmetric monoidal closed category. Such

an embedding is very useful in the study of coherence problems.

Also we give an example of a non-symmetric closed category for

which, under the embedding discussed in this article, the

resultant monoidal closed structure has associativity not an

isomorphism.

Introduction

General closed categories were introduced and developed by Eilenberg

and Kelly [5]. These authors have also considered symmetric closed

categories in unpublished work and, recently, the symmetric case was

developed formally by de Schipper [9].

In "nature" it is unusual to find examples of symmetric closed

categories which are not themselves part of an enveloping monoidal closed

structure. The central aim of this article is to show that all symmetric

closed categories arise this way. Such an embedding can then be used to

study coherence problems in abstract closed categories,since Kelly and

MacLane [6] have dealt with coherence in a symmetric monoidal closed

category.

A modified embedding has been used by Laplaza [£] to show that all

closed categories arise as full subcategories of monoidal closed

categories; however, from the point of view of limit and colimit preserving

properties of the embedding (see Day [3] for a rough outline with no

coherence considerations) it still seems easier to use the method developed
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here in the symmetric case. Nevertheless, this article is entirely

complementary to the work of the second author (Laplaza [7] and [S]) which

is a continuation of such "transcendental" (that is, non-combinatorial)

approaches to coherence problems.

In Section 3 we provide a counterexample to the conjecture that the

embedding employed in this article yields an associativity isomorphism when

the closed category in question is non-symmetric (see Laplaza [7]). This

example is of a topological nature and is of some interest in itself.

Throughout the article we assume some familiarity with the elements of

closed category theory as given by Eilenberg and Kelly [5]. Some of the

necessary material from de Schipper [9] is collected, for reference, in

Section 1 . We shall assume the existence of two universes of sets, denoted

En& and ENS respectively (En6 € ENS) ; these universes are identified

with the cartesian closed categories of sets which they define. The

statement "A is small" means obj A € Ent> , and all categories are assumed

to be locally En4-small unless otherwise indicated. The remaining

terminology and notations are mainly those of [I], [5], and [6].

1. Symmetric closed categories and functors

DEFINITION 1.1. A symmetric closed category (SCC) is an ordered

7-tuple V = [VQ, [-, - ] , J, i, j, L, s] consisting of

(i) a category V (the underlying category of V ),

(ii) a functor [-, -] : f° p x V -*• V (the internal-horn

functor),

(ili) an object I £ V. (the unit object),

(iv) a natural isomorphism i = i^ : X -*• [IX] ,

(v) a natural transformation 0 = 3% '• I "*"

(vi) a natural transformation L = Lyz : [XZ]

(vii) a natural isomorphism 8 = snz : [X[?Z]] -»•

These data are to satisfy the following axioms:
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CC5'. The map s\ : VAXX) -*• VQ(I[XX]) which sends / € V (XX) to

the diagonal of

3\

is an isomorphism. //

The axioms are written for immediate comparison with those of de

Schipper [9], II.2. They differ from de Schipper's axioms in the non-

equational part; we have omitted the "basic functor" V from the data,

defining it by V = VAl-) , and we have replaced de Schipper's non-

equational axioms CCO and CC5 by the weaker non-equational axiom CC5'-

In order to state relations between the data for an SCC the first

basic situation (of de Schipper) is defined to consist of:

(i) a category VQ ,

( i i ) a functor [-, - ] : l/°P x VQ + VQ ,

( i i i ) an object 1 ( 1 / . ,

(iv) a natural isomorphism a = oxyz : V (X[XZ]) •> V (X[XZ])

satisfying a .o 7 = 1 .

PROPOSITION 1.2. Let V be an SCC. Define a natural isomorphism

a = axyz : VQ(X[XZ]) ->• VQ(X[XZ]) by aommutativity of
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VQ(X[YZ]) - VQ(I[XZ])

p ^ > vQ[i[nxz]-])

using axiom CC51. Then we obtain the first basic situation, L and s

being related by [9], 'II (3.6), and i and j being related by [9], II

(3.15).

Proof. This is immediate from SCC1 and CC51. //

We derive [9] II (3.6) by considering a diagram of the form

VQ{I[[XY]{X[WZ}]]) vo(y[wz])

[X-] \ ,

vJ[n]{x[wz]])

where, for example, (+) commutes by CC1, CC51, and naturality of L

The relation [9], II (3.15) is similarly obtained from SCCU. We then have

[9] (U.2), (it.3), (k.k), (k.5), and (1+.7).

PROPOSITION 1.3 (Kelly). i]. = JT : I ->• [il] .

Proof. First we note that any SCC is a closed category with CC51

holding (see de Schipper [9], II, Theorem U.2). Then the assertion is a

simple consequence of the closed category axioms and naturality. //

PROPOSITION 1.4. if a natural transformation

h : |41t2JC]] -»• [[i42[43D]]&1[42Dl3C]J]] is defined by the composite
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(1.1)

(2)

(3)

then the following diagrams aonmute:

(1.2)

(10

(5)

(1.3)

(0)

(0)

(6)

(7)

(6)

(7)

(8)

(9)

Proof. Expand diagram (1.2) to

- (1)

- (1)

(9)

-> (8)

- (5)
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(5)

(1)

*- (2) .

Then we have: (1*51*) t>y [9], II i*.1*; (**12) because 3 is natural;

(oU***) by definition of R and naturality of s and L ; (**23)

because L is natural; (*03) because L = o(R) . Expand diagram (1.3)

to

* (2)

(7) • (8)

Then we have (3067*) by SCC3; (*789) because L is natural; (123*9)

by SCC3. //

COROLLARY 1.5. The transformation

which maps (f,g) to
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f

[DC] £ • [ [4 q

coincides with the natural isomorphism

tD rD

Proof. The first transformation is an evaluated form of (1.2) while

the second transformation is an evaluated form of (1.3). //

DEFINITION 1.6. A symmetric closed functor $ : 1/ •*• I/' between two

symmetric closed categories is an ordered triple $=(<(>,<(>,<}>)

consisting of:

( i ) a functor <j> : 1/ ->- 1/'

( i i ) a n a t u r a l t ransformat ion <f> = <pvv : <j>[.Xy] -> [(j)X, (Jiy] i n
AX

(iii) a morphism <f> : I' -*• $1 in VL .

These data are to satisfy the following two axioms:

CF1. The following diagram commutes:

J' .7'

SCF3. The following diagram commutes:
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i) 4> : VQ is a full embedding,

(iii) (f> is an isomorphism. //

//

These axioms are the same as given "by de Schipper.

DEFINITION 1.7. A symmetric closed functor $ : 1/ •+• I/1

symmetric olosed full embedding if:

is called a

(ii) $„„ is an isomorphism for all X, Y € 1/ ,

2. The embedding theorem

We recall from Day [7] that a monoidal "biclosed structure on a functor

category of the form [A, En&] (with A small) is determined to within an

isomorphism by its "structure constants". These "constants" comprise what

is called a promonoidal struature on A .

DEFINITION 2.1. A promonoidal category A = (AQ, P, J, a, X, p) is

said to be monoidal if the functors P(AB-) : A •+• Eni and J : A -*• EnA

are representable for all A, B € A . //

Such categories correspond to monoidal categories.

DEFINITION 2.2. A promonoidal category A = (A , P, J, a, X, p) is

said to be closed if the functors P{-AB) : A ° p •+• ERA and J : A -> Eni

are representable for all A, B € A .

We warn the reader that such categories do not correspond to closed

categories but rather to equationally defined "associative" closed

categories (see Day [3], Example 3.2).
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When A is monoldal the convolution structure on [A, Evu> ] i s given

by the formulas:

F*G

F\G
MB

= FA x GB x AQ{A g> B, -) ,

= 1 [FA x A (A ® - , B) , GB]
MB U

3* f [FA, GU ® - ) ] ,

G/F = f [ M x A ( - ® 4 , S ) , CB]

S [FA, G( -® 4 ) ] .
J4

When A i s a closed promonoidal category the convolution s t ruc ture on

[A, Enb ] i s given t y :

t
F*G = F[A~] x GA ,

F\G = I [FA x An(A[-B]) , GBl
JAB °

S [ [F[-A], GA~\ ,

GIF = f [FA x A. ( - [AB]) , GB] .

JAB U

If A is symmetric as a promonoidal category then [A, En&] i s symmetric

monoidal closed.

PROPOSITION 2.3. RzcTz (small) symmetric closed category V has a

canonical symmetric closed promonoidal structure.

Proof. We define P : l/°p x l/°p x 1/Q -> En6 by P U , J , 2) = VQ{X[YZ])

and J : I/Q + Ent, by JX' = " 0 ( - ^ ) • Thus there are na tura l

transformations:

a : j V^lXB]) x VQ[A2[A3X]) + j VQ{x[lf}) x I /J^
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f\ : j VQ(IX)

p : j VQ(IX) x VQ(AVCB]) - VQ(AB) ,

where a is an isomorphism by Corollary 1.5 and the representation

theorem, whilst X and p are isomorphisms by the closed-category axioms

together with the representation theorem. The axioms for a symmetric

promonoidal category structure on V follow easily from the representation

theorem and the closed-category axioms for 1/ . //

THEOREM 2.4. Each small symmetric closed category V admits a

symmetric closed full embedding into a symmetric monoidal closed category

[A, Eni] .

Proof. Give 1/ the canonical symmetric promonoidal structure

(Proposition 2.3) and form the convolution [I/, Eni ] . Let A consist of

all the finite *-paths of representable functors in [I/, Eni ] together

with J (the "zero" path). Then V°V c Ac [I/, Eni] where A is a small

symmetric monoidal category. We again form the convolution [A, Eni ] and

obtain 1/ c A c: [A, Eni ] . The composite embedding is a symmetric closed

functor because each factor is a symmetric promonoidal functor (see Day

[4]). To establish that the embedding is a symmetric closed full embedding

we refer to Day [3], Example 3.2. //

REMARK 2.5. Several refinements of the theorem are available (Day

[3], Example 3-2) and they show that the embedding can be modified to

preserve certain limits and colimits. //

3. A counterexample

The aim of this section is to provide several concrete examples of

closed categories which are not monoidal, not symmetric and, moreover, are

not associative in the sense that the convolution structure which they

generate under the embedding of Section 2 has an associativity transform-

ation which is not always an isomorphism. The examples are obtained from

categories of quasi-topological spaces, although the constructions can be

generalised (see [2], Section 3).

Let Top be the category of all topological spaces and continuous maps
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and choose A c Top such that A is closed under finite products in Top

and contains all the finite discrete spaces. The category A of quasi-

topological bases on A is formed in the usual manner. A quasi-

topological base is a set X together with, for each A € A , a set of

"selected" morphisms from A to X denoted sel(A, X) . These sets are

subject to two axioms:

Ql. selU, X) contains all constant maps;

Q2. if f € A(i4, B) and g € sel(B, X) then gf € selU, X) .

A morphism f : X -*• Y of bases is a set map such that g Z sel(4, X)

implies fg € sel(j4, Y) ; such a map is said to be "continuous". The

category A is canonically embedded in A by the choices

selU, B) = A(A, B) .

There exist two well-known symmetric monoidal closed structures on

A . The first is the cartesian closed structure where the monoidal product

is given by the cartesian product in A and the closed structure [X, Y]

is the set ~A{X, Y) with f : A -*• [X, Y] selected if the associated

morphism /' : A x X -+ Y is continuous.

The second canonical monoidal closed structure is the "polntwise"

structure [X, Y] for which f : A •*• [X, Y] is selected if, for each

x i X , f{-){x) : A •*• Y is selected. The associated monoidal structure

X ® Y is defined by selecting f : A •*• X x y if and only if / is of the

form {x} x g or g x {y} for some selected g .

A third closed structure which is not monoidal is defined as follows.

Define [X, Y] to be J(X, Y) with f : A ->• [X, Y] selected if and only

if either f is constant or, for all g € EPIA(B, X) with B € A , the

composite

e{f x g) : A x B •+ A{X, Y) x X + Y

is selected. The verification that this definition provides a closed

structure on A is left to the reader (see [6], Proposition 1.2.11). We

note that the bijections

[X, Y] + [X, Y]o + [X, Y]p

are continuous and are not isomorphisms in general.
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I t is readily seen that in the case where A i s chosen to be the

category F-ttt of (discrete) f in i te sets the above construction reduces to

the third closed structure discussed by Ei lenberg and Ke I ly in [ 5 ] , IV,

Section 7.

The inclusion cj> : f-in c A induces an adjunction $—(<))* : A -»• F-tn

(see [2 ] , Example 3.3). This gives the following:

PROPOSITION 3 . 1 . The funator [X, -] : A -+ A does not in general

'preserve powers.

Proof. Let s" denote the set of n + 1 points with the "trivial"

quasi-topological base structure; that i s , sel(A, s") = Eni[A, sn) . Let

ms be the m-fold coproduct s + . . . + s in A . Then

. , r 0 fe-i (k+lf-1 r m •> ,7 n sm 0
<f>* ]ms , ns J = MS + [n -n){k+l) s .

In particular

<t>*[2s°, 2 s 1 x 2s1] S <(.*[2s0, its3] ̂  its15 + 192s° ,

while

^([2s°, 2s1] x [2s0, 2s1]) - 4>*[28°, 2s1] x <|,*[2S
0, 2s1] s

s (2s3+8s2) x (2s3
+8s

0) - 1+s15 + 32s3 + 6hs° .

Thus [2s , -] : A -»• A does not preserve powers. //

REMARK 3.2. One may similarly deduce that [-, X] : A ° p •+ A" does

not preserve limits in general, so [X, Y] is not symmetric.

PROPOSITION 3.3. The closed structure [X, I] on A~ is not

associative.

Proof. Suppose that the convolution structure generated by [X, Y]

on [A, EMS] is associative. This is easily seen to be equivalent to the

statement that the canonical transformation

rXX (XY
F[X, Z] x (GlY, X] x HY) •* I [F\X, [Y, Z]] * GX) x HY

is an isomorphism for all F, G, H € [A, EMS] . By the representation

theorem this implies that the following transformation is an isomorphism
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for a l l U, V, W € A" :

!x -
j K { U , [X, Z ] ) x A ( W , [ V , X]) •* A [ U , [ w , [ V , Z ] ] ) .

o

Let U = ns . Then

J A { n s ° , [X, Z]) x A ( W , [ V , X]) s s j A ( X , Z ) n x A ( W , [ V , X])

^ J A ( j , z " ) x A"(V, [ F , X ] )

ty the representation theorem. Also

A{ns°, [W, [V, Z]]) s*K[w, [V, Zf] .

Thxis, by the representation theorem, the morphism

[v, z"] - [v, zf

is an isomorphism; this contradicts Proposition 3.1. //

From this we may deduce that the closed structure [X, Y] on A~ is

not symmetric nor is it part of an associative biclosed structure on A .
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