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An index of P. Hall for varieties

of groups

L.F. Harris

P. Hal I defined the fc-index of a variety V, of groups to be

the least cardinal number r such that if a group G is

generated by a set S and every subset of 5 of cardinality at

most i> generates a group in ,V then G i. V_ . We show that

the only variety which has finite fe-index and contains a

product of two non-trivial varieties is the variety of all

groups. As a consequence of this and P. Hall's result that

nilpotent varieties have finite fc-index we show that a soluble

variety or a variety generated by a finite group has finite

fc-index if and only if it is nilpotent.

1.

In a lecture at Oxford in August 1966, Ha I I defined the k-index of a

variety V. of groups to be the least cardinal number v such that if a

group G is generated by a set S and every subset of S of cardinality

at most r generates a group in V, then C f V , At the same time he

showed that nilpotent varieties have finite fe-index and asked which other

varieties have this property. Here we shall introduce a class M of

varieties which is large enough to contain every soluble variety and every

Cross variety (that is, a variety generated by a finite group) and shall

show that the nilpotent varieties are the only varieties in W which have

finite k-index. As a proof of Hall's result that nilpotent varieties

have finite k-index has never been published and the result is used in
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this paper we give a proof in Section 3.

Our main result is

THEOREM 1. if the variety V̂  has finite k-index and contains the

product of two non-trivial varieties then ^ is the variety of all groups.

The reader is referred to Hanna Neumann's book [7] for all undefined

notation and terminology.

Before we introduce the class N we make some preliminary remarks.

The argument of Theorem 1 of Kovacs and Newman [4], together with the fact

that nilpotent varieties are finitely based (31*.!1* of [7]), shows that

every non-nilpotent variety contains a non-nilpotent subvariety JL a 1 1 o f

whose proper subvarieties are nilpotent. We call such a variety V, just

non-nilpotent. A variety V, is said to be reducible if ^ is contained

in the product of two proper subvarieties, that is, ,V £ IM, where i£ c X

and W c V . Otherwise V is said to be irreducible. We write ^ for

the variety of all abelian groups and, for any positive integer m , A

for the variety of all abelian groups of exponent dividing m . If ^ is

a reducible just non-nilpotent variety then ^ c uw with IJ c ^ and

W c ^ . As X i s Just non-nilpotent, ^ and W are nilpotent, and \f

is soluble. It now follows, by Proposition 2 of Groves [2], that V = A A

for some not necessarily distinct primes p and q .

We define N to be the class of all varieties which do not contain an

irreducible just non-nilpotent subvariety. Clearly N contains all

nilpotent varieties. Also W contains all Cross varieties: Kovacs and

Newman [3] point out that every just non-nilpotent variety contained in a

Cross variety has the form A A for distinct primes- p and q . If

=p-q

_V i N and U c V then c l e a r l y £ « W . Also i f U, V, € N then UV i N :

for i f W i s a s u b v a r i e t y of UV then
We (UnW)(VnW)

so t h a t , i f W i s i r reducib le , W c j£ or W c ^ . I t now follows that N

contains any subvariety of any product variety V Vg . . . V^ whenever each

of the V. i s e i ther abelian or Cross; that i s , A/ contains every

SC-variety, in the sense of Groves [2 ] .
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On the other hand we will show that the variety £ of all groups is

not in W . Bachmu+h, Mochizuki and WaIkup [7] have shown that the variety

£5 of all groups of exponent dividing 5 is not soluble. Thus it

contains a just non-nilpotent subvariety W . If t£ were reducible then

W would equal A A for some not necessarily distinct primes p and q ,

but clearly A A t£ R . Thus £ contains an irreducible just

non-nilpotent variety VJ , and so Q^ \ U .

We show that the theorem above implies

COROLLARY. A variety V of hi has finite k-index if and only if V
is nilpotent.

Proof. If V, € N is nilpotent, then V has finite k-index, by

HalI's result, proved in §3. Suppose conversely that V, i N has finite

k-index and, by way of contradiction, assume \f is non-nilpotent. Let IJ

be a just non-nilpotent subvariety of V_ . As V, € N , U is reducible,

s o IL = 4 A ^ f o r some not necessarily distinct primes p and q . Now by

Theorem 1 V, = £ as V. has finite k-index and contains a product of two

non-trivial varieties. However £ j: N and we have a contradiction.

2.

Before proving Theorem 1 we briefly outline a definition of the

twisted wreath product, a concept due to B.H. Neumann [63- Suppose A and

B are groups, related as follows. B has a subgroup H with a right

transversal T , B = HT , and there is a homomorphism 9 : H •* AutA . Let

Im)

A denote the group of functions of finite support from T to A with

componentwise multiplication. Then the (restricted) twisted wreath product
(T)

A wr- B of A by B is the semidirect product of A by B , such

(r)
that for u i A^ ' , b i B and t I T ,

where tb = he , s i T and h i. H . It can be shown that, up to

isomorphism, A wr. B is independent of the choice of T . If H and 6

are trivial then A wr,. B is the (restricted) standard wreath product and
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(T)
is denoted by A wr B . We regard A and B as subgroups of A wrQ Bc

in the usual way. We shall always take 1 i T and identify the element

a i A with the function u € AK ' defined by u(l) = a and v(t) = 1

for all t t 1 . Thus 4 and B are both subgroups of A VTQ B . The

following lemma, whose proof is left to the reader, is used several times

in proving Theorem 1.

(i). Let G = A wre B where H < B and 6 : H •* Aut4 . Suppose

A < A , B1 < B and B n H = {l} . T7je«, i/ A and B are identified

with subgroups of G , as above, we have

Bx) = A± wr Bx .

We shall use (i) to prove

(ii). Suppose V is a variety of finite k-index r and V.

contains C wr u , where C and D are nontrivial cyclic groups and if

denotes the direct product of r copies of D . Then V_ contains

(C*C) wr / , where C*C is the free product of C with itself.

Proof. Let B = D x n x ... x D where for each i , D. = D

and D. is generated by an element d. . Let h = d d ... d and let

fl be the cyclic subgroup of B generated by h . Let A be the normal

closure of C in the free product C*E . Then there is a homomorphism

6 : H •* Aut/5 , such that 6(h) is the restriction to A of the inner

automorphism of C*H induced by h . Let c be a generator of C . Then

it is easy to see that A WTQ B has a generating set

5 = {c, dv d2 dr+1i .

By (i), every r element subset of S generates a group isomorphic to a

subgroup of C wr Dr . Thus A vre B € V_ since C wr D1" i V, and V, has

k-index r . Let A be the subgroup of A generated by c and c ,

and let B1 = 0 x ̂  x ... x ̂  . Then A^ = C*C , B± = if and
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B n H = {1} . Thus (C*C) wr if is in V , by (i).

Proof of Theorem 1. Suppose V is a variety of finite /c-index r

which contains the product of two nontrivial varieties. Then V^ contains

a product variety (varC)(varZ>) where C and D are nontrivial cyclic

groups. Thus ^ contains C wr if and, by (ii), V. contains

(C*C) wr if . But C*C has an infinite cyclic subgroup C. and jV

contains C' wr if (which is isamorphic to a subgroup of (C*C) wr if ) .

Thus, by (ii) again, V, contains [C-*C) wr 0*" and therefore contains

C *C . But CT*C-I i s a n absolutely free group of rank 2 and so has a

subgroup which is free of countable rank (see problem 2, p. 122 of [5]).

Thus V = £ .

3.

In this section we prove

THEOREM 2 (Hall). If V_ is a variety which is nilpotent of class

a then the k-index of £ is at most c + 1 .

Proof. Suppose G is a group with a generating set S such that

every subset of S of cardinality at most a + 1 generates a group in

V . We shall show that G satisfies every law of V, , so that G t V, .

Let X be an absolutely free group freely generated by the "variables"

x1, x 2 If V = u(x., ..., x ) is an element of X which is a law

of ^ and a : X •*• G is a homomorphism we need to show that vet = 1 .

For each i , x .a is a word in the elements of 5 . Thus there are

elements u. of X and a homomorphism & : X •*• G such that x^B £ S for

all i , and va = y(y1, ..., v )& . Let w = v[v , ..., u ) . Then w

is a law of V, and it suffices to show that u3 = 1 •

By the proof of 33.1»5 of [7], W is equal to a product of words

w , ..., w such that each w. is a consequence of w (hence a law of

\f ) and w. involves each variable it contains. It suffices to show that
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w.& = 1 for each i , and so, changing the notation, we may assume that w

itself involves each variable it contains.

If w involves no more than a + 1 variables then uB = 1 by the

hypothesis on S . Thus we may assume that w involves more than a + 1

variables. Certainly w involves a + 1 distinct variables so, by 33-38

of [7], w is an element of the (e+l)st term of the lower central series

of X . Therefore (see problem 3, p. 297 of [5]), w is in the normal

closure of the set of left normed commutators of the form

[x., s, ..., x.. J , and thus it suffices to show that

But this follows since 6 is a homomorphism and gp(x., %3, •.., x., +-.\6)

is in V and thus is nilpotent of class at most a .
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