CIRCLES OF NUMBERS
by M. BURMESTER, R. FORCADE and E. JACOBS
(Received 12 November, 1976)

Introduction. Arrange any n integers around a circle. The following procedure can
be used to obtain another circle of n integers. For each adjacent pair of the first integers,
form the absolute value of their difference and place it between them; then remove the
original numbers. This procedure can be repeated over and over. When n =4 this always
leads eventually to a circle of zeros. On the other hand when n =3, unless the original
numbers are equal, this never happens. We treat below the general case and related
problems, using for convenience a slightly different formulation. Surprisingly there is
enough structure to lead to some interesting mathematics.

DEeriNtTIONs. Let C=(x;){-, be an infinite sequence of numbers. Let ¥(C) = (x));-

i=1
where x;=|x,,, — x;| for all i. We call C an n-cycle if and only if x;,, = x; for all i. We shall
also represent an n-cycle as an n-tuple (x, x,, ..., x,) when it is convenient.
REMARKS.

1. If C is an n-cycle so is ¥(C).

2. Any n-cycle is also a. kn-cycle (k any natural number).

3. After one application of ¥ all x;’s are non-negative.

4. Let m(C) =max(x;) (which exists for n-cycles). Then m(¥(C))=< m(C) if all entries
in C are non-negative.

DeriniTioN. C will be called repeating if and only if W*(C)= C for some k. The
smallest such k will be called the period of C.

5. The O-cycle (0, 0,...,0) is the only repeating cycle with period 1.

6. In view of Remark 4, every n-cycle made up of integers (or rational numbers)

must eventually, under repeated application of ¥, be reduced to a repeating one. This is
not always true for cycles made up of irrational numbers (for example, if C=

a,rr?...,r") where r"=1+r+r2+ ... +r*" then ¥(CO)=(-1)'C, t=1,2,...).

7. Observe that W(F,, F,.,, F,.,)=(F,_, F,, F,,,), where F, is the n-th Fibonacci
number. The 3-cycle (F,, F,.,, F,.,) requires n applications of ¥ to reach a repeating
cycle. Note also that F,=57%1"—s") where t and s are respectively the positive and
negative roots of x>=x+1 (see Remark 6).

DiscussioN AND DEFINITIONS, We are concerned primarily with n-cycles made up of
integers, and with what happens to such cycles after repeated application of ¥. In view of
Remark 3 we may as well assume that all entries are non-negative (so Remark 4 applies).
We are interested in knowing which cycles lead finally to the O-cycle. These will be called
terminating cycles, and all others will be called non-terminating.

DErINITION. A cycle made up only of 0’s and 1’s will be called a primitive cycle.
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THEOREM 1. Every repeating n-cycle is a constant multiple of a primitive n-cycle.

Proof. By Remark 4, it is clear that m(C)=m(¥'(C)), t=1,2,..., for any repeating
cycle C. Thus C is made up entirely of non-negative numbers <m, where m = m(C).
Furthermore there must be at least one occurrence of m in C. Now let C, be C’s unique
repeating preimage under ¥ (C, = ¥*~!(C), where k is the period of C). Since m(C,) = m,
the two entries of C; whose absolute difference is the entry m of C must be 0, m (or
m, 0). Similarly if C, is the repeating preimage of C,, the three entries of C, whose
absolute difference give us 0, m (or m,0) must be taken from the set {0, m}. If we
continue working backwards in this way through the repeating preimages of C, we get that
the n-th preimage C, of C has a string of n successive entries all taken from {0, m} (with
m occurring at least once). Since C, is an n-cycle it has to be a constant multiple of a
primitive cycle. The proof is completed by observing that C=¥"(C,).

THEOREM 2. Let C be a primitive n-cycle, n=2*L where L is odd.

(i) C is terminating if and only if it is a 2*-cycle.

(ii) C is repeating if and only if it (as an n-tuple vector over Z,) is orthogonal to every
primitive terminating n-cycle.

Proof. Observe that if C=(x;){~, then |x;.;— x|=x,,+x; (mod 2). Thus ¥ becomes
a linear operator on the n-dimensional vector space (over Z,) of primitive n-cycles. Also
notice that ¥=I+E where E(x,, X,,...)=(x3, X3,...). Thus ¥"'=(I+E) =} (T)E"

j=0\]
r

and therefore ¥'(C)=(y,)i=, where y;= Y (;)xiﬂ (addition being over Z,). So C is

j=0

terminating if and only if } (;)xiﬂ- =0 for some r and all i. We may assume, without loss
i=0

of generality, that r is a power of 2, in which case ( (;) and (:) are odd and all other (;)

are even (=0 in Z,). Thus C is terminating if and only if x; = x;,, for some r (a power of
2) and for all i. This is equivalent to C being a r-cycle which, since C is already a
2*L-cycle, is equivalent to C being a 2*-cycle.

For the second part of the theorem notice that E(u) . v=u. E~'(v) (for any vectors u
and v), so the fact that E leaves invariant the subspace T of primitive n-cycles implies
that E leaves invariant its orthogonal complement R (all n-cycles orthogonal to T). Thus
¥ =I+E must also preserve R. But T already contains the kernel of ¥ so ¥ must be a
nonsingular linear transformation when restricted to R. Thus R must consist entirely of
repeating n-cycles. Since R is the orthogonal complement of T any element not in R is
representable (uniquely) as the sum of a non-zero vector of T and an element of R. Since
this sum under repeated application of ¥ is reduced to an element of R, all repeating
(primitive) n-cycles lie in R and the proof is finished.

Observe that in the proof of Theorem 2 we have also established that any primitive
n-cycle can be uniquely represented as the sum of a repeating and a terminating n-cycle.
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THEOREM 3. (i) If n is a power of 2 then every rational n-cycle is terminating.

(i) If n is odd then the only terminating rational n-cycles are the trivial ones (those
with all entries equal).

(ii) If n is neither a power of 2 nor odd, there are non-termjnating rational n-cycles as
well as non-trivial terminating rational n-cycles.

Proof. Every rational n-cycle will eventually be reduced to a repeating one (Remark
6) which must be a constant multiple of a primitive cycle by Theorem 1. If n is a power of
2 then (by Theorem 2) every primitive n-cycle is terminating, hence so is every n-cycle. If
n is odd the only primitive terminating n-cycles (by Theorem 2) are (m, m, ..., m) where
m=0 or m=1. A simple parity argument shows that (m, m,... m) has no ¥-preimage
for any m>0. If n is neither a power of 2 nor odd then n=2*L where k=1 and L is an
odd number greater than 1. Then there must be terminating 2* —cycles (which are
n-cycles by Remark 2) and non-terminating L-cycles (which are n-cycles).

DEFINITION AND DISCUSSION. If n=2 it is easy to see that each n-cycle terminates in
two W-steps. One might conjecture that the terminating n-cycles which (by Theorem 3)
exist for every even n>2 are all as trivial (vanishing in only a few ¥-steps). That is not
the case. Let the life-span of an n-cycle be the minimum number of ¥-steps required to
make it a repeating cycle. It turns out that both the terminating and non-terminating
n-cycles whose existence is predicted by Theorem 3 can be specified to have an arbitrary
long life-span in every case (except for n = 2). These remarks are an easy consequence of
the following theorem.

THEOREM 4. Let C be an n-cycle (n>2). Then there exists another n-cycle C, and
k>0 such that k. ¥(C)=¥*(C,)).

Note that C, has a longer life-span than C but that they are of the same type (either

terminating or non-terminating).
Before proving Theorem 4 we shall need a few lemmas and definitions.

LemMma 1. Let C=(x;, X5,...,X,) be an n-cycle. Then C has a V-preimage if and
only if there exists A = {1,2,...,n} for which ¥ x,= ¥ «x.
icA €A

Proof. It C=¥(y,, ys,...,¥a) let A={i|x;=y;,—yis1}. Then
Z X = Z (yi— ¥i+1) and X; = z (Vi1 = Yi)-
icA icA i€A i¢A

So
Z X; — z X = 'Zﬁ (yi— yir1) =0,

i€A i¢gA
since y,.+, = y;. Conversely, if there exists such a set A, let y; = ) x;, and y;,;=y; +8x;
ieA

where §;=1if ie A and §;= -1 if i¢ A. Then C=¥(y,, y2,..., Yn)-
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DerNrmioN. If C= (x4, X5, - . ., X,,) is an n-cycle, a weak predecessor of C is an n-cycle
C, for which ¥(C;)=(ax,+b, ax,+b, ..., ax,+b), where a, b are integers, a>0 (Note
that in this case C, C; satisfy the equation of Theorem 4).

Lemma 2. Let C=(xy,X;,...,X,), n>2. Rearrange the x’s into a non-increasing
list y,=y,=...2y, and assume that y,=0. Then C has a weak predecessor if and
onlyif 3 yi= Y 'y, wheres=[(n—1)/2].

Ji=1 i=s+1

Proof. If C has a weak predecessor then by Lemma 1 there exists Ac{1,2,...,n},

a>0 and b such that

Y, (ay;+b)= ), (ay, +b). (1)
icA icA
Note that b=0 because y, =0 and all ay;+b are non-negative by Remark 3. We can

assume without loss of generality that |A|=<n—|A| (or replace A by its complement in
{1,2,...,n}). Let t=|A| and let B={1,2,..., t}. Then

Y (ay;+b)= Y (ay;+b)= Y, (ay,+b)= Y, (ay;+b).

ieB icA igA i¢B

Thus a(z yi)+bt2a(z yi)+b(n—t), and since t<n—t and b=0 and a>0, } y;=
iB

ieB ieB

Y y. If t<n/2, by taking s=[(n—1)/2] we certainly get .Z vi= Y y. If t=n/2

i¢B i=1 i=s+1

equation (1) reduces to ). y;= Y y. But since y, =0 we may by dropping n from either
icA it A

A or its complement choose a new A with t—1 elements for which this equation still

holds, and then proceed as before with a=1, b=0.

Conversely, if the above equation holds, let a=n~—2s, b=3 y,— Y y. Then
i=1

i=ms+1
ay;+b=0for all i and ¥ (ay;+b)= Y (ay;+b). By Lemma 1 it follows that C has a
i=1 i=s+1

weak predecessor. We now restate Theorem 4 in the following way.

TueEOREM 4A. If n is odd every n-cycle has a weak predecessor. If n is even and
greater than 2 and C=(xy, X5, ..., X,) is an n-cycle, then either C has a weak prede-
cessoror C'=(m—x,m—x,,..., m—x,) does (here m = m(C)).

Proof;‘ If t=mﬁn (x;) then C=(x,,x,,...,x,) has a weak predecessor if and only if

(xy—t, x,—t ..., x,—t) does. Thus the added assumption that y, =0 of Lemma 2 applies.
But clearly the inequality in Lemma 2 always holds when n is odd (compare the two sums
involving the same number of elements, element by element). When n is even the
inequality may sometimes fail to hold. If so consider C' (which will have the same
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V¥-image as C), so that in effect we replace the y; by y!=y,—y,_;.,. Then, letting n =2k,
we get

k-+1

k-1 n n—1
Ly=Lyi=-nt L y= ) v

i=1 i=k+2
k-1 n—1
Tyt Yty t 2 yi— z Yi
i=2 i=k+2
n—1 k—1
Z=y1t ¥t yat Z Yi— 2 Vi
i=k+2 i=2
n—1 k-1
= Z yi— z Yi>
i=k i=1

which is >0 by the assumption that C does not have a weak predecessor. Thus we have
shown that C’ does have a weak predecessor.

If n is neither odd nor a power of 2, the problem of distinguishing between
terminating and non-terminating n-cycles seems quite difficult. It is clear, for example,
that an n-cycle which is congruent mod 2 to a repeating primitive n-cycle must be
non-terminating. But the converse is untrue as shown by the following 6-cycle: (18, 25,
34, 19, 0, 13). Almost any kind of alteration in the n-cycle seems capable of changing it
from terminating to non-terminating. For example (89, 140, 83, 0, 45, 56) is terminating,
but (89, 142, 83, 0, 45, 56) is non-terminating. Similarly (1, 4, 9, 6, 5, 2) is terminating,
but with the elements permuted (1, 6, 9, 2, 5, 4) is non-terminating.

The question of determining the life-span of an n-cycle also seems interesting but
there appears to be no easy way of tackling it.

Finally, an interesting area to explore is that of n-cycles made up of real but possibly
irrational numbers. For instance, for some n’s the cycle mentioned in Remark 6 and
similar ones seem to be the only cycles having infinite life-span.
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