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Introduction. Arrange any n integers around a circle. The following procedure can
be used to obtain another circle of n integers. For each adjacent pair of the first integers,
form the absolute value of their difference and place it between them; then remove the
original numbers. This procedure can be repeated over and over. When n = 4 this always
leads eventually to a circle of zeros. On the other hand when n = 3, unless the original
numbers are equal, this never happens. We treat below the general case and related
problems, using for convenience a slightly different formulation. Surprisingly there is
enough structure to lead to some interesting mathematics.

DEFINITIONS. Let C = (Xj)~=i be an infinite sequence of numbers. Let
where x'j = |xi+1 -x t \ for all i. We call C an n-cycle if and only if xi+n = xt for all i. We shall
also represent an n-cycle as an n-tuple (x1; x 2 , . . . , xn) when it is convenient.

REMARKS.

1. If C is an n-cycle so is ¥(C).
2. Any n-cycle is also a fcn-cycle (k any natural number).
3. After one application of ^ all Xj's are non-negative.
4. Let m(Q = max(Xj) (which exists for n-cycles). Then m(V(C))^m(C) if all entries

in C are non-negative.

DEFINITION. C will be called repeating if and only if Wk(C) = C for some k. The
smallest such k will be called the period of C.

5. The 0-cycle (0, 0 , . . . , 0) is the only repeating cycle with period 1.
6. In view of Remark 4, every n-cycle made up of integers (or rational numbers)

must eventually, under repeated application of ¥ , be reduced to a repeating one. This is
not always true for cycles made up of irrational numbers (for example, if C =
(1, r, r2,..., rn) where r" = l + r + r2+ . . . + rn'\ then ¥'(C) = (r- l) 'C, 1 = 1, 2 , . . . ) .

7. Observe that ^(Fn,Fn+1,Fn+2) = (Fn_1,FmFn+1), where Fn is the n-th Fibonacci
number. The 3-cycle (Fm Fn+1, Fn+2) requires n applications of ¥ to reach a repeating
cycle. Note also that Fn = 5~*(t" - s") where t and s are respectively the positive and
negative roots of x2 = x +1 (see Remark 6).

DISCUSSION AND DEFINITIONS. We are concerned primarily with n-cycles made up of
integers, and with what happens to such cycles after repeated application of ¥ . In view of
Remark 3 we may as well assume that all entries are non-negative (so Remark 4 applies).
We are interested in knowing which cycles lead finally to the 0-cycle. These will be called
terminating cycles, and all others will be called non-terminating.

DEFINITION. A cycle made up only of O's and l's will be called a primitive cycle.
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THEOREM 1. Every repeating n-cycle is a constant multiple of a primitive n-cycle.

Proof. By Remark 4, it is clear that m(C) = mOP'(C)), t = 1,2,. . . , for any repeating
cycle C. Thus C is made up entirely of non-negative numbers ^ m, where m = m(C).
Furthermore there must be at least one occurrence of m in C. Now let Cx be C's unique
repeating preimage under ^ (Q = ^k~1(C), where k is the period of C). Since m(Ci) = m,
the two entries of C1 whose absolute difference is the entry m of C must be 0, m (or
m, 0). Similarly if C2 is the repeating preimage of Clt the three entries of C2 whose
absolute difference give us 0, m (or m, 0) must be taken from the set {0, m}. If we
continue working backwards in this way through the repeating preimages of C, we get that
the n-th preimage Cn of C has a string of n successive entries all taken from {0, m} (with
m occurring at least once). Since Cn is an n-cycle it has to be a constant multiple of a
primitive cycle. The proof is completed by observing that C = V{Cn).

THEOREM 2. Let Cbe a primitive n-cycle, n = 2kL where L is odd.
(i) C is terminating if and only if it is a 2k-cycle.
(ii) C is repeating if and only if it (as an n-tuple vector over Z2) is orthogonal to every

primitive terminating n-cycle.

Proof. Observe that if C = (Xj)r=i then |jci+1 — xj = x^j + Xj (mod 2). Thus ^ becomes
a linear operator on the n-dimensional vector space (over Z2) of primitive n-cycles. Also

notice that * = / + £ where E(x , , x 2 , . . . ) = (x2) x 3 , . . . ) . Thus V = (I+E)r= £ f'
i-o\J

and therefore V(C) = (yri)T=i where yri= £ (.)xi+i (addition being over Z2). So C is

terminating if and only if X I . )xi+, = 0 f°r some r and all i. We may assume, without loss

of generality, that r is a power of 2, in which case I I and I j are odd and all other I . j

are even ( = 0 in Z2). Thus C is terminating if and only if xf = xi+r for some r (a power of
2) and for all i. This is equivalent to C being a r-cycle which, since C is already a
2kL-cycle, is equivalent to C being a 2k-cycle.

For the second part of the theorem notice that E(u). v = u. £"'(«) (for any vectors u
and v), so the fact that E leaves invariant the subspace T of primitive n-cycles implies
that E leaves invariant its orthogonal complement R (all n-cycles orthogonal to T). Thus
¥ = I+E must also preserve R. But T already contains the kernel of ¥ so ^ must be a
nonsingular linear transformation when restricted to R. Thus R must consist entirely of
repeating n-cycles. Since JR is the orthogonal complement of T any element not in R is
representable (uniquely) as the sum of a non-zero vector of T and an element of R. Since
this sum under repeated application of V is reduced to an element of R, all repeating
(primitive) n-cycles lie in R and the proof is finished.

Observe that in the proof of Theorem 2 we have also established that any primitive
n-cycle can be uniquely represented as the sum of a repeating and a terminating n-cycle.

https://doi.org/10.1017/S0017089500003487 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003487


CIRCLES OF NUMBERS 117

THEOREM 3. (i) // n is a power of 2 then every rational n-cycle is terminating.
(ii) // n is odd then the only terminating rational n-cycles are the trivial ones (those

with all entries equal).
(iii) If n is neither a power of 2 nor odd, there are non-terminating rational n-cycles as

well as non-trivial terminating rational n-cycles.

Proof. Every rational n-cycle will eventually be reduced to a repeating one (Remark
6) which must be a constant multiple of a primitive cycle by Theorem 1. If n is a power of
2 then (by Theorem 2) every primitive n-cycle is terminating, hence so is every n-cycle. If
n is odd the only primitive terminating n-cycles (by Theorem 2) are (m, m,..., m) where
m = 0 or m = 1. A simple parity argument shows that (m, m,... m) has no ^-preimage
for any m >0 . If n is neither a power of 2 nor odd then n = 2kL where k > 1 and L is an
odd number greater than 1. Then there must be terminating 2fc-cycles (which are
n-cycles by Remark 2) and non-terminating L-cycles (which are n-cycles).

DEFINITION AND DISCUSSION. If n = 2 it is easy to see that each n-cycle terminates in
two ^P-steps. One might conjecture that the terminating n-cycles which (by Theorem 3)
exist for every even n > 2 are all as trivial (vanishing in only a few ty-steps). That is not
the case. Let the life-span of an n-cycle be the minimum number of ^-steps required to
make it a repeating cycle. It turns out that both the terminating and non-terminating
n-cycles whose existence is predicted by Theorem 3 can be specified to have an arbitrary
long life-span in every case (except for n = 2). These remarks are an easy consequence of
the following theorem.

THEOREM 4. Let C be an n-cycle (n > 2). Then there exists another n-cycle Cl and
fc > 0 such that k.

Note that Q has a longer life-span than C but that they are of the same type (either
terminating or non-terminating).

Before proving Theorem 4 we shall need a few lemmas and definitions.

LEMMA 1. Let C = (x1, x2, • • • , xn) be an n-cycle. Then C has a ty-preimage if and
only if there exists A £ {1, 2 , . . . , n} for which £ xt = X *;•

ieA it A

Proof. If C = ¥ ( y i , y 2 , . . . , y j let A = {i \ xt = y; - yi+1}. Then

= Z (yf-y.+i) a n d I xi= Z (y.+i-yi)-
A i tA

Z Z I
ieA ieA itA

So

Z Xi - Z xti = Z (y.- - Vi+1) = o>
HA

since yn+i = yi. Conversely, if there exists such a set A, let y i= Z *» and
AieA

where 8t = 1 if i e A and 8f = - 1 if ii A. Then C = ¥(y1 ( y 2 , . . . , y j .
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DEFINITION. If C = (xl5 x 2 , . . . , x j is an n-cycle, a weak predecessor of C is an n-cycle
Q for which ¥ ( d ) = (axx + b,ax2 + b,...,axn + b), where a, b are integers, a>0 (Note
that in this case C, Ci satisfy the equation of Theorem 4).

LEMMA 2. Let C = (x1,x2,..., x j , n>2 . Rearrange the x's into a non-increasing
list y j > y 2 > . . .>yn and assume that yn = 0. Then C has a weafc predecessor if and

only if t y, > f yta where s = [(n -1)/2].

Proo/. If C has a weak predecessor then by Lemma 1 there exists As{l, 2 , . . . , n},
a > 0 and b such that

(1)

Note that f>5:0 because yn = 0 and all ayt + b are non-negative by Remark 3. We can
assume without loss of generality that | A | ^ n - | A | (or replace A by its complement in
{1 ,2 , . . . , n}). Let t = \A\ and let B = {1 ,2 , . . . , t}. Then

ieB ieA

Thus a( X yi) + bf>:a( X yi) + b(n-f), and since t<n-t and b^O and a>0, X yf>:
s n

I yf. If <<n/2, by taking s = [ ( n - l ) / 2 ] we certainly get X y,> X yf. If f=n /2
i*B i = l i=s+l

equation (1) reduces to X y; = X tt- B u t s i ° c e yn = 0 we may by dropping n from either
ieA i«=A

A or its complement choose a new A with f - 1 elements for which this equation still
holds, and then proceed as before with a = 1, b = 0.

s n
Conversely, if the above equation holds, let a = n-2s, b= X y f - £ yf. Then

i=l i=s+l
s n

ayf + b > 0 for all i and X («y, + &) = I (ay* + i>)- By Lemma 1 it follows that C has a
ii=s+l

weak predecessor. We now restate Theorem 4 in the following way.

THEOREM 4A. If n is odd every n-cycle has a weak predecessor. If n is even and
greater than 2 and C = (xu x 2 , . . . , x j is an n-cycle, then either C has a weak prede-
cessor or C = ( m - x u m-x2,..., m - x j does (here m = m(C)).

Proof. If J = min (xf) then C = (xlf x 2 , . . . , x,,) has a weak predecessor if and only if
i

(x1-t,x2~t,...,xn-t) does. Thus the added assumption that yn = 0 of Lemma 2 applies.
But clearly the inequality in Lemma 2 always holds when n is odd (compare the two sums
involving the same number of elements, element by element). When n is even the
inequality may sometimes fail to hold. If so consider C (which will have the same
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ty-image as C), so that in effect we replace the y; by y • = yt — yn_i+i. Then, letting n = 2k,
we get

k+1 n - l

I y ' . - I y i = - y i + I y , - Z y.
i = l i=k i=2 i = fc+2

k-1 n - l

y, - Z y.Z Z
i=2 i=k+2
n-1 lc-1

. v + y v. _ y v
/k + l T Li 1* L, 7i

= Z y«-l'y.,
b ' ' iw 7i'

i=k+2 i=2

n - l k-1

which is > 0 by the assumption that C does not have a weak predecessor. Thus we have
shown that C does have a weak predecessor.

If n is neither odd nor a power of 2, the problem of distinguishing between
terminating and non-terminating n -cycles seems quite difficult. It is clear, for example,
that an n-cycle which is congruent mod 2 to a repeating primitive n-cycle must be
non-terminating. But the converse is untrue as shown by the following 6-cycle: (18, 25,
34, 19, 0, 13). Almost any kind of alteration in the n-cycle seems capable of changing it
from terminating to non-terminating. For example (89, 140, 83, 0, 45, 56) is terminating,
but (89, 142, 83, 0, 45, 56) is non-terminating. Similarly (1, 4, 9, 6, 5, 2) is terminating,
but with the elements permuted (1, 6, 9, 2, 5, 4) is non-terminating.

The question of determining the life-span of an n-cycle also seems interesting but
there appears to be no easy way of tackling it.

Finally, an interesting area to explore is that of n-cycles made up of real but possibly
irrational numbers. For instance, for some n's the cycle mentioned in Remark 6 and
similar ones seem to be the only cycles having infinite life-span.
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