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1. Introduction

The angular momentum is one of the major obstacles to the contraction of inter-
stellar clouds. An efficient process of removing the angular momentum from the
cloud is via transport along the magnetic field lines to the ambient medium. When
the magnetic field is nearly uniform and the direction of the field lines is parallel to
the rotation axis, the spin-down time of the cloud is given by ¢ /2pV),, where o is
the column density of the cloud along the field lines, and p and V, are the density
and the Alfvén velocity, respectively, in the ambient medium (Ebert et al. 1960;
Mouschovias & Paleologou 1980). However, this is for a cloud with weak gravity.
Because a cloud with strong gravity has contracted dragging the field lines, the am-
bient field is considerably (fistorted from uniformity. Tie spin-down time of such a
cloud is shorter than given above (Gillis, Mestel & Paris 1974, 1979).

A cloud can be in magnetohydrostatic equilibrium when its mass is smaller than
the critical mass M, ~ ®/ =G/ % where G is the gravitational constant and ® is the
magnetic flux through the cloud (Mestel 1965, 1966; Strittmatter 1966; Nakano 1981,
1984). As shown by Nakano (1979, 1982, 1983), the process referred to alternatively
as ‘ambipolar diffusion’ or ‘plasma drift’ (Mestel & Spitzer 1956) induces highly
non-homologous quasistatic contraction of such a cloud: a high-density core soon
appears and finally contracts leaving the outer part nearly unchanged. Magnetic
braking of such a core is important because this must be one of the processes leading
to star formation. Although the magnetic field may be nearly uniform very far from
the cloud, there is an intermediate zone where the field lines anchored to the core
are nearly radial and the angles between the field lines and the symmetry axis
are very small (Nakano 1979, 1982, 1983) as shown schematically in Fig. 1. We
investigate the transport of the angular momentum of the core to this intermediate
zone assuming that the sphere (dashed circle) in Fig. 1 is sufficiently large and the
core is a rigid rotator.

2. The Model and Formulation

We consider an axisymmetric system composed of a cloud and an ambient medium.

Because we can take the magnetic field as being well frozen into the ambient gas

(Nakano & Umebayashi 1980, 1986a, b; Nakano 1984, 1988), we have for the
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magnetic field B and the velocity v of the gas
— =V x(vxB). (1)
The torque equation for the gas is given by

0 1.
ez—a—t(pwv‘p) = ey X p (J x B), (2)

where p is the density of the gas, v, is the azimuthal component of the velocity,
w is the distance from the symmetry axis, e, and e, are the unit vectors along
the symmetry axis and in the t-direction, respectively, ¢ is the light velocity, and
j=(¢/47)V x B is the electric current density.

We adopt spherical polar coordinates (7,8, ¢) and assume By = 0 and the pure
rotatory motion. This is a good approximation at least when the rotational velocity
v, 1s much smaller than the Alfvén velocity. At least at § < 1 we can regard that
Bor is independent of  and then the magnetic field is torque-free before the torsional
Alfvén wave arrives. Equations (1) and (2) give a wave equation for Q = v, /rsin¥,

0*Q B! 9’ 3)
ot dmp Or?’

We assume that the cloud core is supported mainly by the magnetic field or by
the thermal pressure and neglect contraction due to angular momentum loss. The
thickness of the core along the field lines is usually smaller than its size perpendicular
to them, and so the field lines cannot be radial near the core (Nakano 1979, 1982,
1983). However, this region with a non-radial field (between the dashed lines in Fig.
1) is rather narrow, and the torsional Alfvén wave passes through this region in a
time much shorter than the spin-down time of the core. Hence the rotation of the
gas In this region lags only slightly behind that of the core. We therefore assume
that the layer between z = —Z and z = Z, where the field lines are not radial,
rotates rigidly with the core, and solve the wave propagation outside this layer. The
torque equation for the core gives for the angular velocity of the core Q,

d* Qe 1 , 00
dt? 2ro (B,. or )r—Z’ )
where o is the column density of the core along the z-axis. The continuity of the
field lines requires Qcc(t) = Q(r = Z,¢).

. Fig. 1. A schematic diagram of the magnetic
configuration around a cloud (shaded) and its
\ core (heavily shaded). The magnetic field is
uniform outside the sphere (dashed circle). The
field lines anchored to the core are nearly radial
and deviate only slightly from the symmetry
axis in the intermediate zone outside the layer
interposed between the dashed lines. We inves-
tigate the transport of the angular momentum
of the core to the intermediate zone assuming
that the sphere is sufficiently large.
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We assume that the ambient medium at r > Z has a density distribution p(r) =
p(2)(r/2) ™" where n is a constant. We rewrite the equations in dimensionless

forms. With ( =r/Z and 7 =tVj(Z)/Z, where V4(Z) = B +(2)/[47p(Z)]'/? is the
Alfvén velocity at r = Z, equations (3 and (4) are rewritten as

2 2
3Q= 1 0°Q for ¢>1, d"Qcc=(Z)6_Q ’ )
or? C4_" a¢? dr? pec OCl¢=1
where p.c = 0/2Z. Equations (5) are solved with the initial conditions at 7 = 0,

Q= 0 =0 for <> 1’ Qcc = QO, dQCC
or dr

=0. (6)

3. Solutions

By Laplace-transforming equations (5) with the above initial conditions we have

1 0% ~ ARY)
p(Z) 9% )

24—;—5? for C>1, S2Qcc—sﬂo= Dec ac = 1,
where Q(C,s) and Qc(s) are the Laplace transforms of Q(¢, 7) and Qcc(7), re-
spectively. The first equation in (7) can be reduced to a modified Bessel equa-
tion. We solve equations (7) with the boundary conditions Q(¢ = o0,5) = 0 and
Qcc(s) = Q2 (¢ =1,5). The inverse transformation finally gives with v = 1/(6 — n)

— otico ﬁ(C) 8) ST Jo etico rol/ZR'”(stcllml) 637'/21”'
(¢, ) = /c_,.oo ami € 05 /c_ioo K, 2o0) + P2 [ped Kor (2n) 4 ®)

s2Q =

3.1. THECASEOF v =1/2 (n=4)

The integrand in equation (8) is a single-valued function on the complex s-plane
and has a pole only at s = —s;), = —p? Z)[pee, and we have

(¢, 7) = Qoexp [—syp(r —C+1)], for 7>(—-1, o)
| 0, for r<(-1.

When the wave front arrives, the medium begins to rotate with g, and afterwards
the rotation decays with the timescale 51'12. The rotation of the cloud also decays

with the same timescale because Qcc(7) = 2 (( = 1,7) = Qo exp(—51/27).

3.2. THE CASES OF v BETWEEN 0 AND 1/2

We evaluate the integral approximately by assuming p(Z) < pec. The integrand in
equation (8) is a multivalued function. On the Riemann surface with |arg(s)| < 7

the integrand has only two poles at

sy =s,exp|[Lir/(2— )],

= [BD I e

v
Pec Ir(1+v)

We consider the rotation of the core by taking ( = 1. The path of the integral
on this Riemann surface can be decomposed into the circles around s = s; and
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around s = s_ and the round path C along the negative real axis. We evaluate the
integral along the path C numerically and find out an empirical formula which fits
this result. We finally have

Qee(r) =

Qo ™ T Qov/(1 —v)

- .
1-v exp (5,7 cos 2-2w 2 - 21/) (1+ ays,)2-% (11)
for all 7 > 0. The constant a, is equal to 0.85, 1.04, and 1.48 for » = 1/6, 1/4,
and 1/3, respectively. The first term, which came from the circles, represents the
oscillation with the amplitude decreasing exponentially in a timescale nearly equal
to s;!, and the second term, coming from the path C, decays by the power law at

7 2 s;1. Thus most of the initial angular momentum is lost in the time s;!.

) cos(s,,r sin

3.3. THE PHYSICAL MEANING OF s,

Let (o be the position where the moment of inertia of the medium in the magnetic
tube anchored to the core inside ({p is equal to the moment of inertia of the core.
Let 74({o) be the Alfvén-crossing time up to (o from the core. Then we have

sua(Go) = 2[ (2 — »)/T() |7 (12)

The right-hand side of this equation has values 0.69, 0.80, and 0.88 for » = 1/6, 1/4,
and 1/3, respectively. For v = 1/2 we have s;;,74(¢o) = 1.0. Thus the spin-down

time s;! is the time taken by the torsional Alfvén wave to cross a domain in the
ambient medium with moment of inertia nearly equal to that of the cloud.

4. Discussion

The magnetic braking of contracted clouds has been investigated by several authors
by assuming arbitrary ambient magnetic configurations. With an arbitrary configu-
ration the magnetic field is not force-free and the configuration changes drastically
before the wave front arrives from the cloud. Thus the treatment is usually not
self-consistent. On the other hand, in our models with § < 1 we can adopt a force-
free initial field, and even after the wave front arrives, the r- and #-components of
the magnetic force are negligible compared with the ¢p-component at least when the
rotational velocity of the medium is much smaller than the Alfvén velocity. Thus
our models are self-consistently built.

The spin-down time of a cloud embedded in a uniform magnetic field mentioned
in Section 1 can be interpreted in the same way as s; . Thus for various magnetic
configurations and density distributions in the ambient medium, and so probably
universally, the cloud loses most of its initial angular momentum in the time taken
by the torsional Alfvén wave to cross a region in the ambient medium with column
density equal to that of the cloud.
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KUNDT: When you consider cloud-core braking by transverse magnetic
fields, why do you ignore the simultaneous braking within the stellar
accretion disk (mediated, probably, by toroidal magnetic fields)?

NAKANO: I consider a cloud and its core contracted along the field
lines. So the ambient disk is not connected magnetically to the core.

CAMENZIND: Alfvén torsional waves do not only mean angular momentum
flow, but also an energy loss from the central core. Is there evidence for
dissipation of this magnetic energy in the ambient medium?

NAKANO: The rotation energy of the core is converted into the rota-
tional energy and the magnetic energy (Bg2?/8m) of the ambient medium.
As long as the ambient medium is inviscid and a perfect conductor, as
assumed in my model, the energy is conserved. But if the viscosity
and/or the electric resistivity are taken into account, the energy
gradually dissipates.

MOUSCHOVIAS: As you have mentioned we (Mouschovias and Paleologou,
1980, Astrophys. J. 287, 877) first pointed out that the characteristic
time (Ty) for magnetic braking of an aligned rotator as a whole (i.e.
ignoring short-lived transient effects within the rotator) is reliably
represented by the time (T;) it takes for the torsional waves to affect a
moment of inertia in the external medium equal to the moment of inertia
of the rotator. In fact, we gave a relatively general expression for Ty
(see Mouschovias and Morton, 1985, Astrophys. J. 298, 190; also the
earlier equivalent results by Mouschovias, 1983, in Solar and Stellar
Magnetic Fields, ed. J.0. Stenflo, Reidel, Dordrecht, p. 479; or the review
1987b in Physical Processes in Interstellar Clouds, eds. G.E. Morfill and
M. Scholer, Reidel, Dordrecht, p. 491, Section 2.4) which is T =
Ig1/iext Va,ext. Where I., is half the moment of inertia of the rotator,
iext is the external-medium moment of inertia per unit length along field
lines, and V, .. Iis the Alfvén speed in the external medium. You
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claimed that Ty = T; is a "universal" relation. I would be a bit cautious
about such a statement. In both our work and in your work just
described, the field lines threading the rotator pass into the external
medium and remain regular over distances *» size of the rotator. If the
flux tubes bend significantly near the rotator in the (r,z) plane in the
axisymmetric geometry we are using, then the torsional Alfvén waves, as
they travel along curved field lines, will generate a velocity field which
is not represented by a pure rotation, as assumed in your calculation.
Thus, an important assumption will break down and consequently the
conclusion will have to be modified. Altogether then, our result = T,
which your calculation confirmed in a somewhat different geometry from
that which we used, is useful and relatively general for an important
class of aligned rotators, but one can hardly call that result universal
on the basis of either our previous calculations or your present paper.

HEILES: One assumes flux freezing during the contraction phase. Instead,
can the field be generated during the collapse by dynamo-type processes?
If so, one might never have a cloud contracting to form a star in a
field—-free manner.

MESTEL: 1 think the problem is not to explain why a star has magnetic
flux, but rather why so little of the galactic flux threading the original
parent cloud survives trapped in the star. I agree that once most of this
primeval flux has leaked out, dynamo action — yielding a very low F/vGM
— may subsequently occur, e.g. in an accretion disk in the later stages of
star formation.
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