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Abstract

Critical chains composed of critical flows and functions have been demonstrated as an effective qualitative analogy retrieval
approach based on performance metrics. In prior work, engineers used expert knowledge to transform functional models
into critical chain models, which are abstractions of the functional model. Automating this transformation process is highly
desirable so as to provide for a robust transformation method. Within this paper, two paradigms for functional modeling
abstraction are compared. A series of pruning rules provide an automated transformation approach, and this is compared
to the results generated previously through an expert knowledge approach. These two approaches are evaluated against
a set of published functional models. The similarity of the resulting transformation of the functional models into critical
chain models is evaluated using a functional chain similarity metric, developed in previous work. Once critical chain mod-
els are identified, additional model evaluation criteria are used to evaluate the utility of the critical chain models for design
analogy identification. Since the functional vocabulary acts as a common language among designers and engineers to ab-
stract and represent critical design artifact information, analogous matching can be made about the functional vocabulary.
Thus, the transformation of functional models into critical chain models enables engineers to use functional abstraction as a
mechanism to identify design analogies. The critical flow rule is the most effective first step when automatically transform-
ing a functional model to a critical chain model. Further research into more complex critical chain model architectures and
the interactions between criteria is merited.

Keywords: Analogy Matching; Automated Abstraction; Design by Analogy; Functional Criteria Metrics;
Functional Modeling

1. INTRODUCTION

Often, multiple iterations of abstraction and deabstraction are
necessary to yield a design solution. The use of analogies by
experienced designers is common, while the lack of expertise
by novice designers often limits their ability to identify and
apply analogies to the design problem. However, computa-
tional approaches to assist both novice and experienced de-
signers explore design analogies are of increasing interest to
the engineering design community. In order for a tool to com-
putationally match analogies based on abstraction, an auto-
mated abstracted design model is needed to support a com-
parative method of analogy identification. In this paper, we
examine the validity of an abstraction approach that trans-

forms a functional model into a critical chain model. With
this critical chain model, a combination of similarity and
architectural criteria can then be employed to identify design
analogies. This analogy identification approach has been
demonstrated using expert knowledge to transform functional
models to critical chain models and employing a single criter-
ion matching approach. However, applying expert knowledge
to transform functional models into critical chain models was
time intensive, and the single criterion matching approach
provided clear indications the matching was a multiple-criter-
ion problem. This paper evaluates a set of pruning rules as po-
tential candidates for the automated transformation of func-
tional models into critical chain models and a set of criteria
for their effectiveness in identifying known analogies.

2. FUNCTIONAL MODELING

A common abstraction tool used by design engineers is the
creation of a functional model (Qian & Gero, 1996; Hirtz

Reprint requests to: Cameron J. Turner, Design Innovation and Computa-
tional Engineering Laboratory, Fluor Daniel Engineering Innovation
Building, Clemson University, Clemson, SC 29634, USA. E-mail: cturne9@
clemson.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2017), 31, 501–511.
# Cambridge University Press 2017 0890-0604/17
doi:10.1017/S0890060417000488

501

https://doi.org/10.1017/S0890060417000488 Published online by Cambridge University Press

mailto:cturne9@clemson.edu
mailto:cturne9@clemson.edu
https://doi.org/10.1017/S0890060417000488


et al., 2002; Pahl et al., 2007). This paper leverages a func-
tional modeling technique that consists of flows representing
the energy, materials, and signals acting upon and within the
functional model, which act upon the flows (Otto & Wood,
2000; Hirtz et al., 2002; Pahl et al., 2007; Dieter & Smith,
2009), as shown in Figure 1.

Both the functions and the flows are described using a lim-
ited vocabulary of terms defined in the revised functional
basis (Hirtz et al., 2002; Nagel & Bohm, 2011). The flows
of a functional model obey the laws of energy and mass con-
servation. The resulting network of flows and functions forms
a graph-based model that abstracts the function(s) of a system
from the form of the system. The key benefit of a functional
model abstraction to the design engineer is the separation of
function, what must be done, and from form, how it is done.

2.1. Function modeling for design analogies

Studies focused on the activities of designers indicate that
previous experience is often used to identify solutions (Casa-
kin & Goldschmidt, 1999; Ball et al., 2004; Christensen &
Schunn, 2007; Chan & Schunn, 2014), and those solutions
are implemented into new design through analogy. The cog-
nitive mechanism of analogical reasoning is applied through
the process of abstracting and deabstracting the design. Estab-
lished analogy tools do exist, but many of these systems gen-
erate analogies via a verbal problem abstraction and perform
matches through linguistic similarity and keyword searches
(Chakrabarti et al., 2005; Nagel & Bohm, 2011; Vattam
et al., 2011; Linsey et al., 2012; Goel et al., 2013; see also
Biomimicry 3.8 Institute at http://www.asknature.org; Biomi-
micry Group at http://biomimicry.net; and Biomimicry Insti-
tute at http://www.asknature.org/article/view/why_asknature).
Functional model abstractions also are used to estimate
market-based price prediction models, product assembly
time, and manufacturing costs (Caldwell & Mocko, 2008;
Mathieson et al., 2013; Namouz & Summers, 2013, 2014;

Owensby & Summers, 2014; Summers et al., 2014; Gill
et al., 2016).

The Design-Analogy Performance Parameter System (D-
APPS) is a tool that computationally identifies design anal-
ogies (Lucero, 2014; Lucero et al., 2014, 2016). D-APPS,
in its simplest form, is an analogy “search engine” that returns
analogies to the engineer based on the specific performance
parameters and critical chain models of the design problem
and the analogical solutions. The analogies generated are in-
tended to inspire avenues for design improvements based
upon the critical chain models (i.e., crucial chains from the
function structure) and desired design performance metrics.
To do so, D-APPS uses critical chain models to identify anal-
ogies within a repository of critical chain models (the D-
APPS design repository). To obtain the critical chain model,
the D-APPS approach defines key components of the func-
tion structure enabling the transformation of the function
structure into a critical chain through the application of expert
knowledge by the user. The expert knowledge concepts ap-
plied in this transformation process include critical function-
ality, critical flows, and critical chains as defined by Lucero
(2014). These concepts are elaborated on below.

2.1.1. Critical function

Not all the functions within the functional model have the
same level of significance to the performance of the design.
Functions vital to the effective performance of the design
are termed critical functions. Selecting an appropriate form
solution for these functions significantly affects the perfor-
mance of the overall design. Critical functions are functions
that are significantly related to the performance of the design
(Lucero et al., 2016) and thus help identify the functions
within the critical chain model.

2.1.2. Critical flows

Certain material, energy, or signal flows associated with
the critical functions are modified by the critical functions re-

Fig. 1. (a) Generic black-box functional modeling. (b) Abstracted function model for a SuperMaxx Ball Shooter.
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sulting in key performance parameters by which system per-
formance is evaluated. These performance parameters are of-
ten (but not always) the target performance metrics for the
evaluation of the design as well. The flows that are modified
by the critical functions that lead to the key performance pa-
rameters are termed critical flows (Lucero et al., 2016). The
critical flows of a design problem are dependent upon the sys-
tem functionality and the performance parameters that are the
focus of the system design. Just as some functions are more
important within the functional model than other functions,
some flows are more significant to the performance of the de-
sign solution than other flows.

2.1.3. Critical chains

Combined, critical functions and critical flows define a
critical chain model. A single function model may be com-
posed of multiple critical chain models, connected by noncrit-
ical functions and flows. The critical chain models represent
an opportunity to identify design analogies based on elements
of function, flow, and performance. Furthermore, these crit-
ical chain models can be compared using chain similarity
and chain architecture comparative metrics.

2.2. Other functional modeling approaches and
abstractions

There are other functional abstraction approaches, such as the
Idea-Inspire software, which uses a SAPPhIRE (state change,
action, parts, phenomenon, input, organs, effect) model
to abstract the system (Chakrabarti et al., 2005). Similarly,
structure–function–behavior models include information
such as different device behavior states, components, sub-
stances, and structure, as yet another functional abstraction
language (Goel et al., 2013). A slightly different approach
is applied in the AskNature.org search engine, which matches
functions to associated biological strategies (Biomimicry In-
stitute, 2017). Yet another strategy, the Word Tree Design-by-
Analogy Method (Linsey et al., 2012) leverages WordNet
(see https://wordnet.princeton.edu/) to make direct linguistic
matches at different levels of abstraction and domain specific-
ity to functional descriptions. All of these methods have the
capability of operating at different levels of abstraction. The
key differences in these approaches are the vocabulary and
structure of the abstraction language. Conceptually, a critical
chain model could be automatically extracted from each ap-
proach with the proper guidelines and rules.

3. RESEARCH APPROACH

The D-APPS tool uses critical chain models as the basis to
identify potential analogical matches from an analogy data-
base. However, transforming functions structures into critical
chains has been a manual, expert knowledge-intensive pro-
cess, limiting the population of the analogy database. The
first goal of this work is to evaluate a number of pruning rules
to determine if they represent the basis for an automated ap-

proach for transforming functional models to critical chain
models. The evaluation is based upon whether the pruning
rules lead to a critical chain model that is similar to that ob-
tained by knowledgeable experts. Similarity is measured
through a similarity criterion, which compares the automati-
cally generated critical chain models (i.e., pruned functional
models) to expert generated critical chain models.

The second part of this research assesses whether critical
chain models have value in the identification of design analo-
gies. This assessment is done by generating a set of critical
chain models from a collection of functional models. Addi-
tional critical chain models representing known (documented)
instances of design analogies were added to this set. The crit-
ical chain models were then cross-validated to all other mem-
bers of the set (ignoring self-comparison) and evaluated with
the similarity criterion and an additional set of architectural cri-
teria proposed by Morgenthaler (2016) and developed to ac-
count for the architectural configuration of the critical chain
models. In this assessment, the average critical chain model
criterion score is compared for the set of critical chain models
that represent known design analogies to answer the question
of whether there is a statistically significant difference in cri-
teria value between the analogy and nonanalogy sets.

3.1. Pruning rules for functional models

Manually identifying the critical chain model from a single
functional model is not an onerous task; however, the identi-
fication of critical chain models within a database of analo-
gies totaling hundreds or thousands of examples is a signifi-
cant undertaking. A means of automating the critical chain
model is not only highly desirable but also necessary. There-
fore, this paper examines whether pruning rules (Caldwell &
Mocko, 2008; Gill et al., 2016) can be used to transform func-
tional models into critical chain models that are consistent to
those produced using expert knowledge.

The pruning rules are classified into three different groups:
vocabulary, grammar, and topology, as seen in Table 1 (Cald-
well & Mocko, 2008). The pruning rules were developed to
provide a formalized procedure for functional decomposition
in reverse engineering. Caldwell and Mocko (2008) investi-
gated the similarity of the proposed pruning rules to the desired
decomposition of the design and noted that the formalized
rules provided better insight to achieve desirable decomposi-
tions for reverse-engineered designs. These rules were subse-
quently used to estimate design price predictions (Gill et al.,
2016) while the design is at an early design stage. In both stud-
ies, these rules were observed to identify the functions with the
highest information content within the functional model.

Examination of the residual functions that remained after
pruning suggested that there is a similarity to the process of
transforming a functional model to a critical chain model. To
evaluate this observation, a set of functional models were se-
lected from Otto and Wood (2000), and were subsequently
transformed into critical chain models. This transformation
was accomplished using expert knowledge (manually) and

Transforming functional models to critical chain models 503

https://doi.org/10.1017/S0890060417000488 Published online by Cambridge University Press

https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
https://doi.org/10.1017/S0890060417000488


through the application of the pruning rules (from Table 1). The
resulting critical chain models were evaluated for their similarity
using a similarity metric established by Morgenthaler (2016).

3.2. The similarity metric

To discuss the metric formulation, consider the critical chain
model shown in Figure 2. In this example, colored shapes

have been substituted in place of the functions from the func-
tional model.

The similarity metric developed by Morgenthaler (2016)
measures the similarity between the members of the func-
tion sets in two models. Two models with the exact same
set of functions, or a self-comparison of models exhibit
perfect similarity, as defined in Eq. (1), and represent mod-
els with identical membership. However, perfect similarity
is not required, as multiple valid models may exist depend-
ing upon where the boundary of the model is defined. For
instance, the right example in Figure 3 exhibits partial simi-
larity (a shared subchain) while the left example exhibits
perfect similarity. Note that the similarity metric does not
consider the order of the functions, just the functions that
are members of the chain. Hence, the left pair of chains
both include the same three functions (red circle, yellow
diamond, and blue square). The greater the similarity be-
tween two chains, the closer the match between two chains.
Note that perfect similarity is not required for an analogy to
exist.

ChainA > ChainB ¼ ChainA ¼ ChainB, (1)

where ChainA is the chain of a red circle, yellow diamond,
and blue square and ChainB is the chain of a yellow diamond,
blue square, and a red circle.

Partial similarity can mean that only one function is shared
between two chains. Conceptually, even a total lack of simi-
larity can exist, due to conceptual relationships between de-
scriptions in the revised functional basis. Thus, similarity is
only one approach for comparing critical chain models.
Additional metrics developed by Morgenthaler (2016) take
into account the organization of the components of the mod-
els, and thus are known as architectural criteria. The metric,

Table 1. Classification of composition rules according to Gill
et al. (2016) and Caldwell and Mocko (2008)

Rule Composition Rule
Pruning

Classification

CR1 Remove all import and export functions. Vocabulary
CR2 Remove all channel, transfer, guide, transport,

transmit, translate, rotate, and allow DOF
functions referring to any type of energy,
signals, or human material.

Grammar

CR3 Remove all couple, join, and link functions
referring to any type of solid.

Grammar

CR4 Remove all support, stabilize, secure, and
position functions.

Vocabulary

CR5 Remove all control magnitude, actuate,
regulate, change, stop, increase, decrease,
increment, decrement, shape, condition,
prevent, and inhibit functions.

Vocabulary

CR6 Remove all provision, store, supply, contain,
and collect functions referring to any type of
energy or signal.

Grammar

CR7 Remove all distribute functions referring to any
type of energy.

Grammar

CR8 Remove all signal, sense, indicate, process,
detect, measure, track, and display functions.

Vocabulary

CR9 Combine adjacent convert functions if the
output flows of the first function block are
identical to the inputs of the second function
block.

Topology

Fig. 2. (a) An example of a critical chain where the shape and color of the block relates to a specific function from the revised functional
basis. (b) For instance, the red circle would represent the convert electrical energy to rotational energy functional block from the hand
vacuum critical chain representation, the yellow diamond would represent the convert rotational energy to pneumatic energy functional
block, and the blue square would represent the import solid functional block.
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similarity, measures the similarity of two chain models, and
because chain models may be of different lengths in the com-
parison, similarity is defined in Eq. (2) as

Similarity ¼ 2(FcnShared)
LC1 þ LC2

, (2)

where FcnShared is the number of functions two chains have
in common, LC1 is the total chain length of the input, and
LC2 is the total chain length of the source required to cover
all common functions.

The similarity of the expert knowledge critical chain mod-
els to those obtained from applying pruning rules to func-
tional models was compared with three approaches:

1. comparison to the unpruned functional model to func-
tional models pruned by various rule groups, as defined
in Table 1,

2. by additionally pruning the function model to only con-
sider the chain of functions connected by the critical
flow(s) of the functional model after the application
of pruning rules, and

3. by first pruning the functional model to the functions
connected by critical flow(s) and then applying pruning
rules.

These critical chain models were “highlighted” using an
operation defined in Morgenthaler (2016) to disregard excess
portions of the model when evaluating the similarity to the in-
put chain model. In this study, the critical chain models trans-
formed via expert knowledge applied to the functional mod-
els acted as the input chains, while the functional models that
were pruned according to the rules in Table 1 acted as the
source chain. The highlighting operation focuses the model
comparison on the elements that lie within the span of the
chain defined by the input model. This disregards functions
that are before or after the span of the input chain, thus eval-
uating the subset of the model that is comparable to the input
reference model. A visual representation of this function
chain highlighting operation can be seen in Figure 4.

The highlighting operation considers the green pentagon
and yellow diamond significant because of their commonality
to the input chain as well as the red circle or the function that
falls in between the common functions. Both of the blue
squares would be discarded, as they are not perceived to
have significance.

3.3. Critical chain extraction experiment

For the critical chain transformation experiment, 23 func-
tional models, listed in Table 2, were selected from Otto
and Wood (2000) to form the experimental data set.

The function models were transformed into critical chain
models using expert knowledge by two independent experts.
Both experts were familiar with the process and terms defined
by Lucero (2014). The two experts choose the same basic func-
tional chain in 18 out of 23 models, or an interrater agreement
of 78%. For each functional model, the critical functions,

Fig. 3. The critical chain models on the left exhibit perfect similarity (all functions exist in both chains) but the critical chain models on the
right exhibit only partial similarity (both models share a common subchain).

Fig. 4. Function chain highlighting example.

Table 2. List of the 23 products
represented with functional models

Ice tea/coffee maker Fruit/veggie peeler
Coffee maker Engraver
Cordless screwdriver Tailgate
Palm sander Weed trimmer
Hand vacuum Visor
Pencil sharpener Ball shooter
Electric knife Battery
Hot air popcorn popper Battery charger
Expresso maker Drill
Sander Saber saw
Wizard Screw driver
Brush
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flows, and corresponding critical chains were identified for the
primary function of the device. For example, the functional
model for a hot air popcorn popper is shown in Figure 5
(Otto & Wood, 2000).

The critical functions identified from the hot air popcorn
popper function structure were the following:

1. convert electrical energy to heat
2. convert electrical energy to rotational energy
3. convert rotational energy to pneumatic energy
4. transmit thermal energy
5. transport solid

The critical flows identified from the hot air popcorn pop-
per function structure were the following:

1. electricity
2. air
3. popcorn (both unpopped kernels and popped popcorn)

The set of the critical functions and flows for the hot air pop-
per led to the development of the critical chain model seen in
Figure 6. This procedure was repeated for all 23 function struc-
tures, and a set of 23 critical chain models, corresponding to
the original 23 functional models, were identified.

Fig. 5. Functional model for hot air popcorn popper adapted from Otto and Wood (2000).

Fig. 6. Critical chain developed from hot air popper function structure.

M. Agyemang et al.506

https://doi.org/10.1017/S0890060417000488 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000488


Subsequently, the 23 original functional models (Otto &
Wood, 2000) were pruned using the pruning rules, individu-
ally and in six combinations. The pruning rule combinations
include

1. unpruned functional models
2. grammar pruned functional models
3. verbal pruned functional models
4. verbal þ topology pruned functional models
5. verbal þ grammar pruned functional models
6. verbalþ grammarþ topology pruned functional models

In addition, another pruning rule (the critical flow rule) that
eliminated any function that did not carry a critical flow also
was considered individually, both before the other rules were
applied and after the other rules were applied. With these crit-
ical chain models transformed from functional models via the
application of pruning rules defined, the similarity metric was
calculated between the expert produced critical chain models
and the critical chain models obtained via pruning. A statisti-
cal analysis was done to indicate the similarity level between
these critical chain models.

3.4. Results: Identifying an approach for automation

Of the 23 functional models transformed into critical chain
models through expert knowledge there was strong interrater
agreement for 18 of the critical chain models. The critical chain
models for these 18 functional models were then evaluated

using the similarity criterion, and the results are shown in
Table 3 and a graphical representation is presented in Figure 7.

The results show clear trends. The significance of the crit-
ical flow rule for pruning the function structure is clearly
demonstrated by the blue hatched bars (third in each group)
all achieving higher similarity scores. Furthermore, the yel-
low solid bars (second in each group) all outperform the
red solid bars (first in each group), indicating that applying
the critical flow rule provides increased similarity. This also
can be observed in the last two column groups of Table 3.
Furthermore, when the pruning rules are applied, the simi-
larity is increased when the verbal and grammar rules are
applied, but no single verbal, grammatical, or topological
rule provides a significant contribution toward achieving
similarity, as indicated by the relatively consistent similarity
values in each of the sets associated with a single rule. In-
stead, it is the combination of these rules that lead to similar
critical chain models as found through expert knowledge
(0.732 for vebal–grammar–topology applied to the func-
tional model compared to having just the critical flow
with a similarity value of 0.848). Furthermore, it appears
that pruning Rule 9, the only topology rule studied, nega-
tively affects the similarity of the resulting critical chain
model unless the critical flow rule is applied first. Rule 9
is used to combine convert functions. Convert functions
are often (but not always) critical functions (as found by Lu-
cero, 2014) and thus we hypothesize that the premature
combination of convert functions by this rule can result in
the elimination of functions that are members of the critical
chain model.

Table 3. Similarity metric performance for 18 critical chain models

Via Pruning
Rules Only

Via Pruning Rules
Followed By

Critical Flow Rule

Via Critical Flow
Rule Followed By

Pruning Rules

Rules Applied Average+SD Average+SD Average+SD

None 0.381+0.080 0.848+0.133 0.848+0.133
After Rule 1 0.452+0.077 0.510+0.087 0.875+0.117
After Rule 2 0.407+0.094 0.475+0.094 0.858+0.124
After Rule 3 0.399+0.093 0.475+0.088 0.848+0.133
After Rule 4 0.406+0.086 0.483+0.086 0.848+0.133
After Rule 5 0.382+0.086 0.458+0.087 0.833+0.147
After Rule 6 0.384+0.081 0.462+0.101 0.853+0.133
After Rule 7 0.379+0.080 0.451+0.084 0.851+0.137
After Rule 8 0.405+0.103 0.480+0.092 0.848+0.133
After Rule 9 0.367+0.090 0.449+0.091 0.832+0.141
After vocab (Rules 1, 4, 5, & 8) 0.547+0.105 0.609+0.098 0.865+0.134
After grammar (Rules 2, 3, 6, & 7) 0.436+0.117 0.505+0.123 0.854+0.128
After topology (Rule 9) 0.367+0.090 0.449+0.091 0.832+0.141
After vocab & grammar (Rules 1–8) 0.758+0.148 0.776+0.155 0.869+0.125
After vocab & topology (Rules 1, 4, 5, 8, & 9) 0.526+0.112 0.602+0.103 0.846+0.140
After grammar & topology (Rules 2, 3, 6, 7, & 9) 0.421+0.131 0.499+0.128 0.843+0.128
After vocab–grammar–topology (Rules 1–9) 0.732+0.166 0.769+0.158 0.887+0.122

Note: Comparisons are made between the automatically generated critical chain models and the expert knowledge critical chain models.
Comparisons are made via pruning rules only, via pruning rules followed by the critical flow rule, and via the critical flow rule followed by
the pruning rules.
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4. MATCHING ANALOGIES WITH CRITICAL
CHAINS

The identification of critical chain models is used in D-APPS
to identify potential analogies from an analogy repository of
critical chain models. This section focuses on whether critical
chain models can be compared through criteria to yield de-
sign analogy matches.

4.1. Matching criteria

Critical chain models can be matched not only on the basis of
similarity (the common membership of functions within the
chain models) but also by their architecture based on a
metrics developed by Morgenthaler (2016). Morgenthaler
demonstrated that these criteria measure similarities based
on their associated architectures, and provided the prelimi-
nary data that demonstrated they were effective in analogy
identification. This work extends that study with further anal-
ysis of the relationships revealed by those criteria.

Architectural criteria provide a measure of the commonal-
ity of the order of the functions. The functional chain model
examples in Figure 8 exhibits perfect similarity but distinctly
different chain model architectures. Even simple linear chain

models composed of three or four functions can exhibit a
number of distinct architectures including: identical, mirror,
disordered, mirrored disordered, and unique. Taken as a
whole, the left example in Figure 3 exhibits a disordered ar-
chitecture where the yellow diamond precedes the blue
square, but the red circle does not exhibit a common relation-
ship to the other functions. The subchain of the yellow dia-
mond preceding the blue square is identical in architecture,
just as is the right example red circle followed by the yellow
diamond in the right example. Figure 8 provides examples of
the different architectures.

Fig. 8. Chain architecture examples.

Fig. 7. Average similarity metric performance for 18 selected critical chains.
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A study of different chain model architectures reveals that
even for simple linear chain models, multiple architectures
may exist. Furthermore, critical chain models may also exhibit
additional nonlinear topologies potentially including trees and
rings. Some of these architectural forms result in very close
analogies as the order of functions in a functional model is
not necessarily unique. This property of functional models is
rarely used and is poorly exploited within functional models.

The first architectural metric, identical, shown in Eq. (3), is
nearly identical to the similarity metric, with the exception
that its numerator is based on whether or not the chain models
share the same function order. If the functions in the same lo-
cation in the chain models are the same, the FcnSharedOrder
is 1; otherwise it is 0. Thus, if the functions do not share an
identical order, the metric value is zero. This evaluation be-
gins with the first shared function in the chain models.

Identical ¼ 2ð
Q

FcnSharedOrderÞ
LC1 þ LC2

: (3)

Similarly, the calculation for the mirrored metric, Eq. (4), is
also nearly the same as that in Eq. (3). However, in this metric,
the FcnSharedInverse term compares the ith function to the m –
ith function in the chain where m is the length of the chain
model. If the terms are the same, the expression is equal to
1; otherwise, its value is 0. Thus, the metric is 1 if and only
if the chains have the same number of terms in opposite orders.

Mirrored ¼ 2ð
Q

FcnSharedInverseÞ
LC1 þ LC2

: (4)

The disordered and deredrosid (i.e., mirror disordered),
Eqs. (5) and (6), metrics assign a value to the location of
each shared function from the input chain model (IFP) to
the source chain model (SFP), resulting in the average posi-
tion differences the two chain models.

Disordered ¼
Yn

1� jIFPi � SFPi þ 1j
n

, (5)

Deredrosid ¼
Yn

i

i

1� jn� IFPi � SFPi þ 1j
n

, (6)

where n is the number of matched functions, IFPi is the posi-
tion of input function i, and SFPi is the position of source
function i.

The last metric is the unique metric, which is based upon
the average of the disordered and deredrosid metrics as shown
in Eq. (7).

Unique ¼ 1� Disordered þ Deredrosid

2
: (7)

All of the metrics range from 0 to 1 and represent an initial
attempt to measure similarity and architecture between func-
tions in critical chains. Similar efforts also can be developed
to incorporate flows in the evaluations. These are certainly
not the only architectural metrics that can be derived. How-
ever, they represent an initial set of metrics that encompass
the observed architectures in critical chain models of this size.

4.2. Criteria study

The effectiveness of similarity and architecture comparisons
between critical chain models can be evaluated using the cri-
teria defined previously. Through studies of prior analogy im-
plementations such as Ngo (2014) and Ngo et al. (2014), and
through the identification of previously identified analogies,
a set of 26 critical chain models (Morgenthaler, 2016) repre-
senting a total of 59 cases of implemented analogies (some
chain models lead to more than one analogy implementation)
were identified. Using additional critical chain models from
other functional models, an additional 1711 chain model pair
comparisons were evaluated (Morgenthaler, 2016). These
chain model comparisons predominantly represent nonanalo-
gous design solutions, although no effort was made to filter
out unidentified analogies from this set. Using Morgenthaler’s
(2016) criteria, an exhaustive statistical study of these matches
revealed that similarity and architecture metrics do produce
positive responses enabling analogy identification.

4.3. Study results

Our evaluation of these criteria consisted of an evaluation
of known analogies versus simply random chain model

Table 4. Metric performance versus a random set of chain models, a set of known analogy chain models, and the differences
between the metric averages

Criteria

Similarity Identical Disordered Deredrosid Unique

Random average+SD 0.535+0.209 0.287+0.300 0.716+0.397 0.448+0.257 0.202+0.110
Analogy average+SD 0.704+0.194 0.481+0.362 0.906+0.208 0.523+0.116 0.247+0.062
Difference of averages +0.169 +0.194 +0.190 +0.075 +0.045
95% confidence interval 0.088–0.250 0.077–0.311 0.091–0.390 0.024–0.174 0.003–0.087
Two-tailed p 0.0001 0.0011 0.0002 0.138 0.0376

Note: Adapted from Morgenthaler (2016).
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comparisons. If the metrics are detecting analogies, then their
averages should deviate from the average of chain model
comparisons as shown in Table 4.

Examination of Table 4 shows that the similarity, identical,
disordered, and unique criteria all show averages that positively
deviate from the mean criterion value in a statistically significant
manner (two-tail p , 0.05). While the deredrosid criterion does
not reach this level in this study, there does seem to be some cor-
relation in the deviation from the mean. This higher value may
be due to the reduced number of analogy examples that fit
into this category within the set of known design analogies.

Unfortunately, in the set of known analogical chain model
comparisons, a mirrored analogy example was not included
in the study, although we have observed chain models with mir-
rored architectures during our research. Therefore, we do not
have valid results to present concerning the mirrored criterion,
and so it was omitted from Table 4. Further research into the
analogies within the random sample that appear to be previous
unidentified analogy matches is still needed to better under-
stand and to further refine these comparative criteria. However,
it is our conclusion, based on the data in Table 4, that the criteria
provide a measure of the presence of potential design analogies.

5. CONCLUSIONS AND FUTURE WORK

Based on this research, the use of critical chain models as an
abstraction tool and the basis for identifying and matching
analogies before deabstraction appears to be a promising ap-
proach. Table 4 clearly indicates that there is statistical signif-
icance for several of the proposed chain model comparison
metrics proposed by Morgenthaler (2016). Furthermore, the
significant concern that critical chain models can be obtained
only through the manual application of expert knowledge ap-
pears to be unwarranted. While many of the pruning rules
used in prior research did not result in the desired transforma-
tions necessary to obtain a similar critical chain model as
produced by expert knowledge, the identification of the sig-
nificance of the critical flow pruning rule as an initial trans-
formation method is a significant outcome of this research.
Similar transformations should be possible from alternative
functional abstraction models, which will further extend the
utility of critical chain models in the identification of design
analogies. In addition, the formulation of functional models,
and of alternative types of functional models exhibit varying
use of grammar, syntax, and levels of abstraction. Under-
standing and employing these stylistic differences will be
important in the continued development of analogy matching
tools based upon this abstraction approach.

There were significant improvements in similarity when the
critical flow rule was applied as an initial transformation step
to convert a functional model to a critical chain model. This
supports the contention that the critical flow is just as impor-
tant as the critical function when looking to build analogies to
improve performance. Critical flows are significant because
the flow is what is transformed within the functions and there-
fore form the basis for performance metrics within the design.

Flow is clearly significant in the transformation of func-
tional models into critical chain models. However, individual
pruning rules also may be useful. Both the verbal and gram-
mar pruning categories include multiple rules that may add
value in performing this transformation. Further research
into pruning rules, and perhaps the development of additional
pruning rules is likely merited. Furthermore, the definition of
critical chain models may not yet be completely defined. It
is entirely possible that the chain models revealed by the
pruning rules are more complete than that defined through
expert knowledge as used in D-APPS. Further studies are
necessary.

Once extracted, the combination of similarity and architec-
tural criteria provide a valid and significant method for the
comparison of functional chains. Further research into more
complex architectures, and into the interactions between cri-
teria, is merited.
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