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A generalisation of Turan's main theorems

to binomials and logarithms

A. J. van der Poorten

The Main Theorems of P. Turan's took Eine neue Methode in der

Analysis vend deren Anwendvngen concern only sums of powers but

are easily generalised to exponential sums with polynomial

coefficients. It does not appear to have been observed however,

that similar such theorems with analogous implication as to value

distribution and arithmetical behaviour can be formulated for a

wider class of functions. We prove a result for functions of the

form \ p, (z)(l-z) log^~ (l-z) subsuming identities which

Mahler has shown to contain transcendence results on the

exponential and logarithmic functions and diophantine results of

the Thue-Siegel-Roth type.

1.

Theorems of the nature of those developed by Turan in his book [S]

lead directly to results on the distribution of values of the relevant

functions

m p(k)

(1) I I a k /
k=l s=l

as observed by Danes and Turan [2]; see also results of Mahler [6] and

Gel fond [3; p. 1^0]. The techniques employed in this work do not however

appear susceptible of generalisation, and the rather remarkable result of

Danes and Turan giving an upper bound for the number of zeros of functions
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of the form (l) in any square in the complex plane, so that the bound is

independent of the coefficients a, and only loosely dependent on

exponents w, , appears to be specific to entire functions of the indicated

form.

A new technique, in effect a sledge-hammer approach, involving

evaluation of determinants and their cofactors, will however apply in any

circumstance where the evaluations can be conveniently performed.

Elsewhere we have obtained new results generalising Turan's so-called Main

Theorems [9], and a result on the distribution of zeros of functions of the

form (l) independent of the quantity min |u,-u, | , [70, 7 7], In this
hfk

paper we prove the following result.

THEOREM. Let p(h, q) , n{h) , 1 5 h < m , 1 5 q < n{h) , be

non-negative integers and let a be the sum of the p{h, q) . Further let

a2, ..., a be complex numbers, and let F denote a function of the

form

m n{h) p{hq)

h=l q=l s=l

m

= Ih=x

n(h)

I Ph
a

Ja)(l-a)
H

where log^ (1-3) denotes {log(l-s)}^" and a, , 1 S h S m ,
nqs

1 5 q £ n(h) j 1 £ s 5 p{h, q) are complex constants so that the p, (z)

are polynomials of degree at most p{h, q) - 1 .

Finally let

p{h, 1) 2 p(h, 2) > ... > p[h, n{h)) , 1 £ h £ m

and write

A - max lt-1+a,
i |

; ISqin (h); l<t<p (hq)

then for any point u 4 1
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'(0) >

(a+Af

With the aid of the theorem it is easy to obtain an upper bound for

the number of zeros of F(s) in small circles about the origin, such a

bound being independent of the coefficients a, . , and in depending on A

only loosely dependent on the exponents a, . Unfortunately the

singularity at 2 = 1 interferes with more general results. The reader is

referred to [ H ] for details of a convenient method of proof.

Functions of the form of those of the Theorem are discussed by A.

Baker ['] who showed that under the conditions of the theorem and the

additional restriction that no two of a.\, ct2, ..., a differ by a

rational integer either F{z) E 0 or F(z) vanishes at most a-1 times

at 2 = 0 . This result, which follows immediately from our explicit

evaluation of the determinant A (10), generalises results of Mahler on

the binomial [4] and logarithmic [5] functions.

In other respects our results are new, and except for the exponential

case, do not appear to have been remarked upon before. The feature that

our results do not collapse when two of aj, ct2, ..., a differ by an

integer arises as a special benefit of our method; our evaluations are

actually easier because of extra symmetry. The reader should note the

analogous situation described in our paper [JO]. Our results investigate

F{z) only in a neighbourhood of the origin; there does not appear to be

any reason why we should not obtain similar results in any neighbourhood in

which F(z) remains non-singular. It is an exercise, perhaps of a'nnoying

arithmetical complexity, to confirm this, and to obtain more general

results on the distribution of zeros of F[z) .

A further feature of our method deserving comment is that we are not

forced to estimate crudely until the final step when we provide a tidy

result. In consequence one is able to read off precise results for special

cases from the expressions appearing in our proof.

2.

We will require the following subsidiary result.
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MAIN LEMMA. Let G be a function of the form

n
G{s) = I b,gAz) j b\3 ..., b complex constants

k=X K K n

where g^, ..., g are functions analytic on some domain D of the

complex plane.

Further let z^, ..., z be points of D ; let s\3 S21 •••3 s be

non-negative integers; and let H[yl3 • •-, y-i) be a form linear in

\j\i •••> Mi J ( ! - 1 - n) j and c u , c non-zero constants. Finally
L n

denote by A. . , 1 S i } j 5 n the cofactor of g. [z-j in the
I'd 3 »•

determinant

(s.)
A= k l

Then there is an integer y such that 1 S y 5 n and

P r o o f . A p p r o p r i a t e l y d i f f e r e n t i a t i n g a t 3 ] , 2 2 > • • • . 2 w e o b t a i n

a system of n linear equations in b\, . . . , b

" " * fa.) = G l fa

which we may solve by Cramer's rule to obtain for 1 < k 5 n

1r X

Thus

whence
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)

and the assertion follows. We note that the result remains meaningful

though trivial even if the denominator on the right-hand side of the result

should vanish, provided we then interpret the lower hound to he zero (this

is the natural interpretation, in our examples, by continuity).

With the notation of the theorem, we apply the Main Lemma to the

function

F(z) =
m n{k) a,

k=l q=l s=l Kqb

that is, to the O functions zS~1{l-s) ^log£?"1(l-2) . We will then be

considering a 0 X 0 determinant

0 hqt,\

1 5 h 5 m ; 1 S ( | 5 n(h) ; 1 < t 5 p(hq) ; 1 5 X £ a .

Here h, q, t index rows and X indexes columns; the above hqt, X

index indicates that we display the hqt, X element. We always denote the

cofactor, i.e. the determinant of the minor together with the appropriate

sign, of the hqt, X element by A, , . .

With this notation, the particular case of the lemma we use will be,

l£u<o

(2)

'(0)

m n(h) p{hq) a,

„ h=l t?=l t=X
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and our problem becomes that of finding an upper bound for the bracketed

factor.

3.

Before commencing our proof i t is appropriate to establish some

notational conventions beyond those indicated in the introduction. Thus

we will not indicate the ranges of indices in a formula if these have been

clearly indicated in previous expressions, since otherwise our formulae

will certainly explode into incomprehensibility. We will write, for

non-negative n

3 ( n ) = s(s-l)(3-2) . . . (s-n+1) , 2 ( 0 ) = 1 ,

and

(3) -^f(z) = /(a+1) - /(a) .

creating a useful notational analogy with the usual derivative. The

reader should note aspects of the behaviour of what we will call the

difference operator (3), namely

« M _ „ (n-1)
T~_Z — 713 9

and the Leibniz formula

= j o £).{(&r

4.

In order to apply the Main Lemma we will be required to evaluate the

a x a determinant

3=0 hqt,\

1 < h < m ; 1 5 ( 7 5 n(h) ; l < t s p(hq) ; 1 < X < a

With some manipulation we observe that
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d\X-l t-1, ,,ah q-lt, \\ i .. \X-t (X-l)!te' ( ' g U-z)j = (1) '(d\X-l t-1, ,,ah q-lt, \\ i .. \te-' ( ' g U-z)j = (-1) of

a,, ou-1, ..., a,-X+t+l taken X-t-q+1 at a time)

Thus introducing formal quantities a, , $>, we obtain, defining the

determinant D by

-ft } ( X - 1 }

hat hqt' , , •, '
^ ^ hqt,X

that

D =

(5) ±A = lim lim

7;l£<7<n(?:);15tSf

the precise sign, indicated by ± , being recoverable from {k) above. In

the same way it is immediate that we obtain the cofactors of A by, up to

sign,

(6) A
X, kps

lim lim H-^-f-'k kJ •

In particular a simple calculation shows that, up to sign,

a,
u (1-w) log^ (l-w)A, ,

A, kps

(7)

since D, . has no terms in a, , f3,
X,kp8 Hips kps

The object of our procedure is to obtain quantities which can be

evaluated exactly. Since D is in effect a Vandennonde alternant we

immediately obtain
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and under the assumption

(8) p(fcl) 2 p(fc2) > ... 2 p(hn{h)) , 1 < fe 5

after some reorganisation

rt(fo) p(

p=l

(9) p(hp)
• TT

1=1

h-l nU) pUr) -,
. T T T T TT (fa, -a. .1 - (B, -6 . .)}i .

3=1 r=l v=l n

In differentiating and differencing this product according to (5) we

must eliminate the first two lines of terms, since otherwise on taking

limits the resulting term in the sum we obtain will vanish. The reader

should check that we differentiate and difference exactly so as to be able

to eliminate these terms; compare the analogous step in [9] and [JO]. In

consequence we obtain exactly, up to sign,

A =
h,q,t

h-l nU)
TT TT

( 1 0 ) ,7=1 ^=1

5.

How consider t h e sum

h-l nU) pUr) )
• TT TT TT (a -a +t-i) \
3=1 r=l i=l J '

rn\k) P(VP n A p « V n
k=l p=l s=l r

where the sign has been appropriately selected so that on applying our

usual operator
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12 n = lim lim \] \[ hrs )H fe J

we obtain by (7) exactly, up to sign

a,

, ' X,kvs
k,p,s "

But the sum of cofactors (11) is alternating in ou . - f$, . , all hqt

and by well-known theorems on determinants is therefore divisible by the

difference product D as detailed in (9). We once again refer the reader

to the paper [9; Lemma 3] for analogous details. Writing

*̂ " ~l ̂  ^^ D=l

one obtains

k,p,s

f n n l T-;™ I-,-™ 1 V f-i,.\ "-Ps kps

X,k,p,s
(J1P) lim lim { I (l-uJ^'Vn /p

(13) ( O P ) l i m l i m D / P

by virtue of the remarks we made when evaluating A from D , namely that

other terms which appear by the action of £2 upon the indicated products

vanish upon taking the appropriate limits.

6.

It is an elementary matter to evaluate the cofactors D, , . W e

\,kps
observe that the cofactors are defined by

a , > (D hqt = kps ,

i\,kVsKt-%t)(x-1) = ( th .
X=l > f -i -i .. i.Q o t h e r w i s e ,
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whence —' " is exactly the coefficient of z in the polynomial

z - a, . +
-i—r hqt hqt , , . ,. „ r lX-1)
| | \in_ _n Y_lR ^R [-I expanded m the form I a^z

A — 1

Thus from (12) we obtain that

(lit) I uS~ (1-M) logp"1(l-w)—*-££•

= the coefficient of 3 in the polynomial

s - a, . +
X i , s kps &kps -r—r f S hqt %t

l l m l l m ^ ( I"M ) T I h ^ — ^ — T I T — lh,a,t ^akps ahqt
hqtfkps

= the coefficient of s in the polynomial

(15) lim I ( 1 - M > S TT ,o _„
a^,-*a,j+t-l k,p,s h,q,t *• kps hqt-
™ hqtfkps

= the coefficient of 3 in the polynomial

a, +s-l ( 3 - a . , - i + l-\

<*> lim I d - « ) "ps T T L • ? * , , . J •
hqt h hqt\kps

7.

Now consider the polynomial

0t,

TT 5 -^ rrr •
hq,t ^kps ahqt ~ t + sl

(17) I TT 5 ^
h,q,t ^kps ahqt

hqtfkps

P(z) is defined by the a conditions

(18) P (a^ s + s - l) = (1-W)akps+S ,

l s k s m ; 1 5 p < n(fe) ; 1 5 s 5 p(kp) .

Thus expanding P(s) as an interpolation series,
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(19) P(a) = I b 7 T ( 2 " a w - * + 1)>
k,p,s F hqt<kps ^

we can find the interpolation coefficients b. by, see for example,
KpS

Nb'rlund's book [7; p. 10] ,

(20) b.
kps 2iri

where /, (y) = ~| \ (y - a, - t + l) and F is the circumference
* P S hqtSkps hqt

\y\ = i? , i? sufficiently large so that all poles of the integrand lie

inside the contour. The integrals (20) permit us to find an upper bound

for the interpolation coefficients; we will return to details

subsequently.

The point of this approach is that the Z>, remain well defined

even when we take the limits cv_. •* &T. so as to actually obtain the

polynomial of (1*0 and its interpolation coefficients.

8.

In order to apply the Main Lemma we need an upper bound for

-XKIW
where P(,z) = T a,3 ~ (and we assume henceforth that in (17) all the

X X

appropriate limits of (lM, (15) and (l6) have been taken). We assert

that

(22) 5 5 I \b \ T T (o-l+lo^t-ll) •
k,p,s * hqt<kps

To see this observe that if all quantities appearing are real and positive

then already 5 = P(a-l) and this becomes our assertion (22). Further,

a. is given by
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It follows from (21) that for 1 5 X 5 a ,

k,p,s * hqt<kps J3=0

since

6 n r m\ n-\i

the point being that no negative terms arise. The collection of these

remarks amount to our assertion.

9.

The results (20) and (22) give a precise lower bound for the Theorem.

So as to provide a numerical, if cruder, result, write

A = max |cL+i-l| , 1 5 h < m ; 1 < q 5 n(h) ; 1 5 t < p(hq) .
h,q,t

Choosing B = A + 1 in (20) we certainly have

1-K| if |l-w| - 1

Hence

0
S < I (A+l) ll-ul* (a-l+A)

1=1

This result together with the Main Lemma immediately gives the

Theorem. We should remark that our estimates are exceptionally crude; a

more accurate result appropriate to the particular case can easily be

recovered however from the results (20) and (22) above.
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