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This overview is devoted to splitting methods, a class of numerical integrators inten-
ded for differential equations that can be subdivided into different problems easier to
solve than the original system. Closely connected with this class of integrators are
composition methods, in which one or several low-order schemes are composed to
construct higher-order numerical approximations to the exact solution. We analyse
in detail the order conditions that have to be satisfied by these classes of methods to
achieve a given order, and provide some insight about their qualitative properties in
connection with geometric numerical integration and the treatment of highly oscil-
latory problems. Since splitting methods have received considerable attention in the
realm of partial differential equations, we also cover this subject in the present survey,
with special attention to parabolic equations and their problems. An exhaustive list of
methods of different orders is collected and tested on simple examples. Finally, some
applications of splitting methods in different areas, ranging from celestial mechanics
to statistics, are also provided.
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1. Introduction
1.1. Lie–Trotter and Strang methods

If, as has sometimes been argued, there are only ten big ideas in numerical analysis
and all the rest are merely variations on those themes, splitting is undoubtedly one
of them (MacNamara and Strang 2016). In fact, we could say that, at least since
Descartes stated his four rules of logic in theDiscours de la méthode,1 the notion of
subdividing a complicated problem into its simpler constituent parts, solving each
one of them separately and combining those separated solutions in a controlled way
to get a solution to the original overall problem, constitutes a guiding principle in
all areas of science and philosophy.
In the realm of numerical analysis of differential equations, this basic principle

can be stated as follows. Suppose we have the abstract initial value problem

G ′ ≡ dG
dC
= 5 (G), G(0) = G0 (1.1)

associated to an ordinary differential equation (ODE) or a partial differential equa-
tion (PDE), in which case 5 is a certain spatial partial differential operator. Further-
more, suppose that 5 does not depend explicitly on time and can be decomposed
as

5 = 51 + · · · + 5<, < ≥ 2, (1.2)

so that each initial value problem G ′ = 5 9(G), G(0) = G0 is easier to solve than (1.1).

1 ‘Le second, de diviser chacune des difficultés que j’examinarais, en autant de parcelles qu’il se
pourrait, et qu’il serait requis pour les mieux résoudre. Le troisième, de conduire par ordre mes
pensées, en commençant par les objets les plus simples et les plus aisés à connaître, pour monter
peu à peu, comme par degrés, jusques à la connaissance des plus composés; et supposant même
de l’ordre entre ceux qui ne se précèdent point naturellement les uns les autres.’ (René Descartes,
Discours de la méthode, Seconde partie).
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Splitting methods for differential equations 3

Most commonly, they can be integrated exactly in closed form. Then it is possible
to take advantage of the decomposition (1.2) to get accurate approximations to the
solution of (1.1) by means of splitting methods.

The best example to start with is perhaps the case of a linear differential equation
defined in R� and < = 2, namely

G ′ = 51(G) + 52(G) = �1 G + �2 G, G(0) = G0, (1.3)

where �1 and �2 are � × � matrices and G ∈ R� . The solution reads

G(C) = eC(�1+�2)G0,

so that by computing this matrix exponential directly we would have solved (1.3)
without requiring splitting methods. Associated with (1.3), we have the matrix
differential equation

d-
dC

= (�1 + �2)-, -(0) = �, (1.4)

in the sense that
G(C) = -(C) G0 and -(C) = eC(�1+�2).

This is useful (mainly) for theoretical purposes, since we usually try to compute
eC(�1+�2)G0 directly instead of first computing the matrix exponential and then
multiplying it by G0.
It often happens that evaluating the action of -(C) on G0 is difficult or computa-

tionally expensive. If, however, this is not the case for each eC�9 separately, then
one may use the well-known Lie product formula (Reed and Simon 1980, p. 295)

eC(�1+�2) = lim
=→∞

(
e
C
=
�2 e

C
=
�1
)=
. (1.5)

To get an approximate solution of (1.3) at the final time C = C 5 , we subdivide the
interval [0, C 5 ] into # steps of length ℎ, with #ℎ = C 5 , and compute the sequence

G=+1 = eℎ�2 eℎ�1 G=, = ≥ 0, (1.6)

so that G=+1 ≈ G(C=+1 = (= + 1)ℎ). This is the so-called Lie–Trotter scheme. When
the matrices commute, the sequence produces the exact solution. To put it another
way, if the commutator [�1, �2] ≡ �1�2 − �2�1 = 0, then exp(ℎ(�1 + �2)) =
exp(ℎ�2) exp(ℎ�1). Otherwise, a direct calculation shows that

eℎ(�1+�2) − eℎ�2eℎ�1 =
1
2
ℎ2 [�1, �2] +$(ℎ3)

as ℎ→ 0, and hence the previous approximation is only of first order of accuracy.
Another version of the method is possible, of course, by reversing the order of �1
and �2, namely

G=+1 = eℎ�1 eℎ�2 G=, = ≥ 0 (1.7)

has the same order of accuracy and properties as (1.6). Needless to say, for any
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4 S. Blanes, F. Casas and A. Murua

< > 2, it results in
G=+1 = eℎ�< · · · eℎ�2 eℎ�1 G=

(or any other permutation of the matrices �9).
A higher-order approximation can be achieved by considering a symmetrized

version of (1.6),

eℎ(�1+�2) − e
1
2 ℎ�1eℎ�2e

1
2 ℎ�1 = �ℎ3 +$(ℎ4), (1.8)

where the constant � can be obtained either by comparing Taylor series or by
applying the Baker–Campbell–Hausdorff (BCH) formula as (Varadarajan 1984)
� = 1

24 ([�1, [�1, �2]] + 2[�2, [�1, �2]]). Therefore the sequence

G=+1 = e
1
2 ℎ�1eℎ�2e

1
2 ℎ�1 G=, = ≥ 0 (1.9)

produces a second-order approximation for the solution of (1.3). This corresponds
to the Strang (splitting) scheme. Again, if the role of �1 and �2 is interchanged, we
have another version of the Strang splitting scheme.
Simple generalizations to the case < > 2 include in particular the product

e
1
2 ℎ�1 e

1
2 ℎ�2 · · · eℎ�< · · · e

1
2 ℎ�2 e

1
2 ℎ�1 .

Higher-order splitting methods could in principle be constructed by including more
exponentials with their corresponding coefficients in a time step, namely

Ψ(ℎ) = e0B+1ℎ�1 e1Bℎ�2 e0Bℎ�1 · · · e11ℎ�2 e01ℎ�1 . (1.10)

The number B as well as the coefficients 0 9 , 1 9 are chosen so that

Ψ(ℎ) = eℎ(�1+�2) +$(ℎA+1)

as ℎ → 0 for a given order A . In (1.10), the first and last exponentials correspond
to �1. This format is convenient for implementation, since the last exponential in
one step can be concatenated with the first one at the next step, thus reducing the
number of evaluations by one. This corresponds to the well-known FSAL (first
same as last) property. The situation when we have an exponential of �2 as the first
and last term is recovered by taking 01 = 0B+1 = 0.

1.2. Flows and differential operators

The Lie–Trotter scheme can be easily generalized to any system (1.1)–(1.2) when
the solution is no longer given by exponentials, as in the linear case. If < = 2, it is
equivalent to the following.

Algorithm 1.1 (Lie–Trotter). Starting from G0 = G(0), for = ≥ 0,

• solve H′1 = 51(H1), H1(C=) = G=, in [C=, C=+1];
• set H=+1/2 = H1(C=+1);
• solve H′2 = 52(H2), H2(C=) = H=+1/2, in [C=, C=+1];
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Splitting methods for differential equations 5

• finally, set G=+1 = H2(C=+1).

Alternatively, if we denote the solution of equation (1.1) for each C ∈ R as

G(C) = i [ 5 ]C (G0),

then Algorithm 1.1 can be formally expressed as

G=+1 = jℎ(G=) ≡ i [2]
ℎ

(
i
[1]
ℎ

(G=)
)
=
(
i
[2]
ℎ
◦ i [1]

ℎ

)
(G=), (1.11)

where we have used the simplified notation i
[ 9 ]
C (G0) for the solutions H(C) =

i
[ 59 ]
C (G0) of the subproblems H′ = 5 9(H), H(0) = G0. Analogously, the Strang

splitting (1.9) is generalized as follows.

Algorithm 1.2 (Strang). From G0 = G(0), for = ≥ 0,

• solve H′1 = 51(H1), H1(C=) = G=, in [C=, C=+1/2], with C=+1/2 = (= + 1
2 )ℎ;

• set H=+1/2 = H1(C=+1/2);
• solve H′2 = 52(H2), H2(C=) = H=+1/2, in [C=, C=+1];
• set Ĥ=+1/2 = H2(C=+1);
• solve H′1 = 51(H1), H1(C=+1/2) = Ĥ=+1/2, in [C=+1/2, C=+1];
• finally, set G=+1 = H1(C=+1)

or, in short,
G=+1 = (

[2]
ℎ

(G=) ≡
(
i
[1]
ℎ/2 ◦ i

[2]
ℎ
◦ i [1]

ℎ/2
)
(G=). (1.12)

If equation (1.1) corresponds to a (nonlinear) ordinary differential equation evolving
in R� ,

G ′ = 5 (G), G(0) = G0 ∈ R� , (1.13)

5 is called the vector field. If (1.13) admits for each G0 ∈ R� a unique solution G(C)
defined for all C ∈ R, the map

i
[ 5 ]
C : R� −→ R�

G0 ↦−→ G(C) = i [ 5 ]C (G0)

is referred to as the C-flow (Arnold 1989). Thus, for each value of the real parameter
C, i [ 5 ]C maps R� in R� in such a way that i [ 5 ]C (I) is the value at time C of the
solution of the system with initial value I at time 0, whereas, for fixed G0 and
varying C, i [ 5 ]C (G0) is the solution of the initial value problem (1.13).

It is worth mentioning that the solution G(C) of (1.1) is in general defined for a
maximal time interval (Cmin(G0), Cmax(G0)) (with −∞ ≤ Cmin(G0) ≤ 0 ≤ Cmax(G0) ≤
+∞). Furthermore, the vector field 5 of many systems of ordinary differential
equations is singular (or undefined) for some G ∈ R� . Thus, in general, 5 is
defined for some open set U ⊂ R� . Hence, for a given C ∈ R, the C-flow i

[ 5 ]
C is a
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6 S. Blanes, F. Casas and A. Murua

map from
DC = {G0 ∈ U : C ∈ (Cmin(G0), Cmax(G0))}

to U . In general, one may have different domains of definition U (resp.DC ) for each
5 9 (resp. i

[ 59 ]
C ). In this general situation the compositions in (1.11) and (1.12) are

not well-defined for all G0, ℎ and =. In order to avoid these technicalities, we will
assume in what follows that U = R� , Cmin = −∞ and Cmax = +∞, for each vector
field 5 9 .
Associated with the vector field 5 is the Lie derivative or Lie operator � (Arnold

1989), mapping smooth functions 6 : R� → R into the real-valued function
� 6 : R� → R such that, for G ∈ R� ,

(� 6)(G) =
d
dC

����
C=0
6
(
i
[ 5 ]
C (G)

)
,

that is,
(� 6)(G) = 5 (G) · ∇6(G).

Then the flow of (1.13) verifies (Sanz-Serna and Calvo 1994, Hairer, Lubich and
Wanner 2006)

6
(
i
[ 5 ]
C (G)

)
=
(
eC�6

)
(G) ≡

(∑
:≥0

C:

:!
�:6

)
(G).

The operator -(C) ≡ eC� is called Lie transformation, and can be seen as the formal
solution of the operator equation

d-
dC

= - �, -(0) = � . (1.14)

This can be seen as follows: on the one hand,

d
dC
6
(
i
[ 5 ]
C (G)

)
=

d
dC

(-(C)6)(G) =
(

d-(C)
dC

6

)
(G),

and on the other hand
d
dC
6
(
i
[ 5 ]
C (G)

)
= (�6)

(
i
[ 5 ]
C (G)

)
= -(C)(�6)(G).

Lie operators satisfy some remarkable properties (Arnold 1989). In particular,
although they do not commute, their commutator is nevertheless a first-order linear
differential operator. Specifically, let � and � be the Lie operators associated with
5 and 6, respectively, and D : R� → R a given smooth function. Then

[�, �]D = (�� − ��) D =
�∑
8, 9=1

(
5 9
m68

mG 9
− 6 9

m 58

mG 9

)
mD

mG8
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Splitting methods for differential equations 7

and it is possible to associate a new vector field to this differential operator, F =

( 5 , 6), with components

F8 = ( 5 , 6)8 =
�∑
9=1

(
5 9
m68

mG 9
− 6 9

m 58

mG 9

)
.

It is called the Lie–Poisson bracket of 5 and 6, and its Lie operator , satisfies
, = [�, �].

Now suppose that 5 (G) = 51(G) + 52(G), so that each part G ′ = 5 9(G) is exactly
solvable (or can be numerically solved up to round-off accuracy) with flow G(C) =
i
[ 9 ]
C (G0). Letting �1 and �2 denote the Lie operators associated with 51 and 52,

respectively, it holds that

6
(
i
[1]
C (G)

)
=
(
eC�16

)
(G), 6

(
i
[2]
C (G)

)
=
(
eC�26

)
(G).

Then, for the first-order approximation jℎ = i [2]ℎ ◦i
[1]
ℎ

furnished byAlgorithm 1.1,
we have 6(jℎ(G)) = (Ψ(ℎ)6)(G), where Ψ(ℎ) is a series of linear differential oper-
ators defined as

Ψ(ℎ) = eℎ�1 eℎ�2 . (1.15)

Notice that the exponentials of Lie derivatives in (1.15) appear in reverse order
with respect to the maps in the integrator (Hairer et al. 2006, p. 88). Of course, the
same procedure can be applied to the Strang splitting, resulting in the product

Ψ(ℎ) = e
ℎ
2 �1 eℎ�2 e

ℎ
2 �1 . (1.16)

These considerations show that: (i) splitting methods for the problem (1.1)–(1.2)
defined in a certain function space (e.g. with partial differential equations) can be
formulated in terms of the solution of each subproblem (either exact or approximate)
by means of Algorithms 1.1 and 1.2, and (ii) splitting methods applied to nonlinear
ODEs evolving in R� can also be formally expressed as products of exponentials
of differential operators, since it is possible to transform the original nonlinear
problem into a linear one with the Lie formalism. This observation is very useful
when analysing the order conditions for a method to be of a given order. In
particular, we have the same order conditions for linear and nonlinear ODEs (see
Section 2).
The previous integrators are sometimes called multiplicative operator-splitting

methods, especially in the literature concerning the numerical treatment of partial
differential equations. In that area, we still have to specify how to solve each initial
value sub-problem in Algorithms 1.1–1.2 as well as the boundary conditions.
Moreover, we should take into account that, for a given differential equation,
different ways to carry out the splitting in fact lead to different integrators.
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8 S. Blanes, F. Casas and A. Murua

1.3. Adjoint method, conjugate method

The flow i
[ 5 ]
C of (1.13) verifies

(
i
[ 5 ]
−C
)−1

= i
[ 5 ]
C , but this property is not shared

by many numerical integrators, and in particular by the map jℎ corresponding to
the Lie–Trotter scheme.
In general, if kℎ(G) represents a numerical method of order at least one, i.e.

kℎ(G) = G + ℎ 5 (G) +$(ℎ2), then (k−ℎ)−1(G) = G + ℎ 5 (G) +$(ℎ2), so that

k∗ℎ ≡ (k−ℎ)−1

is also a numerical method of order at least one. It is called the adjoint method
of kℎ (Sanz-Serna and Calvo 1994). In words, stepping forwards with the given
method kℎ is the same as stepping backwards with the inverse of its adjoint k∗

ℎ
. If

kℎ ≡ jℎ = i [2]ℎ ◦ i
[1]
ℎ

, then clearly j∗
ℎ
= i

[1]
ℎ
◦ i [2]

ℎ
. Additional examples are the

explicit and implicit Euler methods

G=+1 = k
4
ℎ(G=) = G= + ℎ 5 (G=), G=+1 = k

8
ℎ(G=) = G= + ℎ 5 (G=+1),

since k8
ℎ
= (k4

ℎ
)∗.

Whenever an integrator satisfies

kℎ = k
∗
ℎ = (k−ℎ)−1,

it is called a time-symmetric or self-adjoint method. Alternatively, G=+1 = kℎ(G=)
is time-symmetric if and only if, exchanging ℎ ↔ −ℎ and G= ↔ G=+1, we get the
same expression, i.e. k−ℎ(G=+1) = G=. The Strang scheme (1.12) is an example of
a time-symmetric method.
It is in fact straightforward to construct time-symmetric methods using the ad-

joint: given an arbitrary method kℎ of order A ≥ 1, then the compositions

kℎ/2 ◦ k∗ℎ/2 and k∗
ℎ/2 ◦ kℎ/2 (1.17)

are time-symmetric methods of order A ≥ 2 (Sanz-Serna and Calvo 1994). Further,
symmetric methods are necessarily of even order, as we will show in Section 2.
Notice that the Strang method (1.12) is simply

(
[2]
ℎ
= j∗

ℎ/2 ◦ jℎ/2,

where jℎ is given by (1.11). Additional examples are the trapezoidal rule kC
ℎ
=

k8
ℎ/2 ◦ k

4
ℎ/2 and the midpoint rule k<

ℎ
= k4

ℎ/2 ◦ k
8
ℎ/2.

The Strang scheme can also be expressed as

(
[2]
ℎ
= i

[1]
−ℎ/2 ◦

(
i
[1]
ℎ
◦ i [2]

ℎ

)
◦ i [1]

ℎ/2

= c−1
ℎ ◦ j

∗
ℎ ◦ cℎ, (1.18)

with cℎ = i
[1]
ℎ/2. In the terminology of dynamical systems, the Strang and Lie–

Trotter schemes are said to be conjugate to each other by the ($(ℎ)-near to identity)
map cℎ = i [1]ℎ/2, which can be considered as a change of coordinates. Furthermore,
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Splitting methods for differential equations 9

the result of = applications of the Strang scheme can be recovered from = applica-
tions of Lie–Trotter by carrying out just an initial transformation at the initial step
and its inverse at the final step.
Since many dynamical properties are invariant under changes of coordinates,

conjugate methods provide the same characterization of these properties. Other
examples of conjugate methods are the trapezoidal and midpoint rules, the map
cℎ being in this case the implicit Euler method (Hairer et al. 2006). We will treat
conjugate methods in detail in Sections 4 and 5.

1.4. The mathematical pendulum

The simple mathematical pendulum constitutes a standard example of a nonlinear
Hamiltonian system. In appropriate units, the corresponding Hamiltonian function
reads

�(@, ?) =
1
2
?2 + (1 − cos @), (1.19)

where @ denotes the angle from the vertical suspension point and ? is the associated
momentum.
As is well known, the equations of motion of a generic Hamiltonian system with

Hamiltonian �(@, ?), and @, ? ∈ R3 , are given by (Goldstein 1980)
d@
dC
= ∇?�,

d?
dC
= −∇@�, (1.20)

the function �(@, ?) remains constant along the evolution, and the corresponding
C-flow, denoted i [� ]C , is a symplectic transformation (Arnold 1989): its Jacobian
matrix i′[� ]C verifies the identity

(i′[� ]C )> � i′[� ]C = � for C ≥ 0,

where � is the basic canonical matrix

� =

(
03 �3
−�3 03

)
. (1.21)

In the particular case of (1.19), 3 = 1, and the equations of motion are
d@
dC
= ?,

d?
dC
= − sin @.

Given a Hamiltonian �(@, ?) that can be decomposed as

�(@, ?) = �1(@, ?) + �2(@, ?), (1.22)

it makes sense to split the equations of motion (1.20) as

d
dC

(
@

?

)
=

(
∇?�1(@, ?)
−∇@�1(@, ?)

)
+
(
∇?�2(@, ?)
−∇@�2(@, ?)

)
,

so that each subsystem is itself Hamiltonian. In that case, we can then apply
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10 S. Blanes, F. Casas and A. Murua

Algorithm 1.1 by composing both maps and form the first-order scheme

G=+1 = jℎ(G=) ≡
(
i
[�2 ]
ℎ
◦ i [�1 ]

ℎ

)
(G=), = = 0, 1, 2, . . . , (1.23)

where G= = (@=, ?=)>. Similarly, Algorithm 1.2 gives the second-order scheme

G=+1 = (
[2]
ℎ

(G=) ≡
(
i
[�1 ]
ℎ/2 ◦ i

[�2 ]
ℎ
◦ i [�1 ]

ℎ/2
)
(G=), = = 0, 1, 2, . . . . (1.24)

Notice that, since both jℎ and ( [2]ℎ are defined as compositions of flows of Hamilto-
nian systems and the composition of symplectic maps is also symplectic (Arnold
1989), then both (1.23) and (1.24) are symplectic integrators (Sanz-Serna andCalvo
1994).
The fact that schemes (1.23) and (1.24) share the symplectic property with the

exact flow has remarkable consequences in practice concerning the preservation of
properties and the error propagation for long-time integrations, as we will shortly
illustrate.
For the Hamiltonian (1.19) describing the pendulum (and in fact for many other

mechanical systems), one can separate the contributions of the kinetic energy
)(?) = 1

2 ?
2 and the potential energy +(@) = 1 − cos @, so that a natural splitting of

the form (1.22) is then
�(@, ?) = )(?) ++(@). (1.25)

This corresponds to splitting the equations of motion (1.20) into the subsystems(
@′

?′

)
=

(
∇?)(?)

0

)
and

(
@′

?′

)
=

(
0

−∇@+(@)

)
, (1.26)

which in turn implies that

i
[) ]
C :

(
@0
?0

)
↦−→

(
@0 + C ∇)?(?0)

?0

)
(1.27)

and

i
[+ ]
C :

(
@0
?0

)
↦−→

(
@0

?0 − C ∇+@(@0)

)
. (1.28)

Then the first-order scheme (1.23) reduces to

@=+1 = @= + ℎ∇?)(?=), ?=+1 = ?= − ℎ∇@+(@=+1), = = 0, 1, 2 . . . (1.29)

Compared to the explicit Euler method

@=+1 = @= + ℎ∇?)(?=), ?=+1 = ?= − ℎ∇@+(@=),

it only differs in that ∇@+ is evaluated at the updated value @=+1 instead of @=. It
makes sense, then, to call scheme (1.29) the symplectic Euler–VT method: we first
compute the gradient of the kinetic energy ) and then compute the gradient of the
potential energy + .
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Splitting methods for differential equations 11

In accordance with our treatment in Section 1.3, the adjoint of (1.29) corresponds
to composing the maps i [) ]C and i [+ ]C in reverse order,

?=+1 = ?= − ℎ∇@+(@=), @=+1 = @= + ℎ∇)?(?=+1), (1.30)

so we call it the symplectic Euler–TV method.
Obviously, our discussion of schemes (1.29) and (1.30) above applies for any

Hamiltonian system whose Hamiltonian function can be written in the (so-called
separable) form (1.25). That is, the Lie–Trotter scheme leads to the two variants of
the symplectic Euler method when it is applied to separable Hamiltonian systems.
As for the Strang splitting scheme, described in Algorithm 1.2 in general, and

in (1.24) for Hamiltonian problems, when �(@, ?) = )(?) + +(@) it reduces to
the much celebrated Störmer–Verlet method (Hairer, Lubich and Wanner 2003).
Specifically, depending on the order in which the parts are evaluated, we have the
following two variants.

Algorithm 1.3 (Störmer–Verlet–VTV). From (@0, ?0) = (@(0), ?(0)), for = ≥ 0,

• ?=+1/2 = ?= − ℎ
2∇@+(@=);

• @=+1 = @= + ℎ∇?)(?=+1/2);

• ?=+1 = ?=+1/2 − ℎ
2∇@+(@=+1).

Algorithm 1.4 (Störmer–Verlet–TVT). From (@0, ?0) = (@(0), ?(0)), for = ≥ 0,

• @=+1/2 = @= + ℎ2∇?)(?=);
• ?=+1 = ?= − ℎ∇@+(@=+1/2);

• @=+1 = @=+1/2 + ℎ2∇?)(?=+1).

Clearly, Algorithms 1.3 and 1.4 correspond to time-symmetric methods and can
be obtained by composing the Euler–TV method and its adjoint. Specifically, if jℎ
corresponds to method (1.30), then

(
[2]
ℎ
≡ j∗

ℎ/2 ◦ jℎ/2 = i
[+ ]
ℎ/2 ◦ i

[) ]
ℎ
◦ i [+ ]

ℎ/2 (1.31)

recovers Störmer–Verlet–VTV, whereas the TVT version corresponds to i [) ]
ℎ/2 ◦

i
[+ ]
ℎ
◦ i [) ]

ℎ/2 .
Figure 1.1(a) shows trajectories of the pendulum (1.19), starting from three dif-

ferent initial conditions (@0, ?0) = (−5, 5
2 ), (1, 1), ( 1

10 , 0), corresponding to different
regions of the phase space. For (@0, ?0) = (−5, 5

2 ) it holds that )(?(C)) > +(@(C)),
whereas for (@0, ?0) = (1, 1) we have )(?(C)) ' +(@(C)) on average. Finally, for
(@0, ?0) = ( 1

10 , 0), the system can be seen as a slightly perturbed harmonic oscillator.
In this case we could consider the following decomposition:

� =
1
2

(?2 + @2) +
(

1 − 1
2
@2 − cos @

)
≡ �1(@, ?) + �2(@), (1.32)
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12 S. Blanes, F. Casas and A. Murua

where �1(@, ?) = 1
2 (?2 + @2) corresponds to the harmonic oscillator, whose exact

solution is known (a rotation in phase space). Moreover, |�2(@)| = Y |�1(@, ?)|,
with Y ≈ 10−3 along the orbit originated in ( 1

10 , 0). With splitting (1.32), the map
i
[�1 ]
ℎ
◦ i [�2 ]

ℎ
reads(

@=+1
?=+1

)
= '(ℎ)

(
@=

?= + ℎ(@= − sin @=)

)
, with '(ℎ) =

(
cos ℎ sin ℎ
− sin ℎ cos ℎ

)
, (1.33)

whereas the second-order scheme i [�1 ]
ℎ/2 ◦ i

[�2 ]
ℎ
◦ i [�1 ]

ℎ/2 can be formulated as(
@=+1/2
?=+1/2

)
= '(ℎ/2)

(
@=
?=

)
,

?∗
=+1/2 = ?=+1/2 + ℎ(@=+1/2 − sin @=+1/2),(

@=+1
?=+1

)
= '(ℎ/2)

(
@=+1/2
?∗
=+1/2

)
.

(1.34)

To illustrate the different splittings, we take ( 1
10 , 0) as the initial condition, integrate

until the final time C 5 = 500 and measure the relative error in energy, |�(@=, ?=)−
�(@0, ?0)|/|�(@0, ?0)|, along the trajectory. The step size is taken so that all the
methods tested require the same number of evaluations of the potential (and thus
essentially involve the same computational cost): 1200 evaluations (Figure 1.1(b))
and 2400 evaluations (Figure 1.1(c)). The schemes we test are as follows: on the
one hand, the Störmer–Verlet algorithm (1.31) (denoted by (2 in the graphs) and
the fourth-order Runge–Kutta–Nyström splitting method proposed in Blanes and
Moan (2002) (RKN64), as representatives of the ) ++ splitting; on the other hand,
the specially adapted schemes (1.34), denoted (2, 2), and the (10, 6, 4) integrator
presented in Blanes et al. (2013b), both for the case where � = �1 + �2, with �2
small compared with�1. The notation (10, 6, 4) refers to the fact that the local error
of the method is of order$(Yℎ11+Y2ℎ7+Y3ℎ5) if�2 is Y times smaller than�1. For
analogy, we label the Strang method applied to the perturbed harmonic oscillator
(1.32) as (2, 2). Notice that the splitting (1.32) is more advantageous for this initial
condition (the simple method (1.34) behaves better than the fourth-order scheme),
and that the improvement with respect to the ) ++ splitting is approximately of the
size of Y. We therefore see that for this type of problem it is possible to construct
integrators, providing much more accurate results with the same computational
effort.
Since all the schemes are symplectic integrators and the evolution is taking place

in a compact domain, the error in energy is bounded (in contrast to standard non-
symplectic methods, whose error in energy usually grows linearly with C), whereas
the error in phase space (@, ?) grows linearly when applied to near-integrable
Hamiltonian systems (Hairer et al. 2006). Notice, however, that if the scheme is
conjugate to another more accurate integrator, then the global error in phase space
will remain bounded for some time interval before it starts growing linearly; see
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Figure 1.1. Simple pendulum. (a) Phase space and three trajectories with ini-
tial conditions (@0, ?0) = (−5, 5

2 ), (1, 1), ( 1
10 , 0). (b,c) Relative error in energy

committed by different splitting methods along the solution with initial condition
(@0, ?0) = ( 1

10 , 0) in the interval C ∈ [0, 500] with (b) 1200 evaluations and (c) 2400
evaluations of the potential.

Section 4.5 for more details. This feature is illustrated in Figure 1.2: we integrate
the system starting with the same initial condition and final time C 5 = 500 with
ℎ = 5

12 and compute the relative error

‖(@(C=), ?(C=)) − (@=, ?=)‖/‖(@(C=), ?(C=))‖,

with different schemes. The reference solution (@(C=), ?(C=)) is computed numer-
ically with very high accuracy. Specifically, we test the following integrators: the
Lie–Trotter method, equation (1.23) (denoted LT in the graph) and the Störmer–
Verlet ((2) method for the splitting� = ) ++ , and scheme (2, 2) and (1.33) (LTpert),
which corresponds to the Lie–Trotter method applied to the perturbed harmonic
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14 S. Blanes, F. Casas and A. Murua

Figure 1.2. Pendulum. Relative error in phase space for different splitting methods
along the solutionwith initial condition (@0, ?0) = ( 1

10 , 0) in the interval C ∈ [0, 500]
and time step ℎ = 5

12 .

oscillator (1.32). We observe that, since LT and (2 are conjugate to each other
(see (1.18)), their errors are quite similar after some time interval. On the other
hand, (2, 2) and LTpert (which are also conjugate to each other) show a different
behaviour: no linear growth is visible, and the error of LTpert is larger than that of
(2,2) by approximately the same factor for the whole time interval considered in
Figure 1.2. This is related to the fact that (2, 2) and LTpert are conjugate to another
method with a local error essentially $(ℎ3Y2); see Sections 4.5 and 5.7. More
comments on these observations along with additional explanations will be given
in Section 4.5.

1.5. The gravitational #-body problem

Another popular example to illustrate the behaviour and performance of splitting
methods corresponds to the important problem in classical mechanics of a planetary
system modelled as # bodies (a massive star and # − 1 planets) under mutual
gravitational Newtonian interaction. This is also a Hamiltonian system with

�(@, ?) =
#−1∑
8=0

1
2<8

?>8 ?8 − �
#−1∑
8=1

8−1∑
9=0

<8< 9

‖@8 − @ 9 ‖
. (1.35)

Here (@, ?) denote the ‘supervectors’ composed by the positions @8 ∈ R3 and
momenta ?8 ∈ R3 of the ‘Sun’ (8 = 0) and the#−1 planets (8 = 1, . . . , #−1) in some
Cartesian coordinate system: @ = (@0, @1, . . . , @#−1)>, ? = (?0, ?1, . . . , ?#−1)>.
In (1.35), <8 is the mass of the 8th body, and � is the universal gravitational
constant.
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Splitting methods for differential equations 15

Now the equations of motion (1.20) read

d@8
dC

= ∇?8� =
1
<8
?8 , 8 = 0, . . . , # − 1,

d?8
dC

= −∇@8� = −�
∑
9≠8

<8< 9

‖@8 − @ 9 ‖3
(@8 − @ 9), 8, 9 = 0, . . . , # − 1.

(1.36)

Since the kinetic energy )(?) and the potential energy +(@) are in this case

)(?) =
#−1∑
8=0

1
2<8

?>8 ?8 , +(@) = −�
#−1∑
8=1

8−1∑
9=0

<8< 9

‖@8 − @ 9 ‖
, (1.37)

it also makes sense to separate the Hamiltonian (1.35) as �(@, ?) = )(?)++(@), so
that the symplectic Euler and the Störmer–Verlet schemes can be applied to arbitrary
configurations of the bodies. However, this choice is suboptimal for planetary
systems, where planets describe near-Keplerian orbits around the central star. An
alternative procedure taking advantage of the hierarchical nature of the motion of
the planets around the central massive body was first proposed in Wisdom and
Holman (1991), and is known in the literature as the Wisdom–Holman integration
map. It essentially consists in changing coordinates so that the transformed � can
be written as an integrable part �1 (corresponding to the Keplerian motion of the
planets) and a small perturbation �2 (that accounts for the gravitational interaction
of the planets among themselves), and then applying the second-order scheme
(1.24) to this new Hamiltonian.
Specifically, Wisdom and Holman (1991) consider a linear canonical change

of variables to rewrite (1.35) in the so-called Jacobi coordinates (@̂8 , ?̂8), 8 =
0, 1, . . . , # − 1. Here @̂0 is the position of the centre of mass of the system, @̂1
is the relative position of the first planet with respect to the central star, and for
8 = 2, . . . , # − 1, @̂8 is the position of the 8th planet relative to the centre of mass of
the central star and the planets with lower indices. That is,

@̂0 =
1

"#−1

#−1∑
9=0

< 9 @ 9 , @̂8 = @8 −
1
"8

8−1∑
9=0
< 9 @ 9 , 8 = 1, . . . , # − 1, (1.38)

where "8 =
∑8
9=0 < 9 for 8 = 0, . . . , # − 1. This can be written in a more compact

way as @̂ = �@, where � is an #×# invertible matrix with mass-dependent entries,
@̂ = (@̂0, . . . , @̂#−1)> and @ = (@0, . . . , @#−1)>.
The conjugate momenta ?̂8 , 8 = 0, 1, . . . , # − 1, are uniquely determined by

the requirement that the change of variables be canonical (i.e. ? = �> ?̂), so that
the transformed Hamiltonian function is obtained by rewriting (1.35) in the new
variables: �̂(@̂, ?̂) ≡ �(�−1@̂, �> ?̂).
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16 S. Blanes, F. Casas and A. Murua

It is straightforward to check that the kinetic energy, expressed in terms of ?̂, has
the same diagonal structure as in ?:

) =

#−1∑
8=0

1
2<8

?>8 ?8 =
#−1∑
8=0

1
2<̂8

?̂>8 ?̂8 ,

where

<̂0 = "#−1, <̂8 =
"8−1
"8

<8 , 8 = 1, . . . , # − 1.

The Hamiltonian in the new variables �̂(@̂, ?̂) can be split as �̂(@̂, ?̂) = �1(@̂, ?̂) +
�2(@̂), where

�1(@̂, ?̂) =
1

2<̂0
?̂>0 ?̂0 +

#−1∑
8=1

(
1

2<̂8
?̂>8 ?̂8 −

<0<8
‖@̂8 ‖

)
,

�2(@̂) = +(@) + �
#−1∑
8=1

<0<8
‖@̂8 ‖

= �<0

#−1∑
8=1

<8

(
1
‖@̂8 ‖

− 1
‖@8 − @0‖

)
− �

#−1∑
8=2

8−1∑
9=1

<8< 9

‖@8 − @ 9 ‖
,

(1.39)

and @ has to be expressed in terms of @̂ according to @ = �−1@̂.
Observe that the potential energy does not depend on @̂0, so ?̂0 is constant (in

fact it is the linear momentum of the system) and therefore we can remove it from
�̂ if we assume that the centre of the mass is at rest.
Clearly, for fixed @̂ and varying mass ratios,

@̂8 = @8 − @0 +$(Y), �2(@̂) = $(Y) as Y ≡ 1
<0

max
1≤8≤#−1

<8 → 0.

Hamiltonian�1 can then be considered as a collection of #−1 two-body problems,
and �2 as a perturbation. It turns out that the flow i

[�1 ]
ℎ

can be computed with the
algorithm proposed in Danby (1988, p. 165), for example, whilst �2 only depends
on @̂, and thus its flow i

[�2 ]
ℎ

can be explicitly evaluated in an efficient way. Notice
that the number of terms in�1 grows linearly with the number of bodies # , whereas
the number of terms in �2 grows quadratically.
As an illustrative example, we next consider the outer Solar System modelled

as a six-body system with the inner Solar System (8 = 0), the four giant planets
(8 = 1, 2, 3, 4) and Pluto (8 = 5), all considered as point masses. The initial
conditions for each planet are taken at Julian time (TDB) 2440400.5 (28 June 1969),
obtained from the DE430 ephemerides (Folkner et al. 2014) and normalized so that
the centre of mass of the system is at rest. A schematic diagram of the trajectories
is shown in Figure 1.3(a) with the initial (circles) and final (stars) positions of
each object after 200 000 days. For this problem we test the same methods as
for the pendulum in Figure 1.1: on the one hand, Störmer–Verlet (1.31), (2,
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Figure 1.3. (a) Trajectories of the six-body system modelling the outer Solar
System. (b,c) Relative error in energy as a function of time for an interval of
200 000 days obtained with different splitting methods with (b) 1200 evaluations
and (c) 2400 evaluations of the force.

and the fourth-order Runge–Kutta–Nyström splitting method of Blanes and Moan
(2002), RKN64 when the Hamiltonian (1.35) is separated into kinetic and potential
energy (1.37); on the other hand, the specially adapted schemes (1.34) (called in
this setting the Wisdom–Holman integrator, and denoted (2,2) as before) and the
(10, 6, 4) integrator presented in Blanes et al. (2013b) when � is expressed as
�(@̂, ?̂) = �1(@̂, ?̂) + �2(@̂), with (1.39) in Jacobi coordinates. We integrate for
a relatively short time interval, C 5 = 200 000 days (or approximately 46 periods
of Jupiter and two periods of Pluto), and compute the relative error in the energy
with each integrator with a step size so that all of them require the same number
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Figure 1.4. Outer Solar System. Relative error in position as a function of C for
a time interval [0, C 5 = 200 000] days with ℎ = C 5 /1200 obtained with different
splitting methods.

of force evaluations. The results are displayed in Figure 1.3 with (b) 1200 and (c)
2400 evaluations. As in the previous example of the pendulum, the error in energy
remains bounded in all cases, and scheme (2, 2) provides an error energy almost
1000 times smaller than (2. This illustrates the fact that, by taking a splitting
adapted to the structure of the problem and designing integrators taking these
specific features into account, it is possible to greatly improve the efficiency.

In Figure 1.4 we display the relative errors in positions @ = (@0, . . . , @5) ∈ R18

along the time integration for the same methods as in Figure 1.2. As in the
pendulum problem, the error for LT is larger than for (2 at the beginning of the
integration interval, but they become similar after some time. Here (2, 2) is also
more accurate than (2 by a factor significantly smaller than Y. Compared to the
pendulum problem, the error grows linearly right from the beginning for schemes
LTpert and (2, 2) (although with a smaller slope than LT and (2). The curve labelled
by pLTpert corresponds to the relative error obtained by applying LTpert with initial
conditions (@̄0, ?̄0) = i

[�1 ]
ℎ/2 (@0, ?0). Notice that the phase errors of pLTpert are

very similar to those of (2, 2). All these observations will be accounted for in
Section 4.5.

1.6. The time-dependent Schrödinger equation

The basic object to study the time evolution of a system in quantum mechanics is
the (time-dependent) Schrödinger equation. In the case of one particle of unit mass
in a potential +(G), it reads (Messiah 1999)

iℏ
m

mC
k(G, C) = −1

2
Δk(G, C) ++(G)k(G, C), k(G, 0) = k0(G). (1.40)
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Splitting methods for differential equations 19

Here k : Ω ⊂ R3 × R −→ C is the wave function, representing the state of the
system, and ℏ is the reduced Planck constant. The quantity |k(G, C)|2 represents a
probability density for the position of the particle, in the sense that the probability
of the particle to be located in ( ⊂ Ω at time C is

∫
(
|k(G, C)|2 dG. The equation is

then defined in the Hilbert space !2(Ω,C).
If we introduce the self-adjoint operators )̂ , +̂ acting on k ∈ !2(Ω,C) as

)̂k = −1
2
Δk, +̂k = +(G)k,

then a straightforward calculation shows that [+̂ , [)̂ , +̂]]k = |∇+ |2k, and therefore

[+̂ , [+̂ , [)̂ , +̂]]]k = 0. (1.41)

A standard approach for applying splitting methods in this setting consists in
first discretizing the equation in space. If we consider the one-dimensional case
for simplicity and if the wave function is negligible outside a space interval [0, 1]
on the time interval of interest, then we can limit ourselves to the study of the
equation on that finite interval with periodic boundary conditions (Lubich 2008).
After rescaling, the periodic interval can always be restricted to [−c, c]. In this
way, the original problem is transformed into (ℏ = 1)

i
m

mC
k(G, C) = −1

2
m2k

mG2 (G, C) ++(G)k(G, C), G ∈ [−c, c], (1.42)

with k(−c, C) = k(c, C) for all C.
The wave function is then approximated by a trigonometric polynomial D(G, C)

whose coefficients are obtained by requiring that the approximation satisfies (1.42)
in a grid of " equispaced points G 9 = −c + 9 · 2c/(" − 1) on the interval [−c, c].
The vector D = (D0, . . . , D"−1)> ∈ C" formed by the grid values D 9 ≈ k(G 9 , C),
9 = 0, 1, . . . , " − 1, then verifies the "-dimensional linear ODE

i
d
dC
D(C) = � D(C) = () ++)D(C), D(0) = D0 ∈ C" . (1.43)

Here+ = diag(+(G 9)) and ) = − 1
2�, where � is the second-order periodic spectral

differentiation matrix (Trefethen 2000). As is well known,)D = F−1�)FD, where
F and F−1 are the forward and backward discrete Fourier transform, and �) is
also diagonal. The transformations F and F−1 are computed with the fast Fourier
transform (FFT) algorithm, requiring $(" log") operations.
Notice that solving equations iD′ = )D and iD′ = +D is done trivially by using

exponentials of diagonal matrices and FFTs, namely,(
eg+ D

)
9
= eg+ (G 9 )D 9 , eg) D = F−1eg�)F D,

for a time step ℎ, with g = −iℎ. Therefore, splitting methods constitute a valid
alternative way to approximate the solution D(C) = eg�D0 = eg() ++ )D0, which may
be prohibitively expensive to evaluate for large values of " . Thus the Lie–Trotter
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20 S. Blanes, F. Casas and A. Murua

scheme reads
eg() ++ ) = eg) eg+ +$(g2), (1.44)

whereas the second-order Strang splitting constructs the numerical approximation
D=+1 at time C=+1 = C= + ΔC by

D=+1 = eg/2+ eg) eg/2+ D=. (1.45)

The resulting scheme is called the split-step Fourier method in the chemical lit-
erature (Feit, Fleck Jr and Steiger 1982) and has some remarkable properties. In
particular, it is unitary and time-symmetric (Lubich 2008), as is the exact solution
eg� .

Relation (1.41) still holds for the matrices ) and + if the number of points "
in the space discretization is sufficiently large, and in fact [+, [),+]] is diagonal
if the derivatives of the potential are computed first and then evaluated at the
corresponding space grid.
We next illustrate the procedure with the one-dimensional double-well potential

+(G) =
1
80

(G2 − 20)2, (1.46)

and the initial wave function k(G, 0) = k0(G) = f cos2(G) e− 1
2 (G−1)2 , where f is an

appropriate normalizing constant. We take " = 256 discretization points on the
interval G ∈ [−13, 13] and integrate the resulting linear ODE (1.43) in the interval
0 ≤ C ≤ C 5 = #ℎ = 10. Figure 1.5(a) shows |k0(G)|2, |k(G, C 5 )|2 and the potential
+(G), whereas Figure 1.5(b) shows an efficiency diagram. Specifically, we display
the error in energy measured at the final time, |D>

#
�D# − D>0 �D0 |, as a function

of the number of FFT calls (and its inverse) as an estimate of the computational
effort of each method. The lines correspond to the Strang splitting (1.45), (2, with
time steps ℎ = 10/2: , : = 1, 2, . . . , 12, the fourth-order RKN splitting method
RKN64 from Blanes and Moan (2002), already illustrated in Figures 1.1 and 1.3,
and another fourth-order scheme including the double commutator [+, [),+]] into
its formulation (denoted RKNm44). In this diagram the slope of each line for
sufficiently small ℎ indicates the order of the scheme. As in the previous examples,
by taking into account the specific features of the problem at hand it is possible to
construct more accurate and efficient numerical approximations.
The error in energy also remains bounded for these unitary integrators, as in the

previous examples involving classical Hamiltonian problems, whereas the error
in the wave function grows linearly with C, unless the scheme is conjugate to
another more accurate one, in which case it is bounded for some time before linear
growth takes place. To illustrate this feature, in Figure 1.6 we depict how the
error in the solution ‖D(C=)− D=‖ evolves with time for a longer integration interval
C ∈ [0, 1000], with step size ℎ = 1

20 . As usual, the reference solution is computed
numerically with sufficiently high accuracy, and the tested schemes are as follows:
Lie–Trotter, equation (1.44) (LT), Strang, equation (1.45), and a variant of Strang
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Figure 1.5. Time-dependent Schrödinger equation with a double-well potential.
(a) +(G), initial and final wave function with " = 256 discretization points. (b)
Relative error in energy at the final time vs. number of FFTs for different values of
the time step obtained with the Strang method (2, and two fourth-order splitting
schemes: one involving six evaluations of + (RKN64) and another with four
evaluations of + , and incorporating in addition the double commutator [+, [),+]]
(RKNm44).
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Figure 1.6. Time-dependent Schrödinger equation with a double-well potential:
relative error in the wave function as a function of C with ℎ = 1/20 for Strang ((2),
Lie–Trotter (LT) and scheme (2< involving a double commutator and conjugate to
a method of order four.
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involving a double commutator, namely

(2< : D=+1 = eg/2+ +(g
3/48)[+ , [) ,+ ] ] eg) eg/2+ +(g

3/48)[+ , [) ,+ ] ] D=. (1.47)

This scheme does not require any additional FFTs, and in addition it is actually
conjugate to a method of order four. We observe that LT approaches (2 after a
transition time, whereas the error for (2< remains bounded for the whole interval.
In fact, its linear error growth only appears when the time interval is doubled.

1.7. Splitting methods as geometric numerical integrators

As the examples of Sections 1.2–1.6 illustrate, splitting schemes, even of low order
of consistency such as Lie–Trotter and Strang methods, preserve by construc-
tion structural properties of the exact solution, such as symplecticity (in classical
Hamiltonian dynamics) and unitarity (in quantum evolution problems). This fea-
ture gives them qualitative superiority with respect to other standard integrators in
practice, especially when long time intervals are concerned. In this sense, splitting
methods constitute an important class of geometric numerical integrators.
Although the idea that numerical integrators applied to an ordinary differential

equation should preserve as many properties of the system as possible has been
implicitly assumed since the early days of numerical analysis, it is fair to say that in
the classical consistency/stability approach the emphasis has been on other issues.
In particular, the goal has mainly been to compute the solution of (1.1) at time
C 5 = #ℎ with a global error ‖G# − G(C 5 )‖ smaller than a prescribed tolerance
and as efficiently as possible. To do that, we choose the class of method (one-
step, multistep, extrapolation, etc.), the order (fixed or adaptive) and the time step
(constant or variable). This approach has proved to be very fruitful, giving rise to
highly tuned and thoroughly tested software packages generally available to solve
a great variety of problems.
On the other hand, there are special types of problems arising in many fields

of science and applied mathematics that possess an underlying geometric struc-
ture which influences the qualitative character of their solutions, so we naturally
aim to construct numerical approximations that preserve this structure. Classical
Hamiltonian systems such as those illustrated previously constitute a case in point.
It turns out, however, that many numerical integrators included in standard software
packages do not take into account these distinctive features of the equations to be
solved, and the question is whether it is possible to design, analyse and apply new
schemes providing approximate solutions that share one or several geometric prop-
erties with the exact solution. This is precisely the realm of geometric numerical
integration, a terminology introduced in Sanz-Serna (1997).
According to McLachlan and Quispel (2006):

‘Geometric integration’ is the term used to describe numerical methods for computing
the solution of differential equations, while preserving one or more physical/mathematical
properties of the system exactly (i.e., up to round-off error).
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Splitting methods for differential equations 23

Thus, rather than primarily taking into account prerequisites such as consistency
and stability, the aim is to reproduce the qualitative features of the solution of
the differential equation being discretized, in particular its geometric properties,
such as the symplectic character (for Hamiltonian systems) and unitarity (quantum
mechanics), but also the phase-space volume (for divergence-free vector fields),
time-reversal symmetries, first integrals of motion (energy, linear and angular
momentum), Casimirs, Lyapunov functions, etc. In these structure-preserving
methods we try to incorporate as many of these properties as possible and, as
a result, they exhibit improved qualitative behaviour. In addition, they typically
allow for a significantly more accurate integration for long-time intervals than with
general-purpose methods (Hairer et al. 2006, Blanes and Casas 2016).

Although splitting methods have a long history in numerical mathematics and
have been applied, sometimes with different names, in many different contexts (e.g.
partial differential equations, quantum statistical mechanics, chemical physics and
molecular dynamics), it is fair to say that the interest in splitting has revived with
the advent of geometric numerical integration, and new and very efficient schemes
have been put to use to solve a wide variety of problems. The reason is clear:
if the problem (1.3) has some property that is deemed to preserve (symplectic,
unitary, volume-preserving, etc.) and each subproblem G ′ = 5 9(G), G(0) = G0
can be integrated exactly or by means of a numerical method preserving these
properties, then the splitting method constructed by composing the solution of
the subproblems is also symplectic, unitary, volume-preserving, etc. In other
words, splitting methods provide by construction approximations lying in the same
group of diffeomorphisms as the system G ′ = 5 (G) (McLachlan and Quispel 2002).
Here we assume of course that each subproblem G ′ = 5 9(G) possesses the same
characteristic feature as the total problem considered.

1.8. Relevance of splitting methods

Given a certain differential equation G ′ = 5 (G), the application of splitting meth-
ods to solve the corresponding initial value problem involves three main steps
(McLachlan and Quispel 2002).

(1) Choosing the set of terms 5 9 such that 5 = 51 + · · · + 5<. Different ways of de-
composing 5 may give rise to integrators with different qualitative behaviour
and efficiency, as we have seen in the previous examples.

(2) Solving each subproblem G ′ = 5 9(G) either exactly or approximately.
(3) Combining these solutions to get an approximation for the original overall

problem.

Being such a simple idea, it is hardly surprising that the splitting principle can
be used in so many different settings. In particular, one may

• split the differential equation into linear and nonlinear parts;
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24 S. Blanes, F. Casas and A. Murua

• in an ODE describing a Hamiltonian system with an additional small dissip-
ation, separate the Hamiltonian part and the dissipation;
• decompose into parts describing different physical processes, for example
diffusion and reaction in partial differential equations;
• get approximations to the original problem by solving one space direction at
a time (dimensional splitting in PDEs).

In addition, splitting methods possess some advantages concerning their imple-
mentation, in particular the following.

• They are typically explicit.
• Their storage requirements are quite small. The algorithms are sequential and
the solution at intermediate stages can be stored in the solution vectors.
• Programming higher-order schemes is no more difficult than Lie–Trotter and
Strang splitting methods, at least in the context of ODEs. Usually, a few more
lines of code is all that is required to deal with the additional stages.
• As stated earlier, they can preserve a wide variety of structures possessed by
the differential equation.

They also present some disadvantages, of course. Among them, we can mention
the following.

• Splitting schemes of order three or higher necessarily involve negative coef-
ficients. In other words, they require substeps that go backwards in time, and
this has severe repercussions when applying them to, for instance, reaction–
diffusion equations (see Section 6).
• Although it is possible to construct accurate high-order splitting methods,
stability can be an issue, in the sense that their stability interval might be
reduced to render them useless in practice. This aspect has to be taken
seriously when designing new methods.
• Ordinary splitting does not capture the correct steady-state solutions (where
these solutions exist) (MacNamara and Strang 2016), in the sense that the
numerical solutions obtained converge to limits that are not steady-state solu-
tions but just approximations of them. This can lead to unacceptable errors,
for instance in the simulation of combustion. In this context, balanced split-
ting techniques have been introduced to correct this flaw (Speth, Green,
MacNamara and Strang 2013).

Splitting methods constitute an important tool in different areas of science where
the evolution of systems is governed by differential equations. In addition to
Hamiltonian systems, they can be successfully applied in the numerical study
of Poisson systems, systems possessing integrals of motion (such as energy and
angular momentum) and systems with (continuous, discrete and time-reversal)
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Splitting methods for differential equations 25

symmetries. In fact, splitting methods have been designed (often independently)
and extensively used in fields as distant as molecular dynamics, simulation of
storage rings in particle accelerators, celestial mechanics, astronomy, quantum
(statistical) mechanics, plasma physics, hydrodynamics and Markov chain Monte
Carlo methods.
Operator-splitting methods also appear outside the realm of differential equa-

tions, and in particular in optimization, in a variety of different special forms and
different denominations (gradient-projection, proximal-gradient, alternating direc-
tion method of multipliers or ADMM, split Bregman, etc.). All of them are related
to special types of splitting methods, such as Douglas–Rachford and Peaceman–
Rachford schemes. More details can be found in several contributions collected in
the comprehensive book by Glowinski, Osher and Yin (2016a).

1.9. Some historical remarks

There is ample consensus that the beginning of splitting is related to the product
formula (1.5). What is not so clear is the origin of the formula itself. Thus Reed
and Simon (1980, p. 295) establish it as ‘the classical theorem of Lie’, but give
no exact source, whereas Chorin, Huges, Marsden and McCracken (1978) call it
‘the 1875 formula of S. Lie’, citing the classical treatise of Lie (1888), and, based
on this reference, Glowinski et al. (2016a) even ascribe to Lie himself ‘the first
operator-splitting scheme recorded in history’. The problem is that the reference
Lie (1888) is clearly not from 1875, and it is not evident (at least to us) that this
formula appears there explicitly.
On the other hand, as pointed out in Cohen, Friedland, Kato and Kelly (1982),

the result (1.5) can be found in several references published during the 1950s,
namely Butler and Friedman (1955) and Golden (1957), whereas it was Trotter
(1959) who generalized it to self-adjoint linear operators, without mentioning Lie
or these previous references. Subsequently, formula (1.5), even in the matrix case,
has been attributed to Trotter (Bellman 1970, p. 181). In view of the situation,
we believe we are not committing an act of historical injustice by referring to the
approximation (1.6) and Algorithm 1.1 as the Lie–Trotter scheme.

With respect to the splitting method (1.9), it first appeared in print in Strang
(1968) as an alternative way to solve multidimensional problems with one-dimen-
sional operators. We have already seen that, when applied to Hamiltonian systems
of the form �(@, ?) = )(?) + +(@), it leads to Algorithm 1.4 when composing the
flows associated to )(?) and +(@). It is called the Störmer–Verlet method since it
was used by the astronomer Carl Störmer (1907) in his computations of the motion
of ionized particles in the Earth’s magnetic field, and by Loup Verlet (1967) in
molecular dynamics. It is also referred to as the leapfrog method in the context
of PDEs describing wave propagation, and as the Wisdom–Holman method when
applied to the splitting (1.39) (Wisdom and Holman 1991). In fact, it can be found
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26 S. Blanes, F. Casas and A. Murua

in several classical references, the oldest one being perhaps Newton’s Principia.2
For a detailed account the reader is referred to the enlightening review by Hairer
et al. (2003).

As well as symplecticity when applied to Hamiltonian systems, the Störmer–
Verlet method preserves many other geometric properties of the exact flow asso-
ciated with an ordinary differential equation. This includes the preservation of all
linear first integrals (such as the linear momentum), and quadratic first integrals of
the form �(@, ?) = ?>�@ for Hamiltonian systems, where � is a symmetric matrix.
In other words, �(@, ?), computed along the numerical trajectory, is constant. A
classical example is the angular momentum in #-body problems if the forces only
depend on the distances of the particles.
All these favourable properties, in addition to its optimal stability property and

reversibility, help us to understand why this method is probably the most widely
used splitting scheme and geometric integrator, especially in molecular dynamics
(Schlick 2010), condensed matter simulations (Ceperley 1995) and sampling with
the hybrid Monte Carlo method (Neal 2011).
The convenience of designing numerical integration methods that, by construc-

tion, preserve the symplectic structure when applied to Hamiltonian systems was
duly recognized during the 1950s in the field of accelerator physics. Thus, in
the words of an early pioneer, ‘if one wishes to examine solutions to differential
equations, adoption of a “Hamiltonian” or “canonical” integration algorithmwould
be reassuring’ (Laslett 1986). This was the point of view adopted in a pioneering
paper by de Vogelaere (1956),3 where he devoted himself to the task of designing
‘a method of integration which, if there was no round-off error, would give a solu-
tion with the contact transformation property’. Here contact transformation has
to be understood as symplectic transformation. The first-order schemes proposed
by de Vogelaere (1956), although implicit in general, turn out to be explicit when
�(@, ?) = )(?)++(@), in which case they reproduce the symplectic Euler schemes
(1.29) and (1.30).
It was another accelerator physicist, Ronald Ruth (1983), who presented what

is probably the first splitting method of order three. This paper can be considered
as the actual starting point in the systematic exploration of symplectic integrators
along several parallel avenues: (i) the use of generating functions in the context
of Hamiltonian mechanics to produce appropriate canonical transformations ap-
proximating the exact flow in each integration step (Feng and Qin 1987, Channell
and Scovel 1990); (ii) the conditions that Runge–Kutta methods have to satisfy
to be symplectic (Sanz-Serna 1988, Lasagni 1988, Suris 1988); (iii) the design
of explicit symplectic methods of order four and higher for Hamiltonian systems
that can be split into two pieces which can be solved exactly when considered as

2 Philosophiae Naturalis Principia Mathematica, Book 1, Section 2, Proposition 1.
3 See also Skeel and Cieśliński (2020) for the context of the work, and the preprint itself, typeset in
LATEX.
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independent systems (Neri 1988, Forest 1992), with the help of the Lie formalism.
This approach was further elaborated in Yoshida (1990). Working in the context
of the hybrid Monte Carlo algorithm for dynamical fermions, a splitting method of
order four was also independently proposed around the same time in Campostrini
and Rossi (1990). In parallel developments, what is now called the Suzuki–Yoshida
composition technique for increasing the order of numerical integrators appeared
in Creutz and Gocksch (1989) for Monte Carlo simulations and in Suzuki (1990)
and Yoshida (1990).
We should also mention the papers by de Raedt and de Raedt (1983) and Taka-

hashi and Imada (1984), who pioneered the use of double commutators to get
approximations of higher order than those obtained by the Störmer–Verlet method
in path-integral Monte Carlo simulations: in the first case by constructing a fourth-
order splitting scheme, and in the second, a method that it is also of order four by
conjugation. In fact, scheme (1.47) is conjugate to the one proposed in Takahashi
and Imada (1984). Ruth (1983) also presents a third-order method using double
commutators.
That splitting and composition methods could be used to construct integrators

for problems evolving in groups other than the symplectic group was emphasized
in Forest and Ruth (1990) and further developed in Feng (1992), with the aim of
constructing schemes able to preserve different structures.
The 1990s saw a dramatic increase in the interest and applications of splitting

integrators in several fields, often with spectacular results. We should mention in
particular those achieved in Wisdom and Holman (1991), revealing the existence
of chaotic phenomena in the Solar System by numerically integrating the planetary
equations of motion over very large time intervals.
The state of the art of splitting methods in the context of geometric numerical

integration was masterfully summarized in a review paper by McLachlan and
Quispel (2002), which has greatly influenced subsequent investigation in the field,
as testified by its growing number of citations over the years, in many different
areas.
Among the huge number of published works on splitting methods, the following

surveys are worth highlighting.

• The monograph by Yanenko (1971) (an English translation of the Russian
edition published in 1967) was perhaps the first to be devoted to the method
of splitting (or method of fractional steps) for solving ‘complicated problems
of mathematical physics in several variables’. Those include the numerical
treatment of parabolic and hyperbolic equations, as well as boundary value
problems for the Laplace and Poisson equations, and several applications in
elasticity theory and hydrodynamics. It is based on the early contributions
of Peaceman, Rachford, Douglas and several authors of the Soviet school
(Dyakonov, Marchuk, Samarskii, Yanenko and others).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492923000077
Downloaded from https://www.cambridge.org/core. IP address: 3.133.122.230, on 11 Sep 2024 at 14:39:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492923000077
https://www.cambridge.org/core
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• The exhaustive review article by Marchuk (1990), included in Volume I of
theHandbook of Numerical Analysis (Ciarlet and Lions 1990), can be seen as
an update of the previous work, with a systematic study of operator splitting
and alternating direction methods for solving linear and nonlinear partial
differential equations. It includes convergence analyses and new applications
to problems in hydrodynamics, meteorology and oceanography.
• The review paper by McLachlan and Quispel (2002) mainly focused on the
application of splittingmethods as geometric numerical integrators for various
classes of ordinary differential equations. In that context, they carried out a
classification of ODEs and their integration methods into different categories,
and also examined the question of how to decompose a given vector field into
much simpler vector fields, as well as the composition of these elementary
flows.
• Books and monographs dealing with geometric numerical integration and
structure-preserving algorithms contain plenty of material on splitting meth-
ods. Among them, we can cite the influential work of Sanz-Serna and Calvo
(1994), the canonical reference by Hairer et al. (2006), as well as Leimkuhler
and Reich (2004), Leimkuhler and Matthews (2015) and Blanes and Casas
(2016).
• The multi-author book by Glowinski et al. (2016a) constitutes an excellent
illustration of the ample scope and wide range of applications that today’s
operator-splitting methods are able to deal with. These include the numer-
ical solution of problems modelled by linear and nonlinear partial differential
equations and inequalities, problems in information sciences and image pro-
cessing, and large-scale optimization problems, among others.

1.10. Plan of the paper

In this paper we will focus on splitting methods applied to evolutionary problems,
mostly described by ordinary differential equations. These can directly model the
problem we are interested in, or they can result from evolutionary PDEs previously
discretized in space. Particular attention will be addressed to problems possessing
special properties, very often from a geometric origin, that are worth preserving
via the numerical methods. In so doing, we will follow a strategy similar to that in
Blanes, Casas and Murua (2008b), trying to avoid any duplication of the material
already gathered in the classic references cited above, and including new results,
schemes and applications which have appeared in the literature during the last few
years.
In particular, no general rule is provided here on how to split the defining

operator in (1.1). As mentioned earlier, this issue is further analysed in McLachlan
and Quispel (2002), and in fact some of the open problems listed there are related
to it. We have already seen in the examples provided in this section that several
splittings of the same problem are possible, often leading to methods with very
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different performances. Moreover, in certain cases, the original system has several
geometric properties that are simultaneously preserved along the evolution, whereas
different splittings preserve different properties, and it is generally difficult to find
one splitting that preserves most of them.
With these considerations in mind, the rest of the paper is organized as follows.

In Section 2 we first review the general composition technique and then provide
a detailed analysis of the order conditions required by splitting and composition
methods to achieve a given order of accuracy. There are some relevant problems,
however, whose particular structure allows us to design specially adapted methods,
and some of them are reviewed in Section 3, where we also show how to adapt
existing splitting methods to non-autonomous problems.
In Section 4 we summarize some of the qualitative properties possessed by

splitting methods in the context of geometric numerical integration of ordinary
differential equations, with special attention to the idea of processing, whereas
Section 5 is devoted to the treatment of highly oscillatory problems.
Splitting methods are particularly well adapted to deal with partial differential

equations whose defining operator contains contributions coming from very differ-
ent physical sources, so they have a long history in this area. Section 6 contains
a brief survey, with special emphasis on Schrödinger equations and general para-
bolic evolution equations. The existence of negative coefficients in the methods,
however, leads to an order barrier for parabolic equations, and Section 7 reviews
splitting methods with complex coefficients as a possible way to overcome this
order barrier.
In Section 8we present an extended list of existingmethods, classifying them into

different families and giving the appropriate references. Their corresponding coeffi-
cients are also provided as supplementary material at the website www.gicas.uji.es/
SplittingMethods.html. These methods are numerically tested on simple examples
in the Appendix. Finally, some relevant applications of splitting methods in differ-
ent fields are discussed in Section 9.

2. High-order splitting and composition methods
The Lie–Trotter and Strang splitting methods, despite their low order of accuracy,
provide a fairly good description of the systems they are approximately solving. In
fact, for many problems, including molecular dynamics applications and reaction–
diffusion equations, Verlet splitting and Strang splitting are the most popular integ-
rators, perhaps an illustration that, according to MacNamara and Strang (2016), ‘it
is a meta-theorem of numerical analysis that second-order methods often achieve
the right balance between accuracy and complexity’. There are other areas, how-
ever, where a higher degree of precision is required, in addition to the preservation
of qualitative properties. A classical example is the long-term numerical integ-
ration of the Solar System, both forwards (e.g. to analyse the existence of chaos;
see Laskar 1989, Sussman and Wisdom 1992) and backwards in time (to study the
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insolation quantities of the Earth; see Laskar et al. 2004). Thus, in this section,
after reviewing a general technique to get high-order integrators by composing low-
order ones, we analyse from different perspectives the order conditions that have to
be satisfied by a splitting method to achieve a given order. This analysis allows us
to provide complementary information about the integrators: e.g. number of order
conditions, explicit expressions, and remainders in the asymptotic expansions.

2.1. Raising the order by composition

2.1.1. Composition of Strang maps
Starting from the Strang splitting ( [2]

ℎ
= i

[1]
ℎ/2 ◦ i

[2]
ℎ
◦ i [1]

ℎ/2, the composition

kℎ = (
[2]
WBℎ
◦ ( [2]

WB−1ℎ
◦ · · · ◦ ( [2]

W1ℎ
(2.1)

is at least of order three if
B∑
9=1
W 9 = 1 and

B∑
9=1
W3
9 = 0. (2.2)

The smallest value of B for which equations (2.2) admit real solutions is B = 3. In
that case, by imposing the symmetry W1 = W3, we indeed get a method of order
four, sometimes called the triple jump:

(
[4]
ℎ
= (
[2]
W3ℎ
◦ ( [2]

W2ℎ
◦ ( [2]

W1ℎ
, with W1 = W3 =

1
2 − 21/3 , W2 = 1 − 2W1. (2.3)

In general, the recursion

(
[2: ]
ℎ

= (
[2:−2]
W1ℎ

◦ ( [2:−2]
(1−2W1)ℎ ◦ (

[2:−2]
W1ℎ

, with W1 =
1

2 − 21/(2:−1) (2.4)

can be used to get methods of arbitrarily high order 2: (: ≥ 2) (Creutz and Gocksch
1989) starting from the Strang map ( [2]

ℎ
(notice that such methods can be written in

the form (2.1)). The price to be paid is the existence of large positive and negative
coefficients W 9 and the great number of elementary flows in (2.4) for high orders.
The alternative formed by the five maps composition (quintuple jump)

(
[2: ]
ℎ

= (
[2:−2]
W1ℎ

◦( [2:−2]
W1ℎ

◦( [2:−2]
(1−4W1)ℎ ◦(

[2:−2]
W1ℎ

◦( [2:−2]
W1ℎ

, W1 =
1

4 − 41/(2:−1) (2.5)

also gives methods ( [2: ]
ℎ

of order 2: of the form (2.1) with relatively smaller
coefficients W 9 but even larger numbers of elementary flows.

In general, other choices for the coefficients W 9 in (2.1) are more appropriate if
we are interested in achieving orders ≥ 6 with a lower number of elementary flows
and relatively small coefficients.

Condition (2.2), using the approach based on linear differential operators dis-
cussed in Section 1.2, can be derived as follows: the Lie transformation associated
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with the Strangmap ( [2]
ℎ

, (1.16), can be written as eℎ/2�1 eℎ�2 eℎ/2�1 = e. (ℎ), where

. (ℎ) =
∞∑
==1

ℎ2=−1.2=−1

≔ log(eℎ/2�1 eℎ�2 eℎ/2�1)

= ℎ(�1 + �2) − ℎ
3

24
[�1, [�1, �2]] −

ℎ3

12
[�2, [�1, �2]] + · · · ,

that is, .1 = �1 +�2, .3 = − 1
24 [�1, [�1, �2]] − 1

12 [�2, [�1, �2]], and for each = > 2,
.2=−1 is a certain linear combination of (2= − 1)-fold commutators of �1 and �2.
In consequence, the Lie transformation Ψ(ℎ) of (2.1) formally satisfies

Ψ(ℎ) = e. (W1ℎ) · · · e. (WBℎ), (2.6)

so that 6(kℎ(G)) = (Ψ(ℎ)6)(G) for any G ∈ R� and any smooth function 6 : R� → R.
It is straightforward to check that

Ψ(ℎ) = eW1ℎ.1+W3
1ℎ

3.3+··· · · · eWBℎ.1+W3
Bℎ

3.3+···

= eℎ(
∑B
9=1 W 9 )(�1+�2) + ℎ3

( B∑
9=1
W3
9

)
.3 +$(ℎ4). (2.7)

This shows that the composition (2.1) of Strang maps is of order at least three if
condition (2.2) holds.
In fact, (2.7) is also true if in (2.1) the Strang map ( [2]

ℎ
is replaced by any

second-order time-symmetric map. Furthermore, the triple jump recursion (2.4)
(resp. the quintuple jump recursion (2.5)) also gives rise to 2:th-order maps ( [2: ]

ℎ

starting from an arbitrary time-symmetric second-order map ( [2]
ℎ

. Indeed, this is a
consequence of the following four statements.

(1) Given an arbitrary near-identity map jℎ : R� → R� (i.e. jℎ(G) = G + $(ℎ)
as ℎ→ 0), there exists a series

. (ℎ) =
∑
=≥1

ℎ=.=

of (first-order) differential operators acting on smooth functions such that,
formally, 6(jℎ(G)) = (e. (ℎ)6)(G) for each G ∈ R� and 6 ∈ �∞(R� ,R).
Moreover, jℎ is an Ath-order integrator for the ODE system G ′ = 51(G)+ 52(G)
if and only if

.1 = �1 + �2, .= = 0 for 2 ≤ = ≤ A. (2.8)

This statement can be proved as follows. Given a basic integrator jℎ : R� →
R� , consider the linear differential operators -= (= ≥ 1) acting on smooth
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functions 6 ∈ �∞(R� ,R) as

-=6(H) =
1
=!

d=

dℎ=

����
ℎ=0
6(jℎ(H)), H ∈ R� , (2.9)

so that formally 6(jℎ(G)) = (-(ℎ)6)(G), where

-(ℎ) = � +
∑
=≥1

ℎ=-=, (2.10)

and � denotes the identity operator. Each -= is an =th-order differential
operator. Thus, the integrator jℎ is of order A if

-= =
1
=!

(�1 + �2)=, 1 ≤ = ≤ A.

Now consider the series of differential operators

. (ℎ) =
∑
=≥1

ℎ=.= ≔ log(-(ℎ)) =
∑
<≥1

(−1)<+1

<
(ℎ-1 + ℎ2-2 + · · · )<,

that is,

.= =

=∑
<≥1

(−1)<+1

<

∑
91+···+ 9<==

- 91 · · · - 9< ,

so that -(ℎ) = exp(. (ℎ)), and formally, 6(jℎ(G)) = (exp(. (ℎ))6(G). It can
be shown that each .= is a first-order differential operator. Clearly, the basic
integrator is of order A if (2.8) holds.

(2) The map jℎ is time-symmetric if and only if . (ℎ) = ℎ.1 + ℎ3.3 + · · · , which
implies that time-symmetric methods are necessarily of even order. Indeed,
for the adjoint integrator j∗

ℎ
= j−1
−ℎ, we obviously get 6(j∗

ℎ
(G)) = e−. (−ℎ)6(G).

Hence jℎ is time-symmetric if and only if −. (−ℎ) ≡ . (ℎ).
(3) If ( [2:−2]

ℎ
is a time-symmetric integrator of order at least 2: − 2, then the

composition
kℎ = (

[2:−2]
WBℎ

◦ ( [2:−2]
WB−1ℎ

◦ · · · ◦ ( [2:−2]
W1ℎ

(2.11)

is of order at least 2: − 1 if
B∑
9=1
W 9 = 1,

B∑
9=1
W2:−1
9 = 0. (2.12)

In fact, if eℎ(�1+�2)+ℎ2:−1.2:−1+··· is theLie transformof ( [2:−2]
ℎ

, then 6(kℎ(G)) =
(Ψ(ℎ)6)(G) for any G ∈ R� and any smooth function 6 : R� → R, where

Ψ(ℎ) = eW1ℎ(�1+�2)+W2:−1
1 ℎ2:−1.2:−1+$(ℎ2: ) · · · eWBℎ(�1+�2)+W2:−1

B ℎ2:−1.2:−1+$(ℎ2: )

= e(
∑B
9=1 W 9 )(�1+�2) + ℎ2:−1

( B∑
9=1
W2:−1
9

)
.2:−1 +$(ℎ2:).
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(4) If ( [2:−2]
ℎ

is a time-symmetric integrator and the sequence (W1, . . . , WB) is
palindromic, in the sense that for all 9

WB− 9+1 = W 9 ,

then clearly the composition (2.11) is time-symmetric, and hence of even
order.

2.1.2. Composition of Lie–Trotter maps
We could consider an analogous composition to (2.1), but this time with the Lie–
Trotter scheme jℎ = i [1]ℎ ◦i

[2]
ℎ

as the basic method. In that case, the Lie transform
of jℎ is of the form e. (ℎ) with

. (ℎ) = ℎ(�1 + �2) + ℎ2.2 + ℎ3.3 + · · · , (2.13)

so that the Lie transformΨ(ℎ) associated to the composition jWBℎ ◦ · · · ◦ jW2ℎ ◦ jW1ℎ

is

Ψ(ℎ) = e. (W1ℎ) · · · e. (WBℎ)

= e(
∑B
9=1 W 9 )(�1+�2) + ℎ2

( B∑
9=1
W2
9

)
.2 +$(ℎ3).

This shows that such a scheme is of order two if
B∑
9=1
W 9 = 1,

B∑
9=1
W2
9 = 0. (2.14)

Obviously, such a system of equations does not admit real solutions.
The situation is different, however, if we compose jℎ with its adjoint j∗

ℎ
=

i
[2]
ℎ
◦ i [1]

ℎ
, that is,

kℎ = jU2Bℎ ◦ j∗U2B−1ℎ
◦ · · · ◦ jU2ℎ ◦ j∗U1ℎ

. (2.15)

If e. (ℎ), with. (ℎ) given by (2.13), is the Lie transform of jℎ, then the Lie transform
of its adjoint j∗

ℎ
is e−. (−ℎ) and the Lie transform Ψ(ℎ) of (2.15) satisfies

Ψ(ℎ) = e−. (−U1ℎ)e. (U2ℎ) · · · e−. (−U2B−1ℎ)e. (U2Bℎ)

= e(
∑2B
9=1 U9 )(�1+�2) + ℎ2

( B∑
9=1

(
U2

2 9 − U
2
2 9−1

))
.2 +$(ℎ3), (2.16)

whence composition (2.15) is at least of order two if the coefficients satisfy
2B∑
9=1
U 9 = 1,

B∑
9=1

(
U2

2 9 − U
2
2 9−1

)
= 0.

The argument above also holds when jℎ is a first-order integrator other than Lie–
Trotter.
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As mentioned earlier, the simplest situation corresponds to B = 1, in which case
we recover the Strang splitting, ( [2]

ℎ
= jℎ/2 ◦ j∗ℎ/2. In fact, the general scheme

(2.15) can be rewritten as the splitting method

kℎ = i
[1]
0B+1ℎ

◦ i [2]
1Bℎ
◦ i [1]

0Bℎ
◦ · · · ◦ i [1]

02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ
, (2.17)

where 01 = U1, and for 9 = 1, . . . , B,

0 9+1 = U2 9 + U2 9+1, 1 9 = U2 9−1 + U2 9 (2.18)

(with U2B+1 = 0). Conversely, any integrator of the form (2.17) satisfying the
condition

∑B+1
9=1 0 9 =

∑B
9=1 1 9 can be expressed in the form (2.15), as shown in

McLachlan (1995b).
Clearly, any splitting scheme (2.17) with a palindromic sequence of coefficients,

that is, satisfying

0B− 9+2 = 0 9 , 1B− 9+1 = 1 9 for all 9 ,

is time-symmetric, and thus of even order. Written in the composition format
(2.15), it is time-symmetric if

U2B− 9+1 = U 9 .

2.2. Order conditions I: splitting schemes with the BCH formula

In the analysis of the order conditions for splitting methods, and without loss of
generality, we will consider the linear case (1.4), so that the treatment is essentially
based on matrices, or more generally, on linear operators. Thus, the integrator
(2.17) corresponds in this setting to the product of exponentials

Ψ(ℎ) = e0B+1ℎ�1 e1Bℎ�2 e0Bℎ�1 · · · e02ℎ�1 e11ℎ�2 e01ℎ�1 , (2.19)

intended to approximate eℎ(�1+�2).
In the case of systems of ODEs G ′ = 51(G) + 52(G) with (not necessarily linear)

vector fields 51 and 52, one may consider the Lie operators �9 of 5 9 , and compare
the Lie transformation eℎ(�1+�2) with the operator

Ψ(ℎ) = e01ℎ�1 e11ℎ�2 e02ℎ�1 · · · e0Bℎ�1 e1Bℎ�2 e0B+1ℎ�1 (2.20)

associated with the map kℎ (in the sense that 6(kℎ(G)) = Ψ(ℎ)6(G) for arbitrary
smooth 6 ∈ �∞(R� ,R)). Thus all the formulas derived below for the linear case
can be applied to the Lie transformation (2.20) associated with the map (2.17) just
by reversing the order of the sequence (01, 11, 02, . . . , 0B, 1B, 0B+1) of coefficients
of the splitting scheme. Alternatively, we may reverse the order of the products of
the operators in all the expressions involved.
Equivalent results could also be obtained for the ODE case using the concept of

word series and related techniques introduced in Murua and Sanz-Serna (2017).
The Lie transform approach is more general, however, as it can be directly applied
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to the case of splitting methods for differential equations on manifolds, as discussed
at the end of Section 4.1.
Generally speaking, the order conditions for a method of order A are systems

of polynomial equations in the coefficients obtained by requiring that the Taylor
expansions in the step size ℎ of both the exact and numerical solution agree up
to terms in ℎA . A standard approach to obtain the order conditions of scheme
(2.19) consists in formally using the Baker–Campbell–Hausdorff (BCH) formula
to express Ψ(ℎ) as one exponential of a series of operators in powers of ℎ, and
finally to compare this series with eℎ(�1+�2). In this way, we get

log(Ψ(ℎ)) = ℎ(F1�1 + F2�2) + ℎ2F12�12 + ℎ3(F122�122 + F112�112)
+ ℎ4(F1222�1222 + F1122�1122 + F1112�1112) +$(ℎ5), (2.21)

where

�12 = [�1, �2], �122 = [�12, �2], �112 = [�1, �12],
�1222 = [�122, �2], �1122 = [�1, �122], �1112 = [�1, �112],

and F1, F2, F12, F122, . . . are polynomials of homogeneous degree in the paramet-
ers 0 9 , 1 9 . In particular,

F1 =

B+1∑
8=1

08 , F2 =

B∑
8=1

18 , F12 =
1
2
F1F2 −

∑
1≤8< 9≤B+1

180 9 ,

F122 =
1
12
F1F

2
2 −

1
2

∑
1≤8≤ 9<:≤B

180 91: ,

F112 =
1
12
F2

1F2 −
1
2

∑
1≤8< 9≤:≤B+1

081 90: ,

with 1B+1 = 0. From (2.21), it is clear that a characterization of the order of
the splitting scheme (2.17) is obtained by requiring the consistency conditions
F1 = F2 = 1, that is,

B+1∑
9=1
0 9 =

B∑
9=1

1 9 = 1 (2.22)

(ensuring that the scheme (2.17) is at least of order one) and F12 = F122 = F112 =
· · · = 0 up to the required order. The set of order conditions thus obtained will be
independent in the general case if the operators �1, �2, �12, �122, �112, . . . form
a basis of the free Lie algebra in the alphabet {1, 2}. In (2.21) we considered
the so-called Lyndon basis, associated to the set of Lyndon words in the alphabet
{1, 2}:

{1, 2, 12, 122, 112, 1222, 1122, 1112, . . .}. (2.23)
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36 S. Blanes, F. Casas and A. Murua

Table 2.1. Number of independent order conditions for general splitting
methods, 2=, and for RKN-type splitting methods, 3=. The number <=
corresponds to the number of order conditions for compositions of a
second-order time-symmetric method.

Order = 1 2 3 4 5 6 7 8 9 10 11

2= 2 1 2 3 6 9 18 30 56 99 186
3= 2 1 2 2 4 5 10 14 25 39 69
<= 1 0 1 1 2 2 4 5 8 11 17

They are defined as follows (Reutenauer 1993): a word ℓ1 · · · ℓ< is a Lyndon word
if (ℓ1 · · · ℓ:) ≺ (ℓ:+1 · · · ℓ<) for each 1 ≤ : < <, where ≺ is the lexicographical
order (i.e. the order used when ordering words in the dictionary) on the set of words
in the alphabet {1, 2}. For instance, 112 is a Lyndon word, while neither 211 nor
121 are, as 2 ⊀ 11 and as 12 ⊀ 1, respectively.

The element of the basis associated to a Lyndon word ℓ1 · · · ℓ< with < ≥ 2 is
given as �ℓ1 · · ·ℓ< = [�ℓ1 · · ·ℓ= , �ℓ=+1 · · ·ℓ<], where = is the smallest number such that
both ℓ1 · · · ℓ= and ℓ=+1 · · · ℓ< are themselves Lyndon words.

Casas and Murua (2009) have presented an efficient algorithm (based on the
results in Murua 2006) for the BCH formula and related calculations in the Lyndon
basis (and some other basis) that allows us to obtain (2.21) up to terms of arbitrarily
high degree.
Of course, if another basis of the free Lie algebra in the alphabet {1, 2} is

used to expand log(Ψ(ℎ)) in (2.21), a different characterization of the order
conditions will be obtained, with a different set of polynomial functions on
(01, 11, . . . , 0B, 1B, 0B+1). In any case, the number of such independent condi-
tions arising at each order = can be obtained just by determining the dimension of
L=(�1, �2), the linear span of all commutators containing = operators �1, �2. This
number, denoted 2=, is given in Table 2.1; see Munthe-Kaas and Owren (1999) and
McLachlan and Quispel (2002).

2.3. Order conditions II: splitting schemes with Lyndon words

Whereas the previous characterization of the order of the splitting scheme (2.19)
allows us to easily get the number of order conditions, obtaining explicit expres-
sions for the polynomials Fℓ1 · · ·ℓ= is much more difficult when the considered order
increases. The following alternative characterization, based on the direct compar-
ison of the power series expansions of eℎ (�1+�2) and (2.19), tries to ameliorate this
difficulty.
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2.3.1. Basic expansions and necessary order conditions
Both eℎ (�1+�2) and (2.19) admit an expansion in series indexed by the set

W = {1, 2, 11, 12, 21, 22, 111, 112, 121, 211, 122, . . .}

of words in the alphabet {1, 2}. More precisely, eℎ (�1+�2) can be expanded as

�+ℎU1�1+ℎU2�2+ℎ2U11�1�1+ℎ2U12�1�2+ℎ2U21�2�1+ℎ2U22�2�2+· · · , (2.24)

with Uℓ1 · · ·ℓ= = 1/=!. As for (2.19), it can be expanded, for arbitrary B, as (2.24),
where for each word ℓ1 · · · ℓ= ∈ W with = letters, the corresponding coefficient

Uℓ1 · · ·ℓ= = Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0B+1)

is a homogeneous polynomial of degree = in the variables 01, 11, . . . , 0B, 1B, 0B+1.
It is straightforward to check that such polynomials satisfy the following relations,

which allows us to compute them recursively.

• If ℓ1 = · · · = ℓ 9 = 1 and ℓ 9+1 ≠ 1 with 9 ≥ 1,

Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0B+1) =
9∑
:=0

Dℓ:+1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0)
0:
B+1
:!

,

Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0) = Dℓ1 · · ·ℓ=(01, 11, . . . , 0B).

• If ℓ1 = · · · = ℓ 9 = 2 and ℓ 9+1 ≠ 2 with 9 ≥ 1,

Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0B+1) =
9∑
:=0

Dℓ:+1 · · ·ℓ=(01, 11, . . . , 0B)
1:B

:!
.

• If ℓ= = · · · = ℓ1 = 1,

Dℓ1 · · ·ℓ=(01) =
0=1
=!
.

• If ℓ1 ≠ 1,
Dℓ1 · · ·ℓ=(01) = 0.

In this way (2.19) is at least of order A if and only if the conditions

Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0B+1) =
1
=!

(2.25)

hold for eachword ℓ1 · · · ℓ= with = ≤ A letters in the alphabet {1, 2}. For illustration,
in Table 2.2 we explicitly give these conditions corresponding to words with up to
two letters. Notice that (2.25) for the single-letter words 1 and 2 coincide with the
consistency conditions (2.22).
However, such order conditions are not all independent. For instance, from

Table 2.2, we can check that

D2
1 = 2D11, D2

2 = 2D22, D1D2 = D12 + D21.
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38 S. Blanes, F. Casas and A. Murua

Table 2.2. Conditions (2.25) corresponding to words with up to two indices.

Word Condition Word Condition

1
B+1∑
9=1
0 9 = 1 2

B∑
9=1

1 9 = 1

11
1
2

B+1∑
9=1

02
9

2
+

∑
1≤8< 9≤B+1

080 9 =
1
2

12
∑

1≤8< 9≤B+1
180 9 =

1
2

21
∑

1≤ 9≤8≤B
180 9 =

1
2

22
1
2

B∑
9=1

12
9

2
+

∑
1≤ 9<8≤B

1 918 =
1
2

For a consistent method, D1 = D2 = 1, hence D11 =
1
2 , D22 =

1
2 , and

D12 −
1
2
=

1
2
− D21,

which implies that if D12 =
1
2 , then automatically D21 =

1
2 .

A complete characterization of the relations among the order conditions (2.25)
will be obtained in Section 2.3.3 below. As a previous step, we obtain integral rep-
resentations of both eℎ (�1+�2) and (2.19) , which in addition give useful expressions
for the remainders of their truncated series expansions.

2.3.2. Integral representation and remainders
Consider the solution . (g) of the initial value problem

d
dg
. (g) = ℎ�(g). (g), . (0) = �, (2.26)

with �(g) = 31(g)�1 + 32(g)�2 and

(31(g), 32(g)) =


(08 , 0) if g ∈ [28 − 2, 28 − 1], 8 ∈ {1, . . . , B + 1},
(0, 18) if g ∈ [28 − 1, 28], 8 ∈ {1, . . . , B},
(0, 0) if g > 2B + 1.

(2.27)

It is straightforward to check that

. (g) =


e(g−(28−2))ℎ08+1�1 e18ℎ�2 e08ℎ�1 · · · e02ℎ�1 e11ℎ�2 e01ℎ�1 ,

g ∈ [28 − 2, 28 − 1],
e(g−(28−1))ℎ18�2 e08ℎ�1 · · · e02ℎ�1 e11ℎ�2 e01ℎ�1 , g ∈ [28 − 1, 28] .
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In particular, Ψ(ℎ) = . (2B + 1). The solution . (g) of (2.26) satisfies

. (g) = � + ℎ
∫ g

0
�(g1). (g1) dg1. (2.28)

From that, we obtain

. (g) = � + ℎ
∫ g

0
�(g1) dg1 + ℎ2

∫ g

0

∫ g1

0
�(g1)�(g2). (g2) dg2 dg1,

and more generally

. (g) = �+
<∑
==1

ℎ=
∫ g

0

∫ g1

0
· · ·

∫ g=−1

0
�(g1) · · · �(g=) dg= · · · dg1+ℎ<+1R<+1(g, ℎ),

(2.29)
where for each = the remainder R=(g, ℎ) satisfies

R=(g, ℎ) =
∫ g

0

∫ g1

0
· · ·

∫ g=−1

0
�(g1) · · · �(g=). (g=) dg= · · · dg1. (2.30)

By substituting �(g9) = 31(g9)�1 + 32(g9)�2, then expanding all the products
and taking constant linear operators out from integral signs, we obtain

. (g) = � +
<∑
==1

ℎ=
∑

ℓ1,...,ℓ=∈{1,2}
Uℓ1 · · ·ℓ=(g) �ℓ1 · · · �ℓ= + ℎ<+1R<+1(g, ℎ),

where

Uℓ1 · · ·ℓ=(g) =
∫ g

0

∫ g1

0
· · ·

∫ g=−1

0
3ℓ1(g1) · · · 3ℓ=(g=) dg= · · · dg1. (2.31)

In particular, we have

Ψ(ℎ) = � +
<∑
==1

ℎ=
∑

ℓ1,...,ℓ=∈{1,2}
Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0B+1) �ℓ1 · · · �ℓ=

+ ℎ<+1R<+1(2B + 1, ℎ),

where Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0B+1) = Uℓ1 · · ·ℓ=(2B + 1), that is,

Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0B+1)

=

∫ 2B+1

0

∫ g1

0
· · ·

∫ g=−1

0
3ℓ1(g1) · · · 3ℓ=(g=) dg= · · · dg1.
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40 S. Blanes, F. Casas and A. Murua

We now consider (2.26) with 31(g) ≡ 32(g) ≡ 1. Clearly, in that case, . (g) =
egℎ(�1+�2), and

eℎ(�1+�2)

= � +
<∑
==1

ℎ=
∫ 1

0

∫ g1

0
· · ·

∫ g=−1

0
(�1 + �2)= dg= · · · dg1 + ℎ<+1R<+1(1, ℎ)

= � +
<∑
==1

ℎ=
∑

ℓ1,...,ℓ=∈{1,2}

1
=!
�ℓ1 · · · �ℓ= + ℎ<+1R<+1(1, ℎ),

where for each =, the remainder R=(g, ℎ) is given by

R=(g, ℎ) =
∫ g

0

∫ g1

0
· · ·

∫ g=−1

0
(�1 + �2)=eg=ℎ(�1+�2) dg= · · · dg1.

We finally arrive at the following expression for the local error of the splitting
scheme (2.26):

Ψ(ℎ) − eℎ(�1+�2)

=

<∑
==1

ℎ=
∑

ℓ1,...,ℓ=∈{1,2}

(
Dℓ1 · · ·ℓ=(01, 11, . . . , 0B, 1B, 0B+1) − 1

=!

)
�ℓ1 · · · �ℓ=

+ ℎ<+1(R<+1(2B + 1, ℎ) −R<+1(1, ℎ)).

Hence, if the scheme is of order A (i.e. (2.25) holds for each word (ℓ1, . . . , ℓ=) with
= ≤ A letters in the alphabet {1, 2}), then

Ψ(ℎ) − eℎ(�1+�2) = ℎ=+1(R=+1(2B + 1, ℎ) −R=(1, ℎ)).

2.3.3. Iterated integrals and shuffle relations
Iterated integrals of the form (2.31) were first considered and studied in Chen
(1957). It is well known that the integration-by-parts formula gives (for an arbitrary
integrable path (31(g), 32(g))) the relations

Uℓ1(g)Uℓ2(g) = Uℓ1ℓ2(g) + Uℓ2ℓ1(g),
Uℓ1(g)Uℓ2ℓ3(g) = Uℓ1ℓ2ℓ3(g) + Uℓ2ℓ1ℓ3(g) + Uℓ2ℓ3ℓ1(g),

and more generally,

Uℓ1 · · ·ℓ=(g)Uℓ=+1 · · ·ℓ=+<(g) =
∑

f∈Sh(=,<)
Uℓf(1) · · ·ℓf(=+<)(g), (2.32)

where Sh(=, <) is the set of the (= + <)!/(=!<!) permutations f of (1, . . . , = + <)
that are obtained by interleaving (1, . . . , =) and (= + 1, . . . , = +<) while preserving
their respective ordering.
It will be useful to interpret the relations (2.32) in terms of the so-called shuffle

product of words: the shuffle product� of two words ℓ1 · · · ℓ= and ℓ=+1 · · · ℓ=+< is
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defined as the following formal sum of words:

ℓ1 · · · ℓ= � ℓ=+1 · · · ℓ=+< =
∑

f∈Sh(=,<)
ℓf(1) · · · ℓf(=+<).

By extending UF (g) linearly to the case where F is a linear combination of words,
the relations (2.32) can be interpreted as

UF (g)UF′(g) = UF�F′

for arbitrary words F = ℓ1 · · · ℓ= and F′ = ℓ=+1 · · · ℓ=+< in the alphabetA = {1, 2}.
The shuffle product � defines a commutative algebra (the so-called shuffle

algebra) over the vector space of formal linear combinations ofwords in the alphabet
A. The shuffle algebra is freely generated by the set of Lyndon words (Reutenauer
1993).
The fact that the coefficients of the series expansions of both eℎ(�1+�2) and Ψ(ℎ)

satisfy the shuffle relations, together with the fact that the set of Lyndon words
freely generate the shuffle algebra, implies that a set of independent conditions for
a consistent splitting scheme to attain order A can be obtained by considering (2.25)
for each Lyndon word (ℓ1, . . . , ℓ=) of length = ≤ A .

2.4. Order conditions III: splitting methods with Lyndon multi-indices

Blanes et al. (2013b) have obtained yet another characterization of the order con-
ditions in terms of explicitly given polynomial equations. We next describe this
alternative formulation. To do that, we always assume that the consistency con-
ditions (2.22) hold, so that the method is at least of first order. In this case, the
polynomial equations are expressed in terms of the coefficients 11, . . . , 1B and the
coefficients 21, . . . , 2B given by

28 =

8∑
9=1
0 9 , 8 = 1, 2, . . . , B. (2.33)

We begin by rewriting (2.19) as

Ψ(ℎ) = e0B+1ℎ�1 e1Bℎ�2 e0Bℎ�1 · · · e11ℎ�2 e01ℎ�1

= eℎ�1

( 1∏
9=B

e−2 9ℎ�1 e1 9ℎ�2 e2 9ℎ�1

)
= eℎ�1e1Bℎ�(2Bℎ) · · · e11ℎ�(21ℎ),

where

�(ℎ) = e−ℎ�1 �2 eℎ�1 =

∞∑
==1

ℎ=−1�= = �1 + ℎ�2 + ℎ2�3 + ℎ3�4 + · · · , (2.34)
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with �1 = �2, and

�: =
1

(: − 1)
[�:−1, �1] for : > 1.

Now the order of the scheme (2.17) is established by comparing the expansion
in powers of ℎ of e−ℎ�1Ψ(ℎ) with that of e−ℎ�1eℎ(�1+�2).

Clearly, . (g) ≔ e−ℎg�1egℎ(�1+�2) is the solution of (2.26) with �(g) = �(gℎ).
Since the solution . (g) of (2.26) admits the representation (2.29) with remainder
(2.30), and e−ℎ�1eℎ(�1+�2) = . (1), we conclude that

e−ℎ�1eℎ(�1+�2) = � +
=∑
:=1

ℎ:
∫ 1

0

∫ g:

0
· · ·

∫ g2

0
�(g:ℎ) · · ·�(g1ℎ) dg1 · · · dg:

+ ℎ=+1R=+1(1, ℎ),

where for each : ,

R:(1, ℎ) =
∫ 1

0

∫ g:

0
· · ·

∫ g2

0
�(g:ℎ) · · ·�(g1ℎ). (g1) dg1 · · · dg: .

By substitution of (2.34), we obtain that for each : ,

ℎ:
∫ 1

0

∫ g:

0
· · ·

∫ g2

0
�(g:ℎ) · · ·�(g1ℎ) dg1 · · · dg:

=
∑

81,...,8: ≥1
ℎ81+···+8:

(∫ 1

0

∫ g:

0
· · ·

∫ g2

0
g
81−1
1 · · · g8:−1

:
dg1 · · · dg:

)
�8: · · ·�81

=
∑

81,...,8: ≥1

ℎ81+···+8:

(81 + · · · + 8:) · · · (81 + 82)81
�8: · · ·�81 .

As for e−ℎ�1 Ψ(ℎ),

e−ℎ�1 Ψ(ℎ)

=

1∏
9=B

e1 9ℎ�(2 9ℎ) =

1∏
9=B

(
� +

∑
:≥1

ℎ:1:
9

:!
�(2 9ℎ):

)

= � +
∑
:≥1

ℎ:

:!

B∑
9=1

1:9�(2 9ℎ): +
∑

:1,:2≥1

ℎ:1+:2

:1!:2!

∑
1≤ 91< 92≤B

1
:1
91
1
:2
92
�(2 92ℎ):2�(2 91ℎ):1

+
∑

:1,:2,:3≥1

ℎ:1+:2+:3

:1!:2!:3!

∑
1≤ 91< 92< 93≤B

1
:1
91
1
:2
92
1
:3
93
�(2 93ℎ):3�(2 92ℎ):2�(2 91ℎ):1 + · · ·

= � +
∑
:≥1

ℎ:
∑

1≤ 91≤···≤ 9: ≤B

1 91 · · · 1 9:
f( 91, . . . 9:)

�(2 9: ℎ) · · ·�(2 91ℎ), (2.35)
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where

f( 91, . . . , 9:) = 1 if 91 < · · · < 9: ,

f( 91, . . . , 9:) = ℓ!f( 9ℓ+1, . . . , 9:) if 91 = · · · = 9ℓ < 9ℓ+1 ≤ · · · ≤ 9: .
Since

ℎ:�(2 9: ℎ) · · ·�(2 91ℎ) =
∑

81,...,8: ≥1
ℎ81+···+8: 281−1

91
· · · 28:−1

9:
�8: · · ·�81 ,

we arrive at

e−ℎ�1 Ψ(ℎ) = � +
∑
:≥1

∑
81,...,8: ≥1

ℎ81+···+8: E81,...,8: (11, 21, . . . , 1B, 2B)�8: · · ·�81 ,

(2.36)
where

E81,...,8: (11, 21, . . . , 1B, 2B) =
∑

1≤ 91≤···≤ 9: ≤B

1 91 · · · 1 9:
f( 91, . . . , 9:)

2
81−1
91
· · · 28:−1

9:
. (2.37)

In this way, a consistent splitting method is at least of order A if and only if∑
1≤ 91≤···≤ 9: ≤B

1 91 · · · 1 9:
f( 91, . . . , 9:)

2
81−1
91
· · · 28:−1

9:
=

1
(81 + · · · + 8:) · · · (81 + 82)81

(2.38)

holds for each multi-index (81, . . . , 8:) such that 81 + · · · + 8: ≤ A . For illustration,
in Table 2.3 we give explicit conditions (2.38) corresponding to multi-indices with
up to three indices.
However, such order conditions are not independent. The situation is very similar

to that of the previous subsection: instead of series indexed by the set of words
in the alphabet {1, 2}, now they are indexed by the set of words in the alphabet
N = {1, 2, 3, 4, . . .}. To distinguish the words of both sets, we will keep referring
to the words in the alphabet N as multi-indices, and will write them as (81, . . . , 8:)
instead of 81 · · · 8: . Analogously to the previous subsection, the corresponding
coefficients of the series expansions of both e−ℎ�1Ψ(ℎ) and e−ℎ�1eℎ(�1+�2) satisfy
the shuffle relations

E81,...,8=E8=+1,...,8=+< =
∑

f∈Sh(=,<)
E8f(1),...,8f(=+<) . (2.39)

This can be seen by showing that such coefficients can be written in both cases
as iterated integrals. From the discussion above, we already know that, for each
multi-index (81, . . . , 8:), the coefficients

1
(81 + · · · + 8:) · · · (81 + 82)81

=

∫ 1

0

∫ g:

0
· · ·

∫ g2

0
g
81−1
1 · · · g8:−1

:
dg1 · · · dg:

of the series expansion of e−ℎ�1eℎ(�1+�2) are indeed iterated integrals.
We next show that the coefficients (2.37) of the series expansion (2.36) can also

be defined as iterated integrals.
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44 S. Blanes, F. Casas and A. Murua

Table 2.3. Conditions (2.38) for multi-indices with up to three indices.

Multi-index Condition

(8)
B∑
9=1

1 9 2
8−1
9 =

1
8

(81, 82)
1
2

B∑
9=1

12
92
81+82−2
9

+
∑

1≤ 91< 92≤B
1 911 922

81−1
91
2
82−1
92

=
1

(81 + 82)81

(81, 82, 83)
1
6

B∑
9=1

13
92
81+82+83−3
9

+ 1
2

∑
1≤ 91< 93≤B

12
91
1 932

81+82−2
91

2
83−1
93

+ 1
2

∑
1≤ 91< 92≤B

1 911
2
92
2
81−1
91
2
82+83−2
92

+
∑

1≤ 91< 92< 93≤B
1 911 921 932

81−1
91
2
82−1
92
2
83−1
92

=
1

(81 + 82 + 83)(81 + 82)81

We begin by showing that the infinite series expansion (2.35) of e−ℎ�1 Ψ(ℎ) can
be represented as a truncated series plus a remainder. For that purpose, we consider
(2.26) with �(g) defined as follows:

�(g) =

{
18�(ℎ28) if g ∈ [8 − 1, 8], 8 ∈ {1, . . . , B},
0 if g > B.

(2.40)

In that case, if g ∈ [8, 8 + 1] with 8 < B,

. (g) = e(g−8)ℎ18+1�(ℎ28+1)eℎ18�(ℎ28) · · · eℎ11�(ℎ21),

and in particular e−ℎ�1 Ψ(ℎ) = . (B). Since the solution . (g) of (2.26) admits the
representation (2.29) with remainder (2.30), then

e−ℎ�1Ψ(ℎ) = � +
=∑
:=1

ℎ:
∫ B

0

∫ g:

0
· · ·

∫ g2

0
�(g:)�(g:−1) · · · �(g1) dg1 · · · dg:

+ ℎ=+1R=+1(B, ℎ),

where for each =,

R=(B, ℎ) =
∫ B

0

∫ g=

0
· · ·

∫ g2

0
�(g=)�(g=−1) · · · �(g1). (g1) dg1 · · · dg=.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492923000077
Downloaded from https://www.cambridge.org/core. IP address: 3.133.122.230, on 11 Sep 2024 at 14:39:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492923000077
https://www.cambridge.org/core


Splitting methods for differential equations 45

By comparison with (2.35), we conclude that∑
1≤ 91≤···≤ 9: ≤B

1 91 · · · 1 9:
f( 91, . . . , 9:)

�(2 9: ℎ) · · ·�(2 91ℎ)

=

∫ B

0

∫ g:

0
· · ·

∫ g2

0
�(g:)�(g:−1) · · · �(g1) dg1 · · · dg: .

Now, �(g) can be written as

�(g) = 31(g)�1 + ℎ32(g)�2 + ℎ233(g)�3 + · · ·

where 3 9(g) = 182 9−1
8

if g ∈ [8, 8 + 1] with 8 < B. Proceeding as in the previous
section, we obtain

E81,...,8: (11, 21, . . . , 1B, 2B) =
∫ B

0

∫ g1

0
· · ·

∫ g:−1

0
381(g1) · · · 38: (g:) dg: · · · dg1,

(2.41)
which implies that the shuffle relations (2.39) hold for the polynomials E81,...,8: .

As in the previous subsection, a set of independent conditions that imply the
order conditions (2.38) can be obtained by considering (2.38) for each Lyndon
multi-index (81, . . . , 8:) such that 1 < 81 + · · · + 8: ≤ A . Here, we exclude the multi-
index (1) as in that case (2.38) coincides with the second equality in the consistency
condition (2.22). For instance, the subset of Lyndon multi-indices (81, . . . , 8:) such
that 1 < 81 + · · · + 8: ≤ 5 is

{(2), (3), (4), (5), (1, 2), (1, 3), (1, 4), (2, 3), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2)}.

For time-symmetric splitting methods, a set of independent order conditions will
be obtained by considering (2.38) restricted to Lyndon multi-indices (81, . . . , 8:)
with odd weight 81 + · · · + 8: . For instance, the subset of Lyndon multi-indices
(81, . . . , 8:) such that 1 < 81 + · · · + 8: ≤ 5 with odd weight 81 + · · · + 8: is

{(3), (5), (1, 2), (1, 4), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2)}.

Notice that the treatment carried out in this subsection may also be formally
applied when �1 is an unbounded operator. In that case, however, we have to
get rigorous estimates of the remainders to prove stability and convergence of the
corresponding schemes, as is done in Thalhammer (2008), for example.

2.5. Order conditions IV: composition methods with Lyndon multi-indices

We now turn our attention to compositions (2.1) of a basic second-order time-
symmetric scheme ( [2]

ℎ
with appropriate coefficients W1, . . . , WB chosen to achieve

higher orders. Of course, a set of conditions that guarantee that the scheme (2.1)
attains a given order can be obtained by rewriting that composition in terms of basic
maps, such as (2.19), and using the characterization of the order of the splitting
method (2.19) described in Section 2.4. The corresponding parameters 0 9 , 1 9 can
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46 S. Blanes, F. Casas and A. Murua

be obtained in terms of W1, . . . , WB as follows: 01 = W1/2, and

0 9+1 =
W 9 + W 9+1

2
, 1 9 = W 9 for 9 = 1, . . . , B,

with WB+1 = 0. However, the resulting polynomial equations for any given order
A , once written in terms of the coefficients W1, . . . , WB, are no longer independent.
An alternative formulation of the order of (2.1) in terms of explicit independent
algebraic equations in the coefficients W1, . . . , WB will be presented in Section 2.5.2
below. This characterization is based on the treatment of the more general com-
position (2.15), which is treated next.

2.5.1. Order conditions of compositions of a basic method and its adjoint
The composition (2.15) is at least of order A if Ψ(ℎ) − exp(ℎ(�1 + �2)) = $(ℎA+1),
where Ψ(ℎ) is the associated Lie transformation (2.16).
To get the series expansion of Ψ(ℎ), we first consider the expansion in powers

of ℎ of the Lie transformation X (ℎ) = � + ℎ-1 + ℎ2-2 + · · · associated to the basic
integrator jℎ. If jℎ is the Lie–Trotter scheme, jℎ = i [1]ℎ ◦ i

[2]
ℎ

, then

X (ℎ) = eℎ�2eℎ�1 = � + ℎ(�1 + �2) + ℎ2
(

1
2
�2

1 + �2�1 +
1
2
�2

2

)
+ · · · .

To deal with the most general problem, however, from now on we only assume that
jℎ is a smooth consistent integrator, so that -1 = �1 + �2, and each -= can be
defined so that for each smooth function 6, -=6 is a new smooth function given by
(2.9).
Let us consider Ψ0(ℎ) = �, and for each 9 ≥ 1,

Ψ2 9−1(ℎ) = X (−U1ℎ)−1X (U2ℎ) · · ·X (−U2 9−1ℎ)−1,

Ψ2 9(ℎ) = X (−U1ℎ)−1X (U2ℎ) · · ·X (−U2 9−1ℎ)−1X (U2 9ℎ),
(2.42)

so that in particular, Ψ(ℎ) = Ψ2B(ℎ). Notice that

X (−ℎ)−1 = � +
∑
:≥1

(−1):(−ℎ-1 + ℎ2-2 − ℎ3-3 + · · · ):

= � + ℎ-1 + ℎ2(-2
1 − -2) + ℎ3(-3

1 − -1-2 − -2-1 + -3) + · · · ,

which implies that for each : ≥ 1 there exist polynomials F81,...,8<(U1, . . . , U:) on
the coefficients U1, . . . , U: such that

Ψ:(ℎ) = � +
∑
=≥1

ℎ=
∑
<≥1

∑
81+···+8<==

F81,...,8<(U1, . . . , U:) -81 · · · -8< . (2.43)

We next determine the polynomial coefficients F81,...,8<(U1, . . . , U:) recursively
from the relations Ψ1(ℎ) = X (−U2 9−1ℎ)−1 and

Ψ2 9−1(ℎ) = Ψ2 9−2(ℎ)X (−U2 9−1ℎ)−1, Ψ2 9(ℎ) = Ψ2 9−1(ℎ)X (U2 9ℎ),
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or equivalently, Ψ1(ℎ)X (−U1ℎ) = � and

Ψ2 9−1(ℎ)X (−U2 9−1ℎ) = Ψ2 9−2(ℎ), Ψ2 9(ℎ) = Ψ2 9−1(ℎ)X (U2 9ℎ). (2.44)

Specifically, for arbitrary coefficients F81,...,8< and _ we have(
� +

∑
=≥1

ℎ=
∑
<≥1

∑
81+···+8<==

F81,...,8< -81 · · · -8<
)
X (_ℎ)

= � +
∑
8≥1

ℎ8(F8 + _8)-=

+
∑
=≥1

ℎ=
∑
<≥2

∑
81+···+8<==

(F81,...,8< + _8<F81,...,8<−1) -81 · · · -8< ,

so that, taking this expression into account, (2.44) leads to the following identities:

F8(U1) = −(−U1)8 ,
F8(U1, . . . , U2 9−1) = F8(U1, . . . , U2 9−2) − (−U2 9−1)8 ,
F8(U1, . . . , U2 9) = F8(U1, . . . , U2 9−1) + U82 9 ,
F81,...,8<(U1) = −(−U1)8<F81,...,8<−1(U1),

F81,...,8<(U1, . . . , U2 9−1) = F81,...,8<(U1, . . . , U2 9−2)
− (−U2 9−1)8<F81,...,8<−1(U1, . . . , U2 9−1),

F81,...,8<(U1, . . . , U2 9) = F81,...,8<(U1, . . . , U2 9−1)
+ U8<2 9F81,...,8<−1(U1, . . . , U2 9−1).

Clearly, (2.43) holds for the coefficients F81,...,8<(U1, . . . , U:) determined by the
relations above. Equivalently, the functions F81,...,8< can be defined as

F8(U1, . . . , U2ℓ) =
B∑
9=1

(
U82 9 − (−U2 9−1)8

)
,

F81,...,8<(U1, . . . , U2ℓ) =
B∑
9=1

(
U
8<
2 9 − (−U2 9−1)8<

)
F81,...,8<−1(U1, . . . , U2 9−1).

(2.45)

Notice that

F81,...,8<(U1, . . . , U: , 0, . . . , 0) = F81,...,8<(U1, . . . , U:),

as expected from (2.42), (2.43) and X (0) = �.
Comparing the series expansion of Ψ(ℎ) = Ψ2B(ℎ) with

exp(ℎ (�1 + �2)) = exp(ℎ -1) = � +
∑
=≥1

ℎ=

=!
-=1 ,
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48 S. Blanes, F. Casas and A. Murua

we finally conclude that the scheme (2.15) is of order at least A if and only if

F81,...,8<(U1, . . . , U2B) =


1
<!

if (81, . . . , 8<) =

<︷     ︸︸     ︷
(1, . . . , 1),

0 otherwise,

(2.46)

for each multi-index (81, . . . , 8:) such that 1 ≤ 81 + · · · + 8: ≤ A .
Furthermore, the order conditions (2.46) are not all independent. For instance,

it is straightforward to check from (2.45) that F81,82 + F82,81 + F81+82 = F81F82
for arbitrary indices 81, 82. In particular, 2F1,1 + F2 = F2

1, which implies that
if the order conditions (2.46) for the multi-indices (1) and (2) are satisfied, then
the condition for the multi-index (1, 1) is automatically fulfilled. Actually, such
dependences are similar to the shuffle relations (2.32) that hold for the coefficients
E81,...,8< considered in Section 2.4. Indeed,

F81,...,8=F8=+1,...,8=+< =
∑

f∈Sh(=,<)
F8f(1),...,8f(=+<) + · · · , (2.47)

where · · · refers to sums of products of coefficients corresponding to multi-indices
with < − 1 or fewer indices. In fact, as shown in Chartier and Murua (2009), the
dependences (2.47) are directly related to the quasi-shuffle product ∗ on the linear
span of multi-indices introduced in Hoffman (2000), and due to such dependences,
it is enough to consider (2.46) for Lyndon multi-indices (81, . . . , 8<) such that
81 + · · · + 8: ≤ A . That is, the scheme (2.15) is of order at least A if U1 + · · · +U2B = 1
and for each Lyndon multi-index (81, . . . , 8:) such that 1 < 81 + · · · + 8: ≤ A ,

F81,...,8<(U1, . . . , U2B) = 0. (2.48)

In particular, a method of order three must satisfy, besides consistency, the condi-
tions F2 = F3 = F1,2 = 0.
This provides an alternative characterization of the order conditions of general

splitting schemes (2.17) in terms of the coefficients U 9 obtained from the method
parameters 0 9 , 1 9 from (2.18). Most importantly, this also allows us to characterize
the order of the scheme (2.1) obtained by composing Strang maps. This will be
presented next in Section 2.5.2.

2.5.2. Explicit characterization of the order conditions of scheme (2.1)
Murua and Sanz-Serna (1999) have obtained such an explicit characterization in
terms of a set of polynomials indexed by certain sets of rooted trees decorated
by the set of odd positive integers. We now describe a related formulation in
terms of polynomials indexed by the set of Lyndon multi-indices with odd indices
based on the formalism developed in the previous subsection for the more general
composition (2.15).
We begin by considering (2.1) as the particular case of (2.15) with

U2 9−1 = U2 9 = W 9/2 for 9 = 1, . . . , B. (2.49)
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Splitting methods for differential equations 49

For each multi-index (81, . . . , 8:), we define the function D81,...,8< on the set of finite
sequences (W1, . . . , WB) of real numbers as follows:

D81,...,8<(W1, . . . , WB) = 281+···+8<−<F81,...,8<(U1, . . . , U2B), (2.50)

with U2 9−1 = U2 9 = W 9/2. Clearly, scheme (2.1) is of order at least A if and only if
W1 + · · · + WB = 1 and

D81,...,8<(W1, . . . , WB) = 0 (2.51)

for each Lyndon multi-index (81, . . . , 8:) such that 1 < 81 + · · · + 8: ≤ A . However,
by definition, D81,...,8<(W1, . . . , WB) ≡ 0 if 8< is even. Moreover, for any multi-index
(81, . . . , 8:) with some even index, (2.51) holds provided that it holds for every
Lyndon multi-index with fewer indices.
Therefore, scheme (2.1) is of order at least A if and only if W1 + · · · + WB = 1

and (2.51) for each Lyndon multi-index (81, . . . , 8:) with odd indices such that
1 < 81 + · · · + 8: ≤ A . For instance, the set of Lyndon multi-indices (81, . . . , 8:) of
odd indices such that 1 < 81 + · · · + 8: ≤ 7 is

{(3), (5), (7), (1, 3), (1, 5), (1, 1, 3), (1, 1, 5), (1, 3, 3), (1, 1, 1, 3), (1, 1, 1, 1, 3)}.

The resulting number of order conditions, denoted as <=, is gathered in Table 2.1.
For multi-indices (81, . . . , 8<) with odd indices, the functions D81,...,8< can be

written more explicitly as follows:

D8(W1, . . . , WB) =
B∑
9=1
W89 , (2.52)

D81,82(W1, . . . , WB) =
B∑
92=1

W
82
92

92∗∑
91=1

W
81
91
, (2.53)

D81,82,83(W1, . . . , WB) =
B∑
93=1

W
83
93

93∗∑
92=1

W
82
92

92∗∑
91=1

W
81
91
, (2.54)

D81,82,83,84(W1, . . . , WB) =
B∑
94=1

W
84
94

94∗∑
93=1

W
83
93

93∗∑
92=1

W
82
92

92∗∑
91=1

W
81
91
, (2.55)

and so on. Here, as in Murua and Sanz-Serna (1999), we have used the notation
:∗∑
9=1

� 9 =
�:

2
+
:−1∑
9=1

� 9

for �1, . . . , �: ∈ R.
For time-symmetric integration schemes (2.1), a set of independent conditions

for even order A will be obtained by considering (2.51) restricted to Lyndon multi-
indices (81, . . . , 8:) of odd indices and odd weight 81 + · · · + 8: < A. For instance, for
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50 S. Blanes, F. Casas and A. Murua

order eight, we only need to consider the following subset of Lyndon multi-indices:

{(3), (5), (7), (1, 1, 3), (1, 1, 5), (1, 3, 3), (1, 1, 1, 1, 3)}.

The above characterization of the order of the scheme (2.1) is also true in the more
general case where the Strang map ( [2]

ℎ
is replaced by an arbitrary time-symmetric

integrator of order 2ℓ. In that case, only Lyndon multi-indices with indices from
the set {1, 2ℓ + 1, 2ℓ + 3, 2ℓ + 5, . . .} have to be taken into account.

2.6. Negative time steps

Splitting and compositionmethods of order A ≥ 3 necessarily involve some negative
coefficients. This can already be observed in the simple triple jump scheme (2.3),
and in fact has been established as a general theorem byGoldman andKaper (1996),
Sheng (1989) and Suzuki (1991). A simple proof can be obtained as follows (Blanes
andCasas 2005): given the existing relationship between the splittingmethod (2.17)
and the composition (2.15), it is clear that any splitting scheme of order A ≥ 3 has
to verify the condition F3 = 0, where, by virtue of (2.45),

F3(U1, . . . , U2B) =
B∑
9=1

(
U3

2 9 − (−U2 9−1)3), (2.56)

where the coefficients U 9 are related to 0 9 , 1 9 via (2.18). Since, for all G, H ∈ R, it
is true that G3 + H3 < 0 implies G + H < 0, then there must exist some 9 ∈ {1, . . . , B}
in the sum of (2.56) such that

U3
2 9−1 + U

3
2 9 < 0 and thus U2 9−1 + U2 9 = 1 9 < 0.

Obviously, we can also write (by taking U0 = 0, U2B+1 = 0)

F3(U1, . . . , U2B) =
B∑
8=0

(
U3

2 9 + U
3
2 9+1
)
= 0

just by grouping terms in a different way, and thus, by repeating the argument, there
must exist some 9 ∈ {0, . . . , B} such that

U2 9 + U2 9+1 = 0 9 < 0.

This proof clearly shows the origin of the existence of backward time steps: the
equation F3 = 0 can only be satisfied if at least one 0 9 and one 1 9 are negative.

3. Splitting methods for special problems
Whereas the analysis carried out in Section 2 is completely general, there are
important problems arising in applications whose particular structure allows us to
simplify the treatment and design schemes without taking into account all the order
conditions. Some of them are reviewed in this section, where we also show how to
adapt splitting methods to deal with explicitly time-dependent systems.
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3.1. RKN splitting methods

Many differential equations of practical interest are of the form

H′′ = 6(H), (3.1)

where H ∈ R3 and 6 : R3 −→ R3 . An example in point corresponds to Hamiltonian
systems of the form �(@, ?) = )(?) ++(@), where the kinetic energy )(?) is quad-
ratic in the momenta ?, i.e. )(?) = 1

2 ?
>"−1? for a constant invertible symmetric

matrix " , and +(@) is the potential. In that case, the corresponding Hamiltonian
system can be written in the form (3.1) with H = @, 6(H) = −"−1∇+(H).
By transforming (3.1) into a first-order ODE system (of dimension � = 23) in

the new variables G = (H, E)>, with E = H′, it is clear that the resulting equation

G ′ =
d
dC

(
H

E

)
=

(
E

6(H)

)
can be expressed as G ′ = 51(G) + 52(G), with

51(H, E) = (0, 6(H))>, 52(H, E) = (E, 0)>, (3.2)

and splitting methods of the form (2.17) can be applied, with the exact ℎ-flows i [1]
ℎ

and i [2]
ℎ

given by

i
[1]
ℎ

:
(
H0
E0

)
↦−→

(
H0

E0 + ℎ 6(H0)

)
, i

[2]
ℎ

:
(
H0
E0

)
↦−→

(
H0 + ℎ E0
E0

)
. (3.3)

Just as the class of Runge–Kutta methods can be conveniently adapted to (3.1) to get
more efficient schemes (the so-called Runge–Kutta–Nyström or RKNmethods; see
Hairer, Nørsett and Wanner 1993), special splitting methods can also be designed
to improve the accuracy whilst reducing the computational cost with respect to
the general composition (2.17). For analogy, they are sometimes called splitting
methods of RKN type. The key point here is that the differential operators �1 and
�2 associated with (3.2) satisfy [�1, [�1, [�1, �2]] = 0 identically. In other words,
�1112 = 0 in (2.21), which introduces linear dependences among higher-order
terms in the expansion of log(Ψ(ℎ)) (McLachlan and Quispel 2002) and therefore
contributes to a reduction in the number of order conditions. In the notation of
Section 2.4, 6�4 = −[�1, [�1, [�1, �2]], and thus we have that �: = 0 for : ≥ 4.
Hence, the order conditions (2.38) for multi-indices (81, . . . , 8:) with some index
8 9 ≥ 4 need not be considered in that case. In particular, a splitting scheme is at
least of order five provided that (2.38) holds for the Lyndon multi-indices

{(2), (3), (1, 2), (1, 3), (2, 3), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2)}.
Here, we have excluded the Lyndon multi-indices (4), (5), (1, 4) from the set of
Lyndon multi-indices (81, . . . , 8:) with 81 + · · · + 8: ≤ 5. For order six, in addition,
we have to consider (2.38) for the following Lyndon multi-indices:

(1, 1, 1, 1, 2), (1, 1, 1, 3), (1, 2, 3), (1, 1, 2, 2), (1, 3, 2).
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52 S. Blanes, F. Casas and A. Murua

They are obtained by excluding from the set of nine Lyndon multi-indices with
81 + · · · + 8: = 6, the Lyndon multi-indices (2, 4), (1, 1, 4), (1, 5), (6). Similarly,
for order seven, in addition, we have to consider (2.38) for the following Lyndon
multi-indices:

(1, 1, 1, 1, 1, 2), (1, 1, 1, 1, 3), (1, 1, 2, 3), (1, 1, 1, 2, 2), (1, 1, 3, 2),
(2, 2, 3), (1, 2, 1, 3), (1, 1, 2, 3), (1, 3, 3), (1, 2, 2, 2).

For orders higher than seven, more reductions of the order conditions occur, in
addition to those obtained by excluding Lyndon multi-indices (81, . . . , 8:) having
some index 8 9 ≥ 4, due to additional dependences among nested commutators of
�1, �2, �3. For instance, it is straightforward to check that [�3, [�2, �3]] vanishes
identically, which implies that for order eight we can also exclude the Lyndon
multi-index (2, 3, 3).
The class of problems for which the reduction in order conditions discussed

above is in fact more general than (3.2). In particular, it includes the situation
where 51 depends only on H and 52(H, E) is linear in E. For Hamiltonian systems,
this generalization corresponds to �(@, ?) = +(@) + )(@, ?), where )(@, ?) is
quadratic in ?. In that case, the flow associated with )(@, ?) should be easily
computed for the RKN splitting methods to be advantageous.
Actually, such a reduction of the order conditions also holds for certain PDEs,

and, in particular, for the time-dependent Schrödinger equation considered in Sec-
tion 1.6 (with �1 = +̂ and �2 = )̂), since the corresponding graded Lie algebra
is isomorphic to the classes of problems discussed above (McLachlan and Murua
2019). In fact, McLachlan and Murua (2019) conjectured (and checked up to order
20) that the case (3.2) (where 52(H, E) = E) and the more general case (where
52(H, E) is linear in E but may depend on H) give rise to the same reduction in the
order conditions.
The actual number 3A of order conditions for orders A ≤ 11 are given in Table 2.1.

Since the order conditions up to order three are identical as in the general case, the
results for negative time steps still apply.
This reduction in the number of order conditions allows us to design schemes

involving a smaller number of elementary flows than in the general case, eventually
leading to greater efficiency. We have already illustrated a popular fourth-order
method within this class (scheme RKN64 in the examples of Section 1).

3.2. Methods with commutators

Another possible way to improve the efficiency of splitting methods consists in
incorporating into the scheme not only the flows of �1 and �2 but also the flows of
some of their commutators [�1, �2], [[�1, �2], �1], etc., or convenient approxim-
ations of these flows. Of course, the strategy makes sense if the gain in accuracy,
stability or any other favourable property compensates the extra computational
cost due to the presence of these additional flows. A popular fourth-order method
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belonging to this class is

kℎ = i
[1]
01ℎ
◦ i [2]

11ℎ
◦ i [1]

02ℎ
◦ i [112]

32ℎ3 ◦ i
[1]
02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ
, (3.4)

with

01 =
1
6
, 11 =

1
2
, 02 =

1
3
, 32 = −

1
72
, (3.5)

first proposed by Koseleff (1993) and Chin (1997). Here i [112]
ℎ

denotes the ℎ-
flow corresponding to �112 = [�1, [�1, �2]] (or �112 = 2�3 in the notation of
Section 2.4).
We next analyse the family of schemes (3.4). The Lie transformation Ψ(ℎ) is

Ψ(ℎ) = eℎ01�1 eℎ11�2 eℎ02�1 eℎ
3232�3 eℎ02�1 eℎ11�2 eℎ01�1 .

Under the assumption that 01 + 02 =
1
2 , we have

e−ℎ�1Ψ(ℎ) = eℎ11�(ℎ23) eℎ
332�(ℎ22) eℎ11�(ℎ21),

where 21 = 01, 22 = 01 + 02, 23 = 01 + 202, �(ℎ) is given by (2.34), and

�(ℎ) = 2e−ℎ�1 �3 eℎ�1 =

∞∑
==1

ℎ=−1(= + 1)=�=+2,

so that

e−ℎ�1Ψ(ℎ) = eℎ11(�1+ℎ23�2+ℎ222
3�3) e2ℎ332�3 eℎ11(�1+ℎ21�2+ℎ222

1�3) +$(ℎ4).

Expanding the right-hand side in powers of ℎ and comparing the coefficients multi-
plying ℎ�1, ℎ2�2, ℎ3�1�2 and ℎ3�3 respectively (corresponding to the Lyndon
multi-indices (1), (2), (1, 2), (3)) with those in the expansion

e−ℎ�1eℎ(�1+�2) = � + ℎ�1 +
ℎ2

2
�2 +

ℎ3

3
�3 +

ℎ3

6
�1�2 +

ℎ3

3
�2�1 +$(ℎ4),

we conclude that the time-symmetric scheme (3.4) is at least of order four if

11 =
1
2
, 11(21 + 23) =

1
2
,

1
2
12

1(21 + 23) + 12
121 =

1
6
,

11
(
22

1 + 2
2
3
)
+ 232 =

1
3
.

That system of polynomial equations has a unique solution, corresponding to the
choice (3.5), as expected. The order conditions of more general products of scaled
exponentials of ℎ�1, ℎ�2 and ℎ3 [�1, [�1, �2]] can be derived similarly.
Recall that in the RKN case �4 = [�3, �1] = 0, which implies that i [1]

ℎ
and

i
[112]
ℎ

commute. Hence, the three central terms in (3.4) can be merged into one,
the ℎ-flow of the differential operator 202 �1 + 32ℎ

2�112, which is of the form∑
9

� 9(@, ℎ)
m

mE 9
.
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In the case of (3.2),

i
[1]
02 ℎ
◦ i [112]

32 ℎ
◦ i [1]

02 ℎ
(H, E) =

(
H, E + 2ℎ02 6(H) + ℎ332

m6

mH
(H)6(H)

)
. (3.6)

For Hamiltonian systems �(?, @) = +(@) + 1
2 ?
>"−1?, �112 is the operator associ-

ated to the Hamiltonian function (∇+)>"−1∇+ , depending only on @. Thus (3.6)
is the ℎ-flow of the Hamiltonian

202+(@) + 32 ℎ
2(∇+(@))>"−1∇+(@), (3.7)

which reduces to the potential +(@) when 02 = 1/2 and 32 = 0. This explains the
term ‘splitting methods with modified potentials’ frequently used in the literature
(López-Marcos, Sanz-Serna and Skeel 1997, Rowlands 1991, Wisdom, Holman
and Touma 1996). One such method has been illustrated in practice in Section 1.6
(Figure 1.5).
In addition to the reduction in the number of force evaluations, including flows

associated with commutators has another advantage: since the coefficients 08 , 18
do not have to satisfy all the order conditions at order A ≥ 3, the results for negative
time steps do not apply here, and in fact methods of order greater than two do exist
within this class. In addition to (3.4), other ‘forward’ fourth-order methods (i.e.
with all 0 9 > 0 and 1 9 > 0) involving second derivatives of the potential have been
published (Omelyan, Mryglod and Folk 2002, 2003) and applied to systems where
the presence of negative coefficients leads to severe stability problems (Bader,
Blanes and Casas 2013). Although it has been shown that achieving order six in
general requires some negative coefficients (Chin 2005), it is indeed possible to
construct a sixth-order processed method for cubic potentials with all 0 9 , 1 9 being
positive (Blanes, Casas, González and Thalhammer 2023).
Additional flows corresponding to commutators involving more operators can

in principle be incorporated into the scheme. Thus, for instance, the operator
[�12, �112] = −2[�2, �3] is also of the form∑

9

6
[5]
9

(@, ℎ)
m

mE 9
,

which allows us to compute its ℎ-flow explicitly; see Blanes, Casas and Ros (2001a)
and Blanes, Casas and Murua (2008b) for more details. Again, this procedure
allows us to introduce additional free parameters into the scheme and constructmore
efficient integrators as long as the simultaneous evaluation of 6(H), (m6/mH)(H)6(H),
6 [5](H), etc., is not substantially more expensive than the evaluation of 6(H) itself.

3.3. Near-integrable systems

Very often in applications we have to deal with differential equations such as

G ′ = 51(G) + Y 52(G), (3.8)
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where |Y | � 1 and the ℎ-flows i [1]
ℎ

, i [2]
ℎ

corresponding to 51 and Y 52, respectively,
are readily available. In classical Hamiltonian mechanics, in particular, it is rather
common to have a Hamiltonian function � which is a small perturbation of an
exactly integrable Hamiltonian �1, that is, � = �1 + Y�2, with 0 < Y � 1
(Goldstein 1980, Pars 1979). A canonical example corresponds to the gravitational
#-body problem in Jacobi coordinates, already considered in Section 1.5.
For this type of problem, splitting methods of the form (2.17),

kℎ = i
[1]
0B+1ℎ

◦ i [2]
1Bℎ
◦ i [1]

0Bℎ
◦ · · · ◦ i [1]

02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ
,

are especially well adapted. On the one hand, the error is at most$(Y) and vanishes
with Y, since in that case the scheme reproduces the exact solution. On the other
hand, typically, |Y | � ℎ (or at least |Y | ≈ ℎ), so that we are mainly interested
in eliminating error terms with small powers of Y, and its number grows as a
polynomial in the order A , rather than exponentially. Thus there is only one error
term of order Yℎ: (namely, the term ℎ:YF11· · ·12�11· · ·12 in the expansion (2.21)),⌊ 1

2 (: − 1)
⌋
terms of order $(Y2ℎ:) and

⌊ 1
6 (: − 1)(: − 2)

⌋
terms of order $(Y3ℎ:)

(McLachlan 1995a).
In the treatment of splitting methods for near-integrable systems it is convenient

to introduce the notion of generalized order, following McLachlan (1995a). Thus,
we say that kℎ is of generalized order (A1, A2, . . . , A<), with A1 ≥ A2 ≥ · · · ≥ A<, if

kℎ(G) − iℎ(G) = $
(
YℎA1+1 + Y2ℎA2+1 + · · · + Y<ℎA<+1

)
as (ℎ, Y) −→ (0, 0).

With this notation, a method such that the local error is $(Yℎ2=+1 + Y2ℎ3) is said to
be of generalized order (2=, 2). In this sense, the Strang scheme is of order (2, 2),
whereas the (10, 6, 4) integrator kℎ used in Sections 1.4 and 1.5 satisfies

kℎ(G) − iℎ(G) = $
(
Yℎ11 + Y2ℎ7 + Y3ℎ5).

The general analysis of the order conditions carried out in Section 2.4 in terms of
Lyndon multi-indices readily allows us to characterize the generalized order of a
given splitting scheme. We simply need to observe that, by replacing �2 with Y�2 in
the expansions derived in Section 2.4, a series expansion of e−ℎ�1(Ψ(ℎ)−eℎ(�1+Y�2))
is obtained, where the term associated to a multi-index (81, . . . , 8:) with : indices
is affected by a :th power of Y. In particular, we get Table 3.1, which contains the
Lyndon multi-indices involved in several consistent palindromic splitting methods
of the given generalized order.

3.4. Splitting methods for linear systems

In the numerical integration of the Schrödinger equation implemented in Sec-
tion 1.6, we separated the system into kinetic and potential energy and then applied
several schemes based on this splitting. It has long been recognized, however, that
there exist other possibilities for splitting such a system. Given the #-dimensional
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Table 3.1. Lyndon multi-indices corresponding to consistent
palindromic splitting methods of a given generalized order.

Generalized order Lyndon multi-indices

(2=, 2) (3), (5), . . . , (2= − 1)
(8, 4) (3), (5), (7), (1, 2)
(10, 4) (3), (5), (7), (9), (1, 2)
(8, 6, 4) (3), (5), (7), (1, 2), (1, 4), (2, 3)
(10, 6, 4) (3), (5), (7), (9), (1, 2), (1, 4), (2, 3)

linear ODE

i
d
dC
D(C) = � D(C), D(0) = D0 ∈ C# (3.9)

resulting from the space discretization of equation (1.42), with � real and sym-
metric, Gray and Verosky (1994) and Gray and Manolopoulos (1996) separate D
into its real and imaginary parts, @ = Re (D), ? = Im (D). Then, in terms of @, ?,
equation (3.9) leads to

d
dC
@ = � ?,

d
dC
? = −� @, (3.10)

so that they can be seen as the classical evolution equations corresponding to the
Hamiltonian function

�̂(@, ?) =
1
2
?>�? + 1

2
@>�@ (3.11)

in terms of canonical variables @ and ?. The exact solution of (3.10) is given by(
@(C)
?(C)

)
= $(C�)

(
@0
?0

)
, where $(C�) =

(
cos(C�) sin(C�)
− sin(C�) cos(C�)

)
(3.12)

is an orthogonal and symplectic 2# × 2# matrix. As with the formal solution
D(C) = e−iC�D0 of (3.9), $(C�) may be very expensive to compute, so that suitable
approximations might be necessary, such as those provided by splitting methods
applied to (3.11). In this respect, notice that if we introduce the nilpotent matrices
� and �,

� ≡
(

0 �

0 0

)
, � ≡

(
0 0
−� 0

)
, (3.13)

then it is clear that the symplectic Euler–VT method of Section 1.4 is simply(
@=+1
?=+1

)
= eℎ� eℎ�

(
@=
?=

)
, (3.14)
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whereas the Störmer–Verlet Algorithm 1.3 corresponds to

G=+1 = e
ℎ
2 � eℎ� e

ℎ
2 � G=, G = (@, ?)> (3.15)

for a given time step ℎ. Notice that all schemes based on this splitting are automat-
ically symplectic.
At this point, nothing prevents us from using any of the RKN splitting methods

treated in Section 3.1, even with nested commutators as in Section 3.2. It turns
out, however, that the particularly simple algebraic structure of the system (3.11)
makes it possible to design more efficient schemes. Specifically, there is only one
independent condition to increase the order from A = 2: − 1 to A = 2: , and only
two to increase the order from A = 2: to A = 2: + 1 for a given :; see Blanes, Casas
and Murua (2008a) for more details. As a result, splitting methods of the form

G=+1 = eℎ0B+1� eℎ1B� · · · eℎ02� eℎ11� eℎ01�G= (3.16)

of order A for A = 2, 4, 6, 8, 10 and 12 can be obtained with B = A exponentials
eℎ1 9� (Gray and Manolopoulos 1996). By contrast, at least 15 and 31 exponentials
are needed in general to attain orders eight and ten, respectively.
A couple of comments are worth making. First, this class of symplectic methods

do not preserve the orthogonal character of the exact solution given by $(C�) (or
alternatively the unitarity of (3.9)). Nevertheless, Blanes et al. (2008a) have shown
that the average relative errors due to the lack of preservation of orthogonality or
unitarity do not grow with time, since the schemes are conjugate to orthogonal
or unitary methods for sufficiently small values of ℎ. Second, although initially
motivated by the time integration of the Schrödinger equation, methods (3.16) can
be generalized in several ways. Thus they have been used to construct an algorithm
to approximate e−iC� E for any real symmetric matrix � and any complex vector E
by only carrying out matrix–vector products of the form �E. As shown in Blanes,
Casas and Murua (2015), the algorithm is more efficient than schemes based on
Chebyshev polynomials for all tolerances and values of ℎ. These methods can also
be adapted for systems of the form

G ′ = "H, H′ = −#G,

with G ∈ R31 , H ∈ R32 , " ∈ R31×32 and # ∈ R32×31 .

3.5. Splitting methods for non-autonomous systems

So far we have restricted our attention to splittingmethods for autonomous differen-
tial equations. The question we analyse next is whether the same techniques can be
applied when there is an explicit time dependence in the equation to integrate. The
ideal situation would be that the methods designed for G ′ = 5 (G) could also be used
(maybe with only minor modifications) when we have G ′ = 5 (C, G). In addition, we
would like the schemes previously considered in this section for special problems
to remain valid in the non-autonomous case.
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58 S. Blanes, F. Casas and A. Murua

Let us first consider the general situation, corresponding to a system of the form

G ′ = 5 (C, G) = 51(C, G) + · · · + 5<(C, G), G(0) = G0, (3.17)

that is, when the explicit time dependence is present in each part. Then we can
take C as a new coordinate and transform (3.17) into an equivalent autonomous
equation to which standard splitting algorithms can subsequently be applied. More
specifically, equation (3.17) is equivalent to the enlarged system

d
dC

(
G

G3+1

)
=

(
0
1

)
︸︷︷︸
5̂0

+
(
51(G3+1, G)

0

)
︸           ︷︷           ︸

5̂1

+ · · · +
(
5<(G3+1, G)

0

)
︸            ︷︷            ︸

5̂<

, (3.18)

with G3+1 ∈ R. If the resulting (autonomous) equations

H′ = 5̂8(H), 8 = 0, 1, . . . , < with H = (G, G3+1)

can be solved, then we may use any splitting method of the form (2.17), since G3+1
advances only with 5̂0 and remains constant for the rest of the system.

It turns out that, for problems which are separable into just two parts, that is,

G ′ = 5 (C, G) = 51(C, G) + 52(C, G), G(0) = G0, (3.19)

we can do better: if C is taken as a new coordinate twice, and we write

d
dC

 G

G3+1
G3+2

 =

 51(G3+1, G)
0
1


︸            ︷︷            ︸

5̂1

+

 52(G3+2, G)
1
0


︸            ︷︷            ︸

5̂2

, (3.20)

with G3+1, G3+2 ∈ R, then we can apply the same splitting schemes designed for
autonomous systems separable into two pieces to

H′ = 5̂1(H), H′ = 5̂2(H) with H = (G, G3+1, G3+2).

This is so because G3+1 is constant when integrating the first equation and G3+2 is
constantwhen solving the second one. The procedure can be viewed as a generaliza-
tion of the one proposed in Sanz-Serna and Portillo (1996) for Hamiltonian systems
�(C, @, ?) = )(C, ?) + +(C, @): by introducing two new coordinates @3+1, @3+2 and
their associatedmomenta ?3+1, ?3+2, we instead deal with the formally autonomous
Hamiltonian

�̃(@3+1, @3+2, @, ?3+1, ?3+2, ?) = ()(?3+2, ?) + ?3+1) + (+(@3+1, @) − @3+2).

In the special case of the non-autonomous second-order differential equation

H′′ = 6(C, H), (3.21)
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it is convenient to split the system in the extended phase space as

d
dC

 H

E

H3+1

 =

E0
1

 +
 0
6(H3+1, H)

0

,
since then we have an autonomous system with the same algebraic structure as
those considered in Section 3.1, so that RKN splitting methods (even including
commutators) can also be used.
For Hamiltonian systems �(C, @, ?) = )(?) + +(C, @), this is equivalent to intro-

ducing a new coordinate @3+1 = C and its associated momentum ?3+1 = −�, and
considering the extended (autonomous) Hamiltonian function

�̃(@3+1, @, ?3+1, ?) = ()(?) + ?3+1) ++(@3+1, @),

which is still quadratic in momenta, so that symplectic RKN methods can be used.
Notice that �̃ is only linear in ?3+1, andmodified potentials only involve derivatives
of the potential with respect to @ but not with respect to @3+1, i.e. they do not require
time derivatives. In this case the evolution for ?3+1 is irrelevant, so there is no need
to compute it.
Finally, if we take C as two new coordinates in the non-autonomous near-

integrable system

G ′ = 5 (C, G) = 51(C, G) + Y 52(C, G), G(0) = G0, (3.22)

then the special structure of a near-integrable system is destroyed. A partial remedy
consists in separating the system as

d
dC

(
G

G3+1

)
=

(
51(G3+1, G)

1

)
︸           ︷︷           ︸

5̂1

+ Y
(
52(G3+1, G)

0

)
︸              ︷︷              ︸

Y 5̂2

, (3.23)

which requires us to numerically solve the non-autonomous unperturbed system.
We should bear in mind that taking time as an additional coordinate is of interest

only if the time dependence in 58 , 8 = 1, . . . , < is cheap to compute. Otherwise the
resulting algorithm may be computationally costly, since these functions have to be
evaluated B times per time step. This drawback can be avoided by approximating the
exact solution at each step by a composition ofmaps that in some sense incorporates
average values of the vector fieldswith different weights on the subinterval [C=, C=+1]
(Blanes and Casas 2006). Specifically, the schemes read

kℎ = i
[ �̂B+1 ]
ℎ

◦ i [�̂B ]
ℎ
◦ i [ �̂B ]

ℎ
◦ · · · ◦ i [ �̂2 ]

ℎ
◦ i [�̂1 ]

ℎ
◦ i [ �̂1 ]

ℎ
, (3.24)

where the maps i [ �̂8 ]
ℎ

, i [�̂8 ]
ℎ

are the exact 1-flows corresponding to the time-
independent differential equations

G ′ = �̂8(G), G ′ = �̂8(G), 8 = 1, 2, . . . (3.25)
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respectively, with

�̂8(G) ≡ ℎ
:∑
9=1

d8 9 51(g9 , G), �̂8(G) ≡ ℎ
:∑
9=1
f8 9 52(g9 , G). (3.26)

Here g9 = C= + 2 9ℎ and the (real) constants 2 9 , d8 9 , f8 9 are chosen in such a way
that kℎ provides an approximation of order A . These methods have the additional
advantage that, when applied to (3.19) with the time frozen, they reproduce the
standard splitting (2.17), since

∑
9 d8 9 = 08 and

∑
9 f8 9 = 18 . The same technique

can be applied to the splitting methods analysed in Section 3.4 when the linear
system (3.9) is explicitly time-dependent. In that case, the resulting scheme involves
linear combinations of � evaluated at some intermediate times (Blanes, Casas and
Murua 2017a).

4. Qualitative properties of splitting methods
4.1. Changes of variables and differential equations on smooth manifolds

Given a smooth autonomous differential equation in R� ,

G ′ = 5 (G), (4.1)

a smooth change of variables G = \(Ĝ) transforms (4.1) into a new autonomous
differential equation in R� ,

Ĝ ′ = 5̂ (Ĝ),

such that their C-flows are related as follows: for all G0 ∈ R� ,

i
[ 5 ]
C (\(Ĝ0)) = \

(
i
[ 5̂ ]
C (Ĝ0)

)
, with Ĝ0 = \

−1(G0).

This implies that a similar property holds for the map kℎ ≈ i [ 5 ]ℎ
defined by the

splitting method (2.17) applied to (4.1) when 5 (G) =
∑2
9=1 5 9(G). That is, if the

change of variables G = \(Ĝ) transforms each equation G ′ = 5 9(G) into Ĝ ′ = 5̂ 9(Ĝ),
then the map k̂ℎ ≈ i [ 5̂ ]ℎ

obtained by applying the splitting method with the same
0 9 , 1 9 coefficients in the new variables Ĝ is related to kℎ by

kℎ(\(Ĝ0)) = \(k̂ℎ(Ĝ0)).

In words, the following two procedures give exactly the same numerical results:
(i) applying the splitting method to the ODE corresponding to the new variables Ĝ
with the initial condition Ĝ(0) = Ĝ0 ∈ R� and then transforming the result to the
old variables G, and (ii) applying the splitting method to the ODE formulated in the
old variables G with the initial condition G(0) = G0 ≔ \(Ĝ0) ∈ R� . This property
does not hold in general for other integration schemes. For instance, in the case of
Runge–Kutta methods it is true if the change of variables \ : R� → R� is an affine
map, but not in general.
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Splitting methods for differential equations 61

The above property can be stated in a more abstract way by saying that splitting
methods constitute a particular class of numerical integrators for differential equa-
tions defined on smooth manifolds: since the C-flow of a smooth vector field on
a smooth manifold M is coordinate-independent, then splitting methods applied
to a differential equation on M can also be naturally defined in a coordinate-
independent way. More precisely, kℎ : M→M defined by (2.17) gives a natural
approximation of the ℎ-flow i

[ 51+ 52 ]
ℎ

on the smooth manifoldM, described only in
terms of objects related to themanifold itself. This is in contrast to other approaches
for the numerical integration of differential equations on manifolds, which depend
on particular choices of global or local charts, or particular embeddings of the
manifold in a higher-dimensional Euclidean space (Hairer et al. 2006).

In fact, the treatment of the order conditions for splitting methods carried out in
Section 2 is also valid in this more abstract setting. Suppose we have two smooth
vector fields 51 and 52 on M, and let �8 (8 = 1, 2) be the linear operators on
�∞(M,R) defined as follows: for each 6 ∈ �∞(M,R), �86 ∈ �∞(M,R) is the
58-directional derivative of 6. Then the C-flow i

[ 58 ]
C (or i [8 ]C for short) satisfies, for

all 6 ∈ �∞(M,R) and C ∈ R,

d
dC
6(i [8 ]C ) = �86(i [8 ]C ).

This implies that the series in powers of C of 6(i [8 ]C ) can be represented as eC�86,
that is, we are in the same situation as in the case of differential equations on R� ,
discussed in Section 1.2. Consequently, the series in powers of ℎ of 6(kℎ(G)) for
the map kℎ : M → M defined by (2.17) can be obtained by expanding Ψ(ℎ)6,
where Ψ(ℎ) is given by (2.20), so the analysis of the order conditions of Section 2
can be formally applied here as well.

4.2. Stability

An important characteristic of numerical integrators is their stability. Generally
speaking, the numerical solution provided by a stable method does not tend to
infinity when the exact solution is bounded. To analyse the (linear) stability of a
given integrator, a model problem is typically chosen, so that both the numerical
and exact solutions can be explicitly written out. In the case of a splitting method
like (2.17), the model problem is the simple harmonic oscillator H′′ + l2H = 0,
l > 0 (López-Marcos, Sanz-Serna and Skeel 1996b, McLachlan and Gray 1997),
with the standard (G = (@, ?) = (lH, H′)) splitting(

@′

?′

)
=

[(
0 l

0 0

)
︸    ︷︷    ︸

�

+
(

0 0
−l 0

)
︸      ︷︷      ︸

�

] (
@

?

)
, (4.2)
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and exact solution at time C = ℎ(
@(ℎ)
?(ℎ)

)
= "I

(
@(0)
?(0)

)
, "I =

(
cos I sin I
− sin I cos I

)
, I = ℎl. (4.3)

There are at least two reasons for this choice of model. First, if a numerical method
already provides unbounded numerical solutions for a given ℎ on this system,
we cannot expect good behaviour for more general problems. Second, there are
physically relevant problems that, once formulated in appropriate coordinates,
are expressed as a system of uncoupled harmonic oscillators. Thus, a precise
characterization of the stability of a splitting method on (4.2) can be useful to build
accurate and stable algorithms for their numerical treatment. The linear system
(3.10) considered in Section 3.4 belongs to this category. This is also the case of
the more general equation

@′ = "−1?, ?′ = −#@, (4.4)

where " and # are 3 × 3 symmetric positive definite matrices. Writing " =

!!> and introducing new variables @̃ = !>@, then @̃′′ = −!−1#!−) @̃. Since
# is symmetric positive definite, then !−1#!−) is diagonalizable with positive
eigenvalues. A new change of variables reduces the system to a set of 3 uncoupled
scalar harmonic oscillators H′′

8
= −l2

8
H8 , with l2

8
the eigenvalues of !−1#!−)

(Bou-Rabee and Sanz-Serna 2018).
Application of the splitting method (3.16) to (4.2) results in the map(

@=+1
?=+1

)
= "̃I

(
@=
?=

)
, "̃I =

(
 1(I)  2(I)
 3(I)  4(I)

)
, (4.5)

where  1(I) and  4(I) (resp.  2(I),  3(I)) are even (resp. odd) polynomials in I,

det "̃I = 1,  1(0) =  4(0) = 1,

and, if the scheme is time-symmetric, then  1(I) =  4(I). An essential role in the
analysis is played by the stability polynomial, defined as

?(I) =
1
2

tr "̃I =
1
2

( 1(I) +  4(I)).

The eigenvalues of "̃I are the zeros of _2 − 2?(I)_ + 1 and they determine the
stability of the given method: if I is such that |?(I)| < 1, then "̃I has complex
conjugate eigenvalues of modulus 1 and the powers "̃=

I , = ≥ 0, remain bounded,
whereas if |?(I)| > 1, then "̃=

I grows exponentiallywith =. Linear instability occurs
when +1 or −1 is an eigenvalue with multiplicity 2 and "̃I is not diagonalizable.

Notice that the stability polynomial of a consistent splitting method is an even
polynomial satisfying

?(I) = 1 − I
2

2
+$(I4) as I → 0,

so that for sufficiently small I = ℎl > 0 the scheme will be stable. The stability
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interval is defined as the longest interval (0, I∗) such that "̃=
I is bounded for all the

iterations =.
In the particular case of the Störmer–Verlet method (3.15), we have

 1(I) =  4(I) = ?(I) = 1 − I
2

2
,  2(I) = I,  3(I) = −I + I

3

4
,

and thus I∗ = 2. This is also true for Algorithm 1.4, or G=+1 = e ℎ2 � eℎ� e ℎ2 �G=,
since both have the same stability polynomial ?(I).

It is important to stress that for systems of the form (4.4) that can be reduced to
a collection of 3 scalar harmonic oscillators with frequencies l8 , 8 = 1, . . . , 3, the
stability interval of Störmer–Verlet is restricted to ℎ < 2/lmax, where lmax is the
largest frequency of the system.
Suppose now that, given an integer : , we concatenate : steps of length ℎ/:

of the Störmer–Verlet method to our model problem (4.2). The resulting scheme
is stable for 0 < I/: < 2, or alternatively, its stability interval is (0, 2:). It
is remarkable that this is in fact the longest stability interval we can achieve by
considering any splitting method (2.17) with B = : stages. An elementary proof of
this statement is presented in Bou-Rabee and Sanz-Serna (2018). In consequence,
the Störmer–Verlet method may be applied with longer scaled time steps I/: than
any other splitting method with : stages. This makes it the method of choice in
applications such as molecular dynamics, where high accuracy is not required and
we are interested in using time steps as large as possible (Leimkuhler, Reich and
Skeel 1996).
The problem of designing splitting methods of order, say, 2A, with extended

stability intervals can be addressed by first determining the coefficients 2 9 in

?(I) =
A∑
9=0

(−1) 9
I2 9

(2 9)!
+

B∑
9=A+1

2 9 I
2 9 , (4.6)

so that ?(I) has the largest possible value of I∗. Thus a fourth-order integrator with
maximal stability interval is presented in López-Marcos et al. (1996b), whereas in
McLachlan and Gray (1997) the analysis is generalized to any order and number
of stages. On the other hand, Blanes et al. (2008a) propose a different strategy
to determine the coefficients 2 9 in (4.6), based on interpolatory conditions and
minimization of the difference (?(I) − cos I)/I2A+2 in the stability interval. This
results in high-order methods with a large number of stages whose stability and
accuracy do not deteriorate for larger values of I. It also allows us to construct
very efficient second-order methods for linear systems that outperform high-order
methods for a wide range of values of the time step.
Problems of the form

@′ = "−1?, ?′ = −#@ + 5 (@) (4.7)
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64 S. Blanes, F. Casas and A. Murua

derived from the Hamiltonian function

�(@, ?) =
1
2
?>"−1? + 1

2
@>#@ +*(@), (4.8)

with 5 (@) = −∇@*(@), also appear frequently in applications. The simple pen-
dulum considered in Section 1.4 belongs to this class. Instead of the usual
splitting into kinetic and potential energy, it may be advantageous to split � as
�(@, ?) = �1(@, ?) + �2(@), with

�1(@, ?) =
1
2
?>"−1? + 1

2
@>#@, �2(@) = *(@), (4.9)

or alternatively to separate (4.7) as

@′ = "−1?,

?′ = −#@,
and

@′ = 0,
?′ = 5 (@),

and consider Strang integrators

(
[' ']
ℎ

= i
[']
ℎ/2 ◦ i

[ ]
ℎ
◦ i [']

ℎ/2 , (
[ ' ]
ℎ

= i
[ ]
ℎ/2 ◦ i

[']
ℎ
◦ i [ ]

ℎ/2 , (4.10)

based on the maps

i
[']
C :

(
@0
?0

)
↦−→ eC �

(
@0
?0

)
, with � =

(
0 "−1

−# 0

)
,

i
[ ]
C :

(
@0
?0

)
↦−→

(
@0

?0 + C 5 (@0)

)
.

(4.11)

Integrators (4.10) and other splitting methods based on sequences of rotations i [']C

and kicks i [ ]C are specially suitable when 5 (@) is a small perturbation of −#@,
since they provide the exact solution when the perturbation vanishes. This happens
in particular in the Hamiltonian Monte Carlo method, when we deal with target
densities that are perturbations of a Gaussian density (see Section 9.6). Section 5
is devoted to the analysis of splitting methods for this type of system.
In view of the applications, it is relevant to analyse the stability of compositions of

i
[']
C and i [ ]C . As in the previous case, a sequence of linear transformations render

(4.7) into a more simplified form which is used as a model problem. Specifically,
the one-dimensional oscillator

@′′ = −@ − Y@, Y > −1

is the appropriate model here (Bou-Rabee 2017). It turns out that the Strang
integrators (4.10) are also optimal concerning stability, in the following sense
(Casas, Sanz-Serna and Shaw 2023). Let ℎ: be the smallest positive root of the
equation

:ℎ

2
sin
(
ℎ

:

)
= cos

(
c

:

)
− cos

(
ℎ

:

)
.
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Then, for each fixed ℎ∗ < ℎ: , ℎ∗ ≠ c, 2c, . . . , (: − 1)c, the intersection of the
stability region in the (Y, ℎ) domain with the line ℎ = ℎ∗ is strictly larger for a
sequence of : integrators (4.10) than for any other splitting method with : stages
based on rotations and kicks. One could say, therefore, that for each given step size
ℎ, schemes (4.10) remain stable for larger perturbations than any other splitting
method based on rotations and kicks. The value of Y where instabilities arise may
be very small indeed, as shown in Casas et al. (2023) for the particular case of
: = 3 stages.

4.3. Modified equations

The concept of backward error analysis (BEA), arising in several branches of
numerical analysis, has also shown its effectiveness for explaining the good beha-
viour of splitting and composition methods in long-time integrations (Sanz-Serna
1992, Hairer 1994, Reich 1999). Generally speaking, given a problem P with
true solution S, when a suitable numerical solver is applied, we end up with an
approximate solution S̃ . Backward error analysis thus consists in showing that S̃
is indeed the exact solution of a problem P̃ which is in some sense close to P .
This is in contrast to forward error analysis, where the aim consists in estimating
an appropriate distance between S̃ and S.
In the domain of numerical analysis of differential equations, what lies at the

heart of BEA is the idea of a modified differential equation: given the initial value
problem G ′ = 5 (G), G(0) = G0 and a consistent numerical integrator kℎ producing
the sequence of approximations G= at C= = =ℎ, = = 0, 1, . . . , we look for another
differential equation

G̃ ′ = 5ℎ(G̃) (4.12)

whose vector field is defined as a formal series in powers of ℎ,

5ℎ(G̃) ≡ 5 (G̃) + ℎ 5 [2](G̃) + ℎ2 5 [3](G̃) + · · · (4.13)

and such that G= = G̃(C=) (Griffiths and Sanz-Serna 1986, Hairer et al. 2006). In this
way, by analysing the difference of the vector fields 5 (G) and 5ℎ(G), it is possible to
extract useful information about the qualitative behaviour of the numerical solution
and the global error 4= = G= − G(C=) = G̃(=ℎ) − G(C=).
In the case of a splitting method, obtaining 5ℎ is quite straightforward if we use

the BCH formula to get the formal operator associated with the whole method, as
was done in Section 2.2 for the order conditions. Thus, for the operator Ψ(ℎ) =
exp(ℎ�(ℎ)) associated with a scheme (2.17) of order A, we have

�(ℎ) = ℎ(�1 + �2) +
∞∑
8=1

ℎA+8
2A+8∑
9=1
F8, 9�A+8, 9 , (4.14)

where �A+8, 9 denotes the element 9 of the Lyndon basis of the subspaceLA+8(�1, �2)
and F8, 9 are fixed real numbers determined by the actual coefficients of the method.
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66 S. Blanes, F. Casas and A. Murua

Since �(ℎ) lies in the same Lie algebra as �1 and �2, the numerical solution inherits
the properties of the exact flow associated with this feature (e.g. Hamiltonian or
volume-preserving). Now, from (4.14), we can easily determine the expression of
each 5 [ 9 ] in (4.13).
A similar procedure can be applied to composition methods by determining the

formal series ℎ−1 logΨ(ℎ), with Ψ(ℎ) the operator associated to the scheme.
In the case of a Hamiltonian system of the form �(@, ?) = )(?) + +(@), the

operators �1 and �2 are the Lie derivatives associated with the kinetic and potential
energy, respectively, so that (4.14) is itself an operator associated with a modified
Hamiltonian �̃. This is yet another reflection of the fact that splitting methods
applied to a Hamiltonian system produce maps that are symplectic.

For linear problems, the series defining the modified Hamiltonian �̃ associated
with the numerical solution is no longer formal, and �̃ can be explicitly determined
in closed form. Thus the matrix "̃I in the map (4.5), obtained with a time-
symmetric splitting method when | 1(I)| < 1, can be expressed as

"̃I =

(
cos \I WI sin \I

−W−1
I sin \I cos \I

)
,

where \I and WI are real functions such that ?(I) = cos \I and  2(I) = −W2
I 3(I)

(see (4.5) and the subsequent discussion), and \−I = −\I , W−I = −WI . It is then
straightforward to verify that the map "̃I is precisely the I-flow of the modified
Hamiltonian (Blanes, Casas and Sanz-Serna 2014, Bou-Rabee and Sanz-Serna
2018)

�̃(@, ?) =
\I

2I

(
WI ?

2 + 1
WI
@2
)
.

4.4. Modified equations and long-term behaviour

Convergence of the series (4.13) defining the modified equation, apart from the
linear case, is the exception rather than the general rule. In consequence, an
alternative strategy has to be pursued to get rigorous estimates concerning the
long-time behaviour of the numerical solutions. Specifically, we first give bounds
on the coefficient functions 5 [ 9 ](G) of the modified equation, then determine an
optimal truncation index, and finally estimate the difference between the numerical
solution G= and the exact solution G̃(C=) of the truncated modified equation. Here
we summarize only the main results, and refer the reader to Hairer et al. (2006),
Moan (2002) and references therein for a more comprehensive treatment.
Suppose 5 (G), 51(G) and 52(G) are analytic in a complex neighbourhood of G0

verifying ‖ 5 (G)‖ ≤  for all G ∈ �2d(G0), where �d(G0) = {G ∈ C3 : ‖G−G0‖ ≤ d},
and the same is true for the functions 5 [ 9 ](G) of the modified equation on �d/2(G0).
If a suitable truncation index for the formal series (4.13) is selected, so that we have

G̃ ′ = 5 (G̃) + ℎ 5 [2](G̃) + ℎ2 5 [3](G̃) + · · · + ℎ#−1 5 [# ](G̃), (4.15)
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with G̃(0) = G0 and exact flow ĩ
[# ]
C , then there exist constants ℎ0 with ℎ ≤ ℎ0/4

and W > 0 such that kℎ(G0) − ĩ [# ]
ℎ

(G0)
 ≤ ℎW e−ℎ0/ℎ . (4.16)

In other words, the difference between the numerical solution kℎ(G0) and the exact
solution ĩ [# ]

ℎ
(G0) of the truncated modified equation (4.15) is exponentially small.

Based on this result it is possible to get some insight into the long-time behaviour
of the numerical scheme. Thus, for instance, suppose our splitting method of order
A is applied to a Hamiltonian system with step size ℎ. Then the modified equation
can be derived from a (truncated) Hamiltonian

�̃(G) = �(G) + ℎA�A+1(G) + · · · + ℎ#−1�# (G),

where now G = (@, ?). Letting ĩ [# ]C denote the flow of the truncated modified
equation as before, it is clear that �̃(ĩ [# ]C (G0)) = �̃(G0) for all C. Taking into
account (4.16) and the bounds on the functions appearing in the modified equation
(derivatives of the �̃ in this case), it follows that

�̃(G=+1) − �̃
(
ĩ
[# ]
ℎ

(G=)
)
= $(ℎe−ℎ0/ℎ)

and
�̃(G=) = �̃(G0) +$(e−ℎ0/2ℎ) for =ℎ ≤ eℎ0/2ℎ.

If we assume in addition that the numerical solution stays in a compact set K, then
�A+1(G) + · · · + ℎ#−A−1�# (G) is uniformly bounded on K independently of ℎ and
# (Hairer et al. 2006, p. 367) and finally

�(G=) = �(G0) +$(ℎA ).

Equivalently, the error in the energy corresponding to the numerical solution is of
order A over exponentially long time intervals when a splitting method is applied
with constant step size in a compact region of the phase space (Moan 2004).
With respect to the behaviour of the error in position, as shown in Calvo and

Hairer (1995) and Hairer et al. (2006), if the Hamiltonian system is integrable and
certain conditions on the frequencies at the initial point are satisfied, then

‖(@=, ?=) − (@(C), ?(C))‖ ≤ �CℎA for C = =ℎ ≤ ℎ−A , � = const.,

that is, the global error grows at most linearly in time, whereas first integrals
�(@, ?) that only depend on the action variables are well preserved on exponentially
long-time intervals,

‖�(@=, ?=) − �(@0, ?0)‖ ≤ �ℎA for C = =ℎ ≤ ℎ−A .

In contrast, for a non-symplectic method (non-conjugate to a symplectic one) of
order A we have

�(G=) − �(G0) = $(=ℎA+1) = $(CℎA ),
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that is, the error of the energy grows linearly, whereas the global error in the
solution typically increases quadratically with time. We have seen illustrations of
this feature in Section 1.
It is important to remark that the modified differential equation of a numerical

scheme depends explicitly on the step size used, so that if ℎ is changed, then we
have a different modified equation. This fact helps to explain the poor long-time
behaviour observed in practice when a symplectic scheme is implemented directly
with a standard variable step size strategy; see e.g. Calvo and Sanz-Serna (1993a).

4.5. Processing and long-term precision

The concept of conjugacy plays a fundamental role in the study of the long term
behaviour of both discrete and continuous dynamical systems. In the context of
splitting methods (or more generally, numerical integration methods) for systems
of ODEs, we replace the ℎ-flow iℎ of the original system with a map kℎ depending
on the small parameter ℎ (the step size) such that kℎ ≈ iℎ for ℎ small enough. The
precision of the numerical approximations G= = k=ℎ(G0) ≈ i=

ℎ
(G0) = G(=ℎ) can be

analysed in one of two ways.

(i) We use standard techniques of numerical integration of ODEs to estimate the
local error ‖kℎ(G)− iℎ(G)‖ and then study how this local error is propagated
(Hairer et al. 1993),

(ii) As described in the previous subsection, we consider a truncated modified
equation (4.15) of the numerical integration map kℎ, and then study the effect
of replacing the original system with the modified one, in addition to the
propagation of the modified local error (4.16) (the local error between the
map kℎ and the ℎ-flow i

[# ]
C of the truncated modified equation).

In both cases, a better understanding of the long-term behaviour of the numerical
error (of the application of a given integration scheme with constant step size) can
be obtained by combining such techniques with the idea of processing a numerical
integrator (López-Marcos, Sanz-Serna and Skeel 1996a). The main idea consists
in analysing how close kℎ and iℎ are to being conjugate to each other, and using
that to estimate the long-term evolution of the errors. This is closely related to
the concept of effective order (Butcher 1969, Butcher and Sanz-Serna 1996) and
the idea of enhancing numerical integrators with correctors (Wisdom et al. 1996).
Essentially, the procedure is as follows.

• Given kℎ, we find a near-identity conjugacy map cℎ : R� → R� (i.e. c0 is
the identity map) such that k̂ℎ ≔ c−1

ℎ
◦ kℎ ◦ cℎ is as close as possible to the

ℎ-flow iℎ of the original system of ODEs.
• We estimate the propagated error ‖k=

ℎ
(G0) − i=

ℎ
(G0)‖ as

‖k=ℎ(G0) − i=ℎ(G0)‖ ≤ ‖k=ℎ(G0) − k̂=ℎ(G0)‖ + ‖k̂=ℎ(G0) − i=ℎ(G0)‖.
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Splitting methods for differential equations 69

• We analyse the propagated error ‖k̂=
ℎ
(G0)−i=

ℎ
(G0)‖ of the processed integrator

k̂ℎ, either by standard techniques or with the modified equation of k̂ℎ.

• We estimate the difference between the original numerical solution G= =
k=
ℎ
(G0) and the numerical approximation Ĝ= = k̂=ℎ(G0) that would be obtained

if the processed integrator were used instead of the original integration map
kℎ. More precisely, using the notation

G= = k
=
ℎ(G0), Ḡ= = k

=
ℎ(cℎ(G0)), Ĝ= = k̂

=
ℎ(G0) = c−1

ℎ (Ḡ=), G(=ℎ) = i=ℎ(G0),

for = ≥ 0, we have

‖Ĝ= − G=‖ ≤ ‖c−1
ℎ (Ḡ=) − Ḡ=‖ + ‖Ḡ= − G=‖.

Summing up, the propagated error of the integrator kℎ can be estimated as

‖G= − G(=ℎ)‖ ≤ ‖c−1
ℎ (Ḡ=) − Ḡ=‖ + ‖Ḡ= − G=‖ + ‖Ĝ= − G(=ℎ)‖. (4.17)

If the original method is of order A , that is, kℎ(G) − iℎ(G) = $(ℎA+1) as ℎ → 0,
then it makes sense to choose a conjugacy map satisfying cℎ(G) = G + $(ℎA ).
Hence, provided that the sequence {Ḡ=} stays in a compact set, we can see that
‖Ĝ= − Ḡ=‖ = ‖c−1

ℎ
(Ḡ=) − Ḡ=‖ = $(ℎA ) with a constant independent of =. Therefore,

for sufficiently large time intervals, the right-hand side of (4.17) will be dominated
either by ‖Ḡ=−G=‖ = ‖k=ℎ(Ḡ0)−k=

ℎ
(G0)‖ (the propagation along successive iterations

of kℎ of a perturbation of size$(ℎA ) in G0) or by ‖Ĝ=−G(=ℎ)‖ = ‖k̂=
ℎ
(G0)−i=

ℎ
(G0)‖

(the sum of the propagated local errors of the processed method k̂ℎ). Typically,
the latter dominates over the former if the integration interval is sufficiently large.
In that case, the precision of the numerical scheme kℎ for sufficiently long-term
integrations will depend on the size of the local errors ‖c−1

ℎ
◦ kℎ(G) ◦ cℎ − iℎ(G)‖

of the processed method for an appropriately chosen conjugacy map (or processor
map) cℎ, rather than on the local errors ‖kℎ(G) − iℎ(G)‖ of the method itself.
This is illustrated by the evolution of the error in phase space of LT and (2 dis-

played in Figures 1.2 and 1.4 for the pendulum problem and the six-body problem,
respectively. Recall that the Lie–Trotter method is conjugate to the Strang splitting
(see Section 1.3). In this case, G= = (@=, ?=)> is the numerical solution provided by
LT, whereas Ĝ= = (@̂=, ?̂=)> corresponds to (2, with the processor map cℎ = i [) ]ℎ/2 .
In both examples, ‖c−1

ℎ
(Ḡ=)− Ḡ=‖ = $(ℎ), which is bounded for all = provided that

‖ ?̄=‖ remains bounded.
For the pendulum problem, the error ‖Ḡ= − G=‖ = ‖k=ℎ(Ḡ0) − k=

ℎ
(G0)‖ due to the

propagation of the initial difference ‖(@̄0 − @0, ?̄0 − ?0)‖ = $(ℎ) does not exhibit
any significant increment, because (for the considered initial value) the pendulum
behaves as a perturbed harmonic oscillator. On the other hand, the global error
‖Ĝ=−G(=ℎ)‖ of (2 behaves as$(Cℎ2). Therefore the global error ‖G=−G(=ℎ)‖ of LT
is dominated at the beginning of the integration interval by ‖Ĝ= − G=‖ ≈ ‖Ḡ= − G=‖
(with no clear growth over time), until it is overcome by the linearly increasing
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70 S. Blanes, F. Casas and A. Murua

global error of (2, resulting in errors of similar size at the end of the interval for
LT and (2.
For the six-body problem, the propagation error ‖Ḡ= − G=‖ = ‖k=ℎ(Ḡ0)− k=

ℎ
(G0)‖

increases linearly, because now �1 corresponds to a collection of Keplerian prob-
lems, where perturbations in initial states are propagated linearly. However, the
slope of that linear increase is smaller than that of the propagation of the global er-
ror ‖Ĝ=−G(=ℎ)‖ of (2. Therefore, the global error for LT is dominated by ‖Ĝ=−G=‖
during most of the integration interval in Figure 1.4, and only at the end does it
reach the global error of (2. For longer times (not shown there), the global errors
of LT and (2 will be of similar size.

So far we have focused on studying the long-term performance of a given splitting
method kℎ with the help of a conjugacy map cℎ. In practice, we may actually
enhance the performance of a given splitting method (Rowlands 1991, Wisdom
et al. 1996, McLachlan 1996, Laskar and Robutel 2001), effectively integrating the
problem with the processed integration map k̂ℎ = c−1

ℎ
◦ kℎ(G) ◦ cℎ. Indeed, if

output is needed only every < steps, the computation of

Ĝ=,< = c
−1
ℎ ◦ k

<
ℎ ◦ cℎ(Ĝ(=−1),<), = = 1, 2, 3, . . . (4.18)

(with Ĝ0 = G0), will not require substantially more CPU time than computing

G=,< = k
<
ℎ (G(=−1),<), = = 1, 2, 3, . . . ,

provided that the evaluation of cℎ(G) is computationally cheap compared to <
evaluations of kℎ(G). Moreover, even if frequent output is required, we might
approximate G(=ℎ) by

Ḡ= = k
<
ℎ (Ḡ=−1), = = 1, 2, 3, . . . ,

with Ḡ0 = cℎ(G0). For sufficiently long integrations, this will cost essentially
the same as applying the original integrator kℎ in a standard way, and will be
nearly as accurate as Ĝ= (the full application of the processed integrator), since
‖Ḡ= − Ĝ=‖ = ‖c−1

ℎ
(Ḡ=) − Ḡ=‖ = $(ℎA ) will be negligible compared to ‖Ḡ= − G(=ℎ)‖

for = large enough.
This is again illustrated in Figure 1.4 for the six-body problem written in Jacobi

coordinates as a perturbation of Keplerian problems. Indeed, if G= is the numerical
solution labelled by LTpert and cℎ = i [�1 ]

ℎ/2 , then Ĝ= corresponds to scheme (2, 2)
while pLTpert stands for Ḡ=. Notice that the position error of pLTpert is very similar
to that of (2, 2), as expected from the preceding discussion.

The enhancement of splitting integrators by processing is particularly effective
for problems of the form G ′ = 51(G)+Y 52(G) with |Y | � 1. Such enhancing was first
considered in Wisdom et al. (1996) in the context of #-body problems modelling
planetary systems. Several processors cℎ were constructed for the Strang method,
leading to processed (corrected) methods k̂ℎ of generalized order (2:, 2) for several
: > 1 (see also McLachlan 1996, Laskar and Robutel 2001), so that their local
errors are $(Yℎ2:+1 + Y2ℎ3) for a prescribed time integration.
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In Section 5.7 we construct a different processor map that effectively reduces the
local error to $(Y2ℎ3) in the case where 51 is derived from a Hamiltonian �1(@, ?)
of a harmonic oscillator (or a collection of harmonic oscillators whose frequencies
are integer multiples of a basic frequency) and 52 comes from a Hamiltonian
Y�2(@) which is a polynomial in @. This means, going back to the results displayed
in Figure 1.2 for the pendulum problem, that both methods LTpert and (2, 2) are
conjugate to a more accurate integrator k̂ℎ (with global error of order $(CY2ℎ2))
obtained from them with an appropriate processor map cℎ.
Assume that, in the previous notation, (2, 2) (resp. LTpert) corresponds to the

numerical solution G=, and Ĝ= to the processed method. Then the error (4.17)
is dominated by ‖Ḡ= − G=‖, which does not show secular growth in this case.
Eventually, for long enough integration intervals, (4.17) will be dominated by the
linearly increasing error ‖Ĝ= − G(=ℎ)‖ of the more accurate processed integrator.4
The situation is very similar for the evolution of errors in position displayed for
the six-body problem in Figure 1.4, the only difference being that the propagation
‖Ḡ=−G=‖ of differences in initial values now grows linearly. The error ‖Ĝ=−G(=ℎ)‖
will eventually dominate in (4.17) because ‖Ḡ= − G=‖ increases linearly with a
smaller slope than ‖Ĝ= − G(=ℎ)‖.
Instead of enhancing a previously existing Ath-order integrator by processing,

we may also design a processed splitting method from scratch (López-Marcos
et al. 1997, Blanes, Casas and Ros 1999b): determine the ℎ-parametric maps kℎ
and cℎ as compositions of basic flows i [1]

0 9ℎ
and i [2]

1 9ℎ
with different sequences of

coefficients 0 9 and 1 9 , such that the processed map k̂ℎ = c−1
ℎ
◦ kℎ ◦ cℎ is a good

approximation of iℎ for sufficiently small step sizes ℎ. Typically, we require that
c−1
ℎ
◦ kℎ ◦ cℎ(G) − iℎ(G) = $(ℎA+1), so that the processed integrator is of order

A . In that case, if we intend to compute the approximations (4.18) of G(:<) (for
: = 1, 2, 3 . . .), there is no need for the map kℎ (referred to in this context as the
kernel) to be an Ath order approximation of iℎ.
In any of the situations considered above (either analysing the performance of

a given splitting integrator with the help of a conjugacy map cℎ, or enhancing
an existing Ath-order splitting integrator by processing, or designing a splitting
processing integrator from scratch), we need to study the effective order conditions
of kℎ. These are the conditions on the parameters 08 , 18 that guarantee that there
exists a processor map cℎ such that c−1

ℎ
◦ kℎ ◦ cℎ(G) − iℎ(G) = $(ℎA+1). A

general treatment of the effective order conditions of several classes of numerical
integrators including splitting methods and composition methods can be found in
Blanes, Casas and Murua (2004, 2006a). That treatment is based on the series
expansion (2.21) of the formal logarithm of the Lie transformation Ψ(ℎ), and it
is shown that the conditions for effective order A can be written in terms of the
coefficients F1, F2, F12, F122, . . . featuring in (2.21). In addition, the formal

4 This can also be checked in Figure 5.1, where the same problem is integrated with scheme (2, 2)
and processed Strang with a larger time step and a longer time interval.
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logarithm of the Lie transformation %(ℎ) of the map cℎ is determined as

log(%(ℎ)) = ℎ(?1�1 + ?2�2) + ℎ2?12�12 + ℎ3(?122�122 + ?112�112)
+ ℎ4(?1222�1222 + ?1122�1122 + ?1112�1112) + · · · +$(ℎA+1),

with the coefficients ?ℓ1 · · ·ℓ: given as polynomials of the coefficients in (2.21).
Alternative ways of obtaining the effective order conditions of splitting methods
can be derived following the different approaches considered in Section 2 for
analysing the standard order conditions. However, this is beyond the scope of the
present work. In any case, the analysis shows that many of the order conditions
of the processed method k̂ℎ can be satisfied by cℎ, so that kℎ must fulfil a greatly
reduced set of restrictions, also of lower complexity. As a result, it is possible
to construct processed schemes as compositions of basic maps with a reduced
computational cost.

5. Highly oscillatory problems
In this section we consider Hamiltonian systems of the form (4.8) with the splitting
(4.9), that is,

� = �1 + �2, �1(@, ?) =
1
2
?>"−1? + 1

2
@># @, �2(@, ?) = *(@), (5.1)

when " and # are real symmetric matrices, and * : R3 → R is a polynomial
function. The corresponding equations of motion (4.7) can be rewritten as

G ′ = 51(G) + 52(G), with 51(G) = �G, 52(G) =
(

0
−∇*(@)

)
(5.2)

in terms of G = (@, ?)> and the matrix � given in (4.11). Splitting methods are
advantageous for system (5.1) provided eC �G can be cheaply computed for each
G ∈ R� , � = 23.

For the time being, we assume that � is fully diagonalizable and the eigenvalues
of � are integer multiples of l i (with i the imaginary unit). (The more general
case where the eigenvalues of � lie on the imaginary axis will be considered
in Section 5.8.) This implies that eC � is 2c/l-periodic in C. For system (5.1),
the present assumption is equivalent to stating that the matrix "−1# is fully
diagonalizable with all its eigenvalues of the form −(l:)2, with : ∈ Z. In other
words, �1 in (5.1) is just a collection of harmonic oscillators whose frequencies
are integer multiples of a basic frequency l.

Splitting methods applied to (5.2) can be analysed by considering series expan-
sions in powers of ℎ and using standard tools, in particular the material presented
in the previous sections. Thus Section 3.3 is particularly relevant if the basic fre-
quency l is large compared to the size of the potential*(@) (or more generally, the
size of the components of 52(G)). Indeed, rescaling time from C to g = l C, system
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(5.2) is transformed into

d
dg
G = 5̂1(G) + Y 52(G), 5̂1(G) = �̂G,

where Y = 1/l and �̂ = Y�, so that all the eigenvalues of �̂ are integer multiples
of the imaginary unit 8. This approach nevertheless has an important limitation: it
is meaningful only when lℎ = ℎ/Y is sufficiently small.
Different approaches have been adopted in the literature to overcome this limit-

ation and obtain results that remain valid when lℎ is large (provided that the step
size ℎ is small enough compared to the size of the perturbing potential *(@) and
its partial derivatives). Among them, we mention modulated Fourier expansions
(see Hairer et al. 2006 and references therein) and extended word series (Murua
and Sanz-Serna 2017, 2016). Extended word series were introduced in Murua
and Sanz-Serna (2017) to analyse splitting methods for a class of problems that
is equivalent to (5.2) under the more general assumption that all the eigenvalues
of � lie on the imaginary axis. Such expansions were further used in Murua
and Sanz-Serna (2016) to analyse normal forms and formal invariants of more
general classes of problems. The formalism of extended word series allows us to
work with asymptotic expansions valid for step sizes ℎ that are sufficiently small
independently of the frequencies of eC �.

In the present section we provide an elementary derivation of second-order
versions in ℎ of such expansions, taking the Strang splitting as a case study.
In particular, we provide a theoretical justification for the results presented in
Section 1.4 for the simple pendulum and analyse the processing technique as a
way to further improve those results, which are indeed valid for the general system
(5.1). This is done by first constructing an asymptotic expansion of the exact
solution of (5.2) and then comparing with the expansion corresponding to the
numerical approximation obtained by a general splitting method. We also get the
modified equation satisfied by the numerical scheme (exact up to terms in ℎ3), with
explicit formulas for the coefficients, and the corresponding modified Hamiltonian.
Furthermore, we explicitly construct a processor for the Strang splitting so that
the resulting scheme leads to a better approximation to the solution of (5.2) (in
particular, with a better preservation of the energy � for large time intervals).
Finally, we indicate how the preceding results can be generalized to the more
general case where the eigenvalues of � lie on the imaginary axis (so that, in
general, eC � is quasi-periodic in C).

For the analysis it is convenient to reformulate the problem (5.2) into the new
variables H(C) given through G(C) = eC �H(C), so that now H′ = e−C � 52(eC �H). Let us
write

e−C � 52(eC �G) =
∑
:∈Z

ei:lC 6:(G), (5.3)

that is, the right-hand side of (5.3) is the Fourier series expansion of e−C � 52(eC �G).
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The map 52 being real implies that 6: : R� → C� is such that each component of
6−:(G) is the complex conjugate of the corresponding component of 6:(G).
Since we have assumed that *(@) is a polynomial, each component of 52(G) is

also a polynomial in the variables G, which guarantees that there is a finite number
of non-zero terms in (5.3). We will use the notation

I = {: ∈ Z : 6: ≠ 0}. (5.4)

Remarks.

• The assumption that*(@) and each component of 52(G) are polynomials in the
variables Gmight seem too restrictive. However, formore general assumptions
(e.g. real-analyticity), we can always replace*(@) and 52(G) with sufficiently
accurate polynomial approximations. Furthermore, thematerial in the present
section is formally valid for more general assumptions on *(@) and 52(G) if
we allow the set (5.4) to be infinite. In that case, (5.3) will be an infinite
series, several of the formulae derived here will also involve infinite series,
and appropriate assumptions should be made so as to guarantee convergence.
• The assumptions that � is a real matrix and that 52 : R� → R� are not
essential. We could consider a complex matrix � and 52 : C� → C� , with
no changes in the formulae that follow.

By substitution of C = 0 into (5.3), we get 52(G) =
∑
:∈I 6:(G). Thus, the solution

of the initial value problem defined by (5.2) and G(0) = G0 ∈ R� can be expressed
as G(C) = eC �H(C), where H(C) is the solution of

d
dC
H =

∑
:∈I

ei:lC6:(H), H(0) = G0. (5.5)

From the definition of the Fourier coefficients 6: in (5.3), we can prove that

e−C �6:(eC �G) = ei:lC 6:(G), for : ∈ I, (5.6)

and, by applying the operator (d/dC)|C=0 to both sides, this is equivalent to (Murua
and Sanz-Serna 2016)

( 51, 6:) = i: l 6: , for : ∈ I . (5.7)

Here, (·, ·) represents the usual Lie–Poisson bracket already defined in Section 1:
( 51, 6:)(G) = 6′

:
(G) 51(G) − 5 ′1 (G)6:(G).

5.1. Expansion of the exact solution

Wenext obtain an approximate representation of the flow i [ 51+ 52 ]
ℎ

of (5.2)with initial
condition G0 ∈ R� that is valid for sufficiently small values of |ℎ | independently of
the basic frequency l. This is done by getting an expansion of the solution H(C) of
(5.5) valid for |C | ≤ ℎ. To begin with, we apply the substitution H(C) = G0 +$(C) on
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the right-hand side of the integral form

H(C) = G0 +
∑
:∈I

∫ C

0
ei:lB6:(H(B)) dB

of the initial value problem. This gives

H(C) = G0 +
∑
:∈I

∫ C

0
ei:lB6:(G0) dB +$(C2). (5.8)

Furthermore, H(ℎ) admits the estimate

H(ℎ) = G0 +
∑
ℓ∈I

∫ ℎ

0
eiℓlC (6ℓ(G0) + 6′ℓ(G0)(H(C) − G0)) dC +$(ℎ3), (5.9)

where 6′
ℓ
(G0) is the value at G = G0 of the Jacobian matrix of 6ℓ(G).

Substitution of (5.8) into the right-hand side of (5.9) finally leads to

H(ℎ) = G0 +
∑
:∈I

(∫ ℎ

0
ei:lC dC

)
6:(G0)

+
∑
:,ℓ∈I

(∫ ℎ

0

∫ C

0
ei(ℓC+:B)l dB dC

)
6′ℓ(G0)6:(G0) +$(ℎ3).

Equivalently,

H(ℎ) = G0 + ℎ
∑
:∈I

U:(ℎ)6:(G0) + ℎ2
∑
:,ℓ∈I

U:ℓ(ℎ)6′ℓ(G0)6:(G0) +$(ℎ3), (5.10)

where the coefficients are defined as follows.

• For : ∈ I,

U:(ℎ) =
∫ 1

0
ei:lℎg dg =


1 if : = 0,
ei:lℎ − 1

i:lℎ
otherwise.

(5.11)

• For :, ℓ ∈ I,

U:ℓ(ℎ) =
∫ 1

0

∫ g2

0
eiℎl(:g1+ℓg2) dg1 dg2. (5.12)

Specifically, U00(ℎ) = 1/2, and the following recursions hold:

U0:(ℎ) =
ei:lℎ − U:(ℎ)

i:lℎ
, U:ℓ(ℎ) =

U:+ℓ(ℎ) − Uℓ(ℎ)
i:lℎ

for :, ℓ ∈ I\{0}.
(5.13)

• The constant in the $(ℎ3) term depends on upper bounds of the norm of 6:
and its partial derivatives, but is independent of the basic frequency l.
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From this we conclude that

iℎ(G0) = eℎ�
(
G0 + ℎ

∑
:∈I

U:(ℎ)6:(G0) + ℎ2
∑
:,ℓ∈I

U:ℓ(ℎ)6′ℓ(G0)6:(G0) +$(ℎ3)
)
,

(5.14)
where we have dropped the upper index in iℎ for clarity. Observe that

|U:(ℎ)| = |sinc(:ℎl/2)| ≤ 1, |U:ℓ(ℎ)| ≤ 1
2
.

5.2. Expansion of the discrete solution given by Strang splitting

We next proceed to construct an analogous expansion for the (discrete) solution
furnished by the Strang splitting given in (4.10), namely

(
[' ']
ℎ

= i
[']
ℎ/2 ◦ i

[ ]
ℎ
◦ i [']

ℎ/2 ,

based on the maps (4.11). In fact, it is straightforward to check that the approxim-
ation G̃(ℎ) = ( [' ']

ℎ
(G0) satisfies G̃(ℎ) = eℎ�H̃(ℎ), where H̃(C) is the solution of

d
dC
H̃ = e−

ℎ
2 �6(e

ℎ
2 �H̃(C)) =

∑
:∈I

ei:lℎ/2 6:(H̃(C)), H̃(0) = G0.

In consequence, proceeding as in the previous subsection, we get

H̃(ℎ) = G0 + ℎ
∑
:∈I

Ũ:(ℎ)6:(G0) + ℎ2
∑
:,ℓ∈I

Ũ:ℓ(ℎ)6′ℓ(G0)6:(G0) +$(ℎ3),

where for :, ℓ ∈ I,

Ũ:(ℎ) = ei:lℎ/2, Ũ:ℓ(ℎ) =
1
2

ei(:+ℓ)lℎ/2, (5.15)

and finally

(ℎ(G0) = eℎ�
(
G0 + ℎ

∑
:∈I

Ũ:(ℎ)6:(G0) + ℎ2
∑
:,ℓ∈I

Ũ:ℓ(ℎ)6′ℓ(G0)6:(G0) +$(ℎ3)
)
,

(5.16)
where we have also dropped the upper index in (ℎ. Notice that, from (5.15),

|Ũ:(ℎ)| ≤ 1, |Ũ:ℓ(ℎ)| ≤ 1
2

and
Ũ:ℓ(ℎ) + Ũℓ:(ℎ) = Ũ:(ℎ)Ũℓ(ℎ), :, ℓ ∈ I . (5.17)

5.3. Composition formulae

If we are interested in extending the previous analysis to more general splitting
methods of the form (2.17), then a composition rule concatenating the expansions
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corresponding to different basic methods is clearly needed. This can be obtained
as follows.
Suppose the map kℎ : R� → R� can be expanded as

kℎ(G) = G + ℎ
∑
:∈I

^: 6:(G) + ℎ2
∑
:,ℓ∈I

^:ℓ 6
′
ℓ(G)6:(G) +$(ℎ3), (5.18)

for some coefficients ^: , ^:,ℓ . Then, from (5.6), we have for all B ∈ R that

kℎ(eB�G) = eB�
(
G + ℎ

∑
:∈I

ei:lB^: 6:(G)

+ ℎ2
∑
:,ℓ∈I

ei(:+ℓ)lB^:ℓ 6
′
ℓ(G)6:(G) +$(ℎ3)

)
. (5.19)

If in addition the map k̂ℎ : R� → R� can be expanded as

k̂ℎ(G) = G + ℎ
∑
:∈I

ˆ̂: 6:(G) + ℎ2
∑
:,ℓ∈I

ˆ̂:ℓ 6′ℓ(G)6:(G) +$(ℎ3),

then we have the following expression for the composition kℎ ◦ k̂ℎ:

kℎ(k̂ℎ(G)) = G + ℎ
∑
:∈I

(^: + ˆ̂:) 6:(G)

+ ℎ2
∑
:,ℓ∈I

(^:ℓ + ˆ̂: ^ℓ + ˆ̂:ℓ) 6′ℓ(G)6:(G) +$(ℎ3).

This is also valid if the coefficients ^: , ˆ̂: , ^:ℓ and ˆ̂:ℓ depend on ℎ, although
in that case the constant in the $(ℎ3) term will also depend on the bounds of the
coefficients.

By combining the previous results we finally arrive at the following composition
rule:

eB�kℎ
(
eB̂�k̂ℎ(G)

)
= e(B+B̂)�

(
G+ℎ

∑
:∈I

W: 6:(G)+ℎ2
∑
:,ℓ∈I

W:ℓ 6
′
ℓ(G)6:(G)+$(ℎ3)

)
,

(5.20)
where

W: = eiB̂l: ^: + ˆ̂: ,
W:ℓ = eiB̂l(:+ℓ) ^:ℓ + eiB̂lℓ ˆ̂: ^ℓ + ˆ̂:ℓ .

(5.21)

5.4. Expansions for arbitrary splitting methods

We now have all the required ingredients to extend the expansion (5.16) for Strang
to a more general splitting method of the form (2.17) based on kicks and rotations,
i.e. on the maps (4.11). Specifically, if kℎ denotes such a splitting, then kℎ(G0) can
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be expanded as

eℎ (01+···+0B+1)�
(
G0 + ℎ

∑
:∈I

Ũ:(ℎ)6:(G0) + ℎ2
∑
:,ℓ∈I

Ũ:ℓ(ℎ)6′ℓ(G0)6:(G0) +$(ℎ3)
)

(5.22)
with the following coefficients:

• for : ∈ I,

Ũ:(ℎ) =
B∑
9=1

1 9 ei:2 9lℎ, with 2 9 = 01 + · · · + 0 9 , for 9 = 1, . . . , B;

(5.23)

• for :, ℓ ∈ I,

Ũ:ℓ(ℎ) =
∑

1≤ 9<<≤B
1 91< ei(2 9 :+2<ℓ)lℎ +

∑
1≤ 9≤A

1
2
12
9 ei2 9 (:+ℓ)lℎ, (5.24)

so that they again satisfy the relation (5.17), since it is preserved under compositions
(5.20)–(5.21).

We can now estimate the local error of a consistent splitting method by taking
into account (5.22) and (5.14) as

kℎ(G)−iℎ(G) = eℎ�
(
G0+ℎ

∑
:∈I

X:(ℎ)6:(G0)+ℎ2
∑
:,ℓ∈I

X:ℓ(ℎ)6′ℓ(G0)6:(G0)+$(ℎ3)
)
,

where

X:(ℎ) =
B∑
9=1

1 9 ei:2 9lℎ −
∫ 1

0
ei:lℎg dg,

X:ℓ(ℎ) =
∑

1≤ 9<<≤B
1 91< ei(2 9 :+2<ℓ)lℎ +

∑
1≤ 9≤A

1
2
12
9 ei2 9 (:+ℓ)lℎ

−
∫ 1

0

∫ g2

0
eiℎl(:g1+ℓg2) dg1 dg2.

(5.25)

It is worth remarking that if we expand the exponentials in (5.25) in series of
powers of ℎ up to a certain degree A , then we recover the order conditions obtained
in Section 2.4 for multi-indices with one and two indices. In other words, using the
terminology introduced in Section 3.3 to analyse perturbed problems of the form
(3.8), we obtain the conditions for a splitting method to be of generalized order
(A1, A2, 1) (or (A1, A2, 2) in the case of time-symmetric splitting methods). Notice,
however, that replacing these exponentials with such truncated series expansions
will only give useful information about the size of the local error coefficients X:(ℎ)
and X:ℓ(ℎ) provided that the scaled step sizes {|: |lℎ : : ∈ I} are sufficiently small.
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5.5. Modified ODE for the discrete flow furnished by a splitting method

At this point it is useful to formulate a modified differential equation whose ℎ-flow
is closer in a certain sense to the map kℎ corresponding to a general splitting
method admitting an expansion of the form (5.22). More precisely, the idea is to
construct a modified ODE whose ℎ-flow is $(ℎ3) close to kℎ.

From the composition formula (5.20), the =th iterate of the map kℎ admits an
expansion of the form

k=ℎ(G0) = eℎ=�
(
G0+ℎ

∑
:∈I

W:(=, ℎ)6:(G0)+ℎ2
∑
:,ℓ∈I

W:ℓ(=, ℎ)6′ℓ(G0)6:(G0)+$(ℎ3)
)
,

where W:(0, ℎ) = 0, W:ℓ(0, ℎ) = 0, W:(1, ℎ) = Ũ:(ℎ), W:ℓ(1, ℎ) = Ũ:ℓ(ℎ). Thus,
to find a suitable modified ODE, it makes sense to assume that its corresponding
C-flow ĩC can be expanded for all C ∈ R as

ĩC (G0) = eC �
(
G0+ℎ

∑
:∈I

W:(C/ℎ, ℎ)6:(G0)+ℎ2
∑
:,ℓ∈I

W:ℓ(C/ℎ, ℎ)6′ℓ(G0)6:(G0)+· · ·
)
.

(5.26)
Then the right-hand side of the corresponding ODE must be of the form

d
dC
ĩC (G)

����
C=0

= � G +
∑
:∈I

V:(ℎ)6:(G) + ℎ
∑
:,ℓ∈I

V:ℓ(ℎ)6′ℓ(G)6:(G) + · · · ,

where

V:(ℎ) =
d

dg
W:(g, ℎ)

����
g=0
, V:ℓ(ℎ) =

d
dg
W:ℓ(g, ℎ)

����
g=0
. (5.27)

We are then bound to study the family of perturbed ODEs

d
dC
G = � G +

∑
:∈I

V:(ℎ) 6:(G) + ℎ
∑
:,ℓ∈I

V:ℓ(ℎ) 6′ℓ(G)6:(G), (5.28)

with initial condition G(0) = G0. The coefficients V:(ℎ) and V:ℓ(ℎ) are, for fixed ℎ,
arbitrary complex numbers. Notice that this equation generalizes the original ODE
(5.2), which corresponds to the case where V:(ℎ) = 1 and V:ℓ(ℎ) = 0.
Assuming that the C-flow ĩC of (5.28) can be expanded as in (5.26), the group

property of the flow (i.e. ĩC+B = ĩC ◦ ĩB), together with the composition formula
(5.20), lead to

W:(g + f, ℎ) = eilℎg: W:(f, ℎ) + W:(g, ℎ),
W:ℓ(g + f, ℎ) = eilℎg(:+ℓ) W:ℓ(f, ℎ) + eilℎgℓ W:(g, ℎ) Wℓ(f, ℎ) + W:ℓ(g, ℎ).

(5.29)
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Now, applying the operator (d/df)|f=0 to both sides of (5.29) and using (5.27), we
obtain the following system of ODEs for the coefficients W:(g, ℎ), W:ℓ(g, ℎ):

d
dg
W:(g, ℎ) = eilℎg: V:(ℎ),

d
dg
W:ℓ(g, ℎ) = eilℎg(:+ℓ) V:ℓ(ℎ) + eilℎgℓ Vℓ(ℎ) W:(g, ℎ).

This, together with the initial conditions W:(0, ℎ) = 0, W:ℓ(0, ℎ) = 0, allows us
to express W:(g, ℎ), W:ℓ(g, ℎ) in terms of the coefficients V:(ℎ), V:ℓ(ℎ) of the
perturbed ODE (5.28):

W:(g, ℎ) = V:(ℎ)
∫ g

0
eilℎf: df = g V:(ℎ)U:(gℎ),

W:ℓ(g, ℎ) = g V:ℓ(ℎ)U:+ℓ(gℎ) + g2 Vℓ(ℎ)U:ℓ(gℎ).

Specifying these equations to the case g = 1, and replacing W:(1, ℎ) and W:ℓ(1, ℎ)
with Ũ:(ℎ) and Ũ:ℓ(ℎ) (the coefficients corresponding to kℎ), respectively, we have

Ũ:(ℎ) = V:(ℎ)U:(ℎ),
Ũ:ℓ(ℎ) = V:ℓ(ℎ)U:+ℓ(ℎ) + V:(ℎ) Vℓ(ℎ)U:ℓ(ℎ),

(5.30)

where the expression of U:(ℎ), for all : ∈ Z, is given by (5.11). Hence U0(ℎ) = 1
and, for any : ≠ 0, U:(ℎ) ≠ 0 if and only if :ℎ ≠ 2c 9 for all 9 ∈ Z. Therefore, if
we assume that ℎ ∈ R is such that, for all :, ℓ ∈ I\{0},

:lℎ

2c
∉ Z\{0} and

(: + ℓ)lℎ
2c

∉ Z\{0} (5.31)

(so that U:(ℎ) ≠ 0 and U:+ℓ(ℎ) ≠ 0), then equations (5.30) can be solved in the
V:(ℎ) and V:+ℓ(ℎ) coefficients. Thus, for each :, ℓ ∈ I, we have

V:(ℎ) =
Ũ:(ℎ)
U:(ℎ)

, V:ℓ(ℎ) =
Ũ:ℓ(ℎ) − U:ℓ(ℎ) V:(ℎ)Vℓ(ℎ)

U:+ℓ(ℎ)
, (5.32)

and the ℎ-flow of the corresponding modified equation (5.28) agrees up to terms of
order $(ℎ3) with the expansion (5.22) of the splitting method kℎ. Moreover, the
identity (5.17) satisfied by the coefficients in the expansions of both the splitting
method kℎ and the exact solution, equations (5.11)–(5.12), implies

V:ℓ(ℎ) + Vℓ:(ℎ) = 0, :, ℓ ∈ I, (5.33)

so that the modified equation (5.28) can also be expressed as

d
dC
G = � G +

∑
:∈I

V:(ℎ) 6:(G) + ℎ
2

∑
:,ℓ∈I

V:ℓ(ℎ) (6′ℓ(G)6:(G) − 6′:(G)6ℓ(G))

= � G +
∑
:∈I

V:(ℎ) 6:(G) + ℎ
2

∑
:,ℓ∈I

V:ℓ(ℎ) (6: , 6ℓ)(G). (5.34)
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In fact, equation (5.34) is itself Hamiltonian, in the sense that there exists a Hamilto-
nian function �̃(G; ℎ) such that

d
dC
G = � ∇�̃(G; ℎ), (5.35)

where � is the canonical symplectic matrix (1.21). This can be seen as follows.
First, �1 in the Hamiltonian (5.1) can be written as

�1(G) =
1
2
G>&G, with & =

(
# 0
0 "−1

)
, (5.36)

whereas �2(eC �G) has a Fourier expansion of the form

�2(eC �G) =
∑
:∈I

ei:lC�:(G), with 6:(G) = � ∇�:(G), (5.37)

and furthermore, for all : ∈ I,

�:(eC �G) = ei:lC�:(G), (5.38)

so that (5.7) is equivalent to

{�1, �: } = i:l�: , for : ∈ I . (5.39)

Here {�, �} stands for the Poisson bracket of �, � ∈ C1(R�) defined as follows:
for each G ∈ R� ,

{�, �}(G) = (∇�(G))>� ∇�(G).

It is then clear that the modified ODE (5.34) can be written like (5.35) with

�̃(G; ℎ) =
1
2
G>&G +

∑
:∈I

V:(ℎ)�:(G) + ℎ
2

∑
:,ℓ∈I

V:ℓ(ℎ) {�: , �ℓ}(G). (5.40)

We should stress that both (5.28) and the modified Hamiltonian �̃(G; ℎ) are well-
defined as long as the non-resonance assumptions (5.31) hold.

5.6. Splitting methods with processing

In the spirit of Section 4.5, we now consider a processed splitting integrator

k̂ℎ = c
−1
ℎ ◦ kℎ ◦ cℎ,

where kℎ is a composition of type (2.17) based on kicks and rotations and
cℎ : R� → R� is a near-to-identity map with an expansion of the form

cℎ(G) = G + ℎ
∑
:∈I

^:(ℎ) 6:(G) + ℎ2
∑
:,ℓ∈I

^:ℓ(ℎ) 6′ℓ(G)6:(G) +$(ℎ3). (5.41)

In contrast to Section 4.5, where the processor map cℎ is analysed by its power
series expansion in ℎ, the coefficients ^:(ℎ) and ^:ℓ(ℎ) featuring in (5.41) will
depend on ℎ and the frequency l in a non-polynomial way. This will allow us
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82 S. Blanes, F. Casas and A. Murua

to find appropriate processors valid for step sizes ℎ that are not necessarily small
compared with l.
Application of the composition rule (5.20)–(5.21) to both sides of the identity

cℎ ◦ k̂ℎ = kℎ ◦ cℎ implies that k̂ℎ can be expanded as

k̂ℎ(G) = eℎ�
(
G + ℎ

∑
:∈I

Û:(ℎ)6:(G)+ ℎ2
∑
:,ℓ∈I

Û:ℓ(ℎ)6′ℓ(G)6:(G)+$(ℎ3)
)
, (5.42)

where

Û:(ℎ) = (1 − ei:lℎ) ^:(ℎ) + Ũ:(ℎ),
Û:ℓ(ℎ) = (1 − ei(:+ℓ)lℎ) ^:ℓ(ℎ) + ^:(ℎ) Ũℓ(ℎ) − eiℓlℎ^ℓ(ℎ) Û:(ℎ) + Ũ:ℓ(ℎ).

(5.43)

The expansion of the processed scheme k̂ℎ coincides with that of the exact flow
(5.14) if Û:(ℎ) = U:(ℎ) for each : ∈ I\{0}, and this is possible only when the
following non-resonance condition holds,

:lℎ

2c
∉ Z, (5.44)

in which case

^:(ℎ) =
Ũ:(ℎ) − U:(ℎ)

ei:lℎ − 1
. (5.45)

Observe that, for : = 0, Û:(ℎ) = U:(ℎ) regardless of the chosen value of ^0(ℎ),
since Ũ0(ℎ) = U0(ℎ) = 1. For simplicity, it makes sense to choose the processor
map in such a way that ^0(ℎ) = 0.

In consequence, if ℎ satisfies the non-resonance condition (5.44) for all : ∈
I\{0}, and the coefficients ^:(ℎ) for : ≠ 0 are chosen as (5.45), then the local error
of the processed scheme reads

k̂ℎ(G) − iℎ(G) = eℎ�
(
ℎ2

∑
:,ℓ∈I

(Û:ℓ(ℎ) − U:ℓ(ℎ))6′ℓ(G) 6:(G) +$(ℎ3)
)

and the ℎ-flow of k̂ℎ is also Hamiltonian, with the modified Hamiltonian function

�̂(G; ℎ) =
1
2
G>&G +

∑
:∈I

V̂:(ℎ)�:(G) + ℎ
2

∑
:,ℓ∈I

V̂:ℓ(ℎ) {�: , �ℓ}(G),

where

V̂:(ℎ) = 1, V̂:ℓ(ℎ) =
Û:ℓ(ℎ) − U:ℓ(ℎ)

U:+ℓ(ℎ)
. (5.46)

Equivalently,

�̂(G; ℎ) = �(G) + ℎ
2

∑
:,ℓ∈I

V̂:ℓ(ℎ) {�: , �ℓ}(G), (5.47)
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which is an$(ℎ) perturbation of the original Hamiltonian, and thus we may expect
that the value of the �(G) (typically the energy of the original system) will be well
approximated for relatively large time intervals. A word of caution is in order here:
by construction, the difference between the processed map k̂ℎ and the ℎ-flow of the
modified Hamiltonian (5.47) is formally of order $(ℎ3), but the constant in $(ℎ3)
depends on the size of the modulus of the coefficients

^:(ℎ), ^:,ℓ(ℎ), V̂:ℓ(ℎ) for :, ℓ ∈ I .

For near-resonant step sizes ℎ, that is, for step sizes such that ei:lℎ − 1 is small for
some index : belonging to I or I +I, the size of some of these critical coefficients
may become large. In such cases, we cannot expect that the processed map k̂ℎ will
be close from the ℎ-flow of the modified Hamiltonian (5.47).

5.7. A processed Strang scheme

In the particular case in which kℎ is the Strang splitting ( [' ']
ℎ

, the coefficients
^:(ℎ) in the corresponding expansion (5.41) verifying (5.45) read

^:(ℎ) =
1

i:lℎ
(1 − sinc(:lℎ/2)−1), : ∈ I\{0}, (5.48)

and ^−:(ℎ) = −^:(ℎ) for all : ≠ 0.
Assuming that the potential function *(@) in (5.1) is a polynomial of degree <,

so that
I ⊂ {−<, . . . ,−1, 0, 1, . . . <},

we next construct a fully explicit processor cℎ for ( [' ']
ℎ

. We define it as a
composition of basic flows as follows:

cℎ = i
[']
U ◦ i [ ]12<(ℎ) ◦ i

[']
U ◦ i [ ]12<−1(ℎ) ◦ · · · ◦ i

[ ]
12(ℎ) ◦ i

[']
U ◦ i [ ]11(ℎ) ◦ i

[']
U , (5.49)

where U = (2c)/(2< + 1), and the coefficients 1 9(ℎ), 9 = 1, . . . , 2<, depend on
ℎ. Since ( [' ']

ℎ
is time-symmetric, then it makes sense to construct the processor

cℎ such that k̂ℎ = c−1
ℎ
◦ kℎ ◦ cℎ is also time-symmetric. This can be achieved

by requiring that c−ℎ = cℎ, or equivalently, by requiring that 1 9(−ℎ) = 1 9(ℎ) for
9 = 1, . . . , 2<. This condition, together with

^0(ℎ) = 0, Ũ:(ℎ) = U:(ℎ) for all : ∈ {−<, . . . ,−1, 0, 1, . . . <},

uniquely determines the 1 9(ℎ) coefficients as

1 9(ℎ) = −12<− 9+1(ℎ) =
2

2< + 1

<∑
:=1

1
:

(sinc(:lℎ/2)−1 − 1) sin
(

2: 9c
2< + 1

)
,

(5.50)
for 9 = 1, . . . , <. This can be seen as follows: successive application of the
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composition rule (5.21) shows that (5.49) admits the expansion (5.41) with

ℎ ^:(ℎ) =
2<∑
9=1

1 9(ℎ) e2i: 9 c/(2<+1), : = −<, . . . ,−1, 0, 1, . . . <, (5.51)

and for :, ℓ ∈ I,
ℎ2^:ℓ(ℎ) =

∑
1≤ 9<=≤2<

1 9(ℎ) 1=(ℎ) e2c( 9:+=ℓ)/(2<+1)

+
∑

1≤ 9≤2<

1
2
1 9(ℎ)2 ei2c 9(:+ℓ)/(2<+1). (5.52)

We can check that ^0(ℎ) = 0 and the symmetry condition ^−:(ℎ) = −^:(ℎ) (: ≠ 0)
that holds for (5.48) imply that 1 9(ℎ) = −12<− 9+1(ℎ) for 9 = 1, . . . , 2<. Now,
(5.51) means that application of the inverse discrete Fourier transform to the vector
(0, 11, 12, . . . , 1<,−1<, . . . ,−11) gives the vector

ℎ

2< + 1
(0, ^1, . . . , ^<,−^<, . . . ,−^1).

Equivalently, the former is obtained by applying the discrete Fourier transform to
the latter. Rearranging terms, we finally arrive at (5.50).
The modified Hamiltonian (5.47) can be obtained in the following way: first

the coefficients (5.52) can be used to compute Û:ℓ(ℎ) from (5.43), and then the
coefficients V̂:ℓ(ℎ) are determined from (5.46).

Example: simple pendulum. As an illustrative example we again consider the
simple pendulum of Section 1.4, described by the Hamiltonian function (1.19).
As we saw there, for initial conditions in a neighbourhood of the stable equilibrium
(0, 0) it is advantageous to decompose � as in (1.32), so it constitutes a particular
example of system (5.1):

� = �1 + �2, �1(@, ?) =
1
2
?2 + 1

2
@2, �2(@, ?) = *(@) = 1 − 1

2
@2 − cos @.

Although *(@) is not a polynomial, and therefore the set I in (5.4) is infin-
ite, we can truncate the Fourier expansion (5.37) and work instead with I =

{−<, . . . ,−1, 0, 1, . . . , <} for a given < to construct a processed Strang scheme
based on kicks and rotations as proposed earlier. Specifically, we take< = 4, a step
size ℎ = 5/6, then determine the corresponding coefficients 1 9(ℎ) and form the
integrator k̂ℎ = c−1

ℎ
◦ ( [' ']

ℎ
◦ cℎ, with cℎ given by (5.49) (with < = 4), whereas

(
[' ']
ℎ

corresponds to the map (1.34).
Figure 5.1 shows the relative error in energy (a) and phase space (b) over the time

interval [0, 500] corresponding to the solution initiated at (@0, ?0) = (1/10, 0). As
usual, (2 denotes the Störmer–Verlet method applied to (1.19), (2,2) is the Strang
splitting ( [' ']

ℎ
, and P(2, 2) is the processed ( [' ']

ℎ
schemewith step size ℎ = 5/6.

Since the integrator (2, 2) is conjugate to P(2, 2), the error of the former is eventually
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(a) (b)

Figure 5.1. Pendulum. Evolution of relative errors in energy (a) and in phase
space (b) obtained with Störmer–Verlet, (2, scheme ( [' ']

ℎ
, denoted (2,2), and the

processed (2,2), P(2, 2) with initial state (@0, ?0) = (1/10, 0) and step size ℎ = 5/6.
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Figure 5.2. Pendulum. Maximum relative energy error in the time interval [0, 500],
initial state (@0, ?0) = (1/10, 0), and step sizes in the range [0, 3c] committed by
the Strang splitting ( [' ']

ℎ
and its processed version P(2, 2).

dominated by the error of the latter, as expected from the discussion in Section 4.5.
Observe that the step size used here is larger than those taken in Figure 1.1.
Next, we consider the Strang method ( [' ']

ℎ
and its processed version P(2, 2)

for the same initial condition and a time interval [0, 500], and show the maximum
energy error in this interval for step sizes in the range [0, 3c] (Figure 5.2). The
spikes in the curve of the error of Strang correspond to the step sizes violating
the non-resonance condition (5.44) for l = 1 and : = 2, 4. Indeed, the potential
*(@) can be well approximated near the origin by @4/24, which implies that
I = {−4,−2, 0, 2, 4}. The curve of the error of processed Strang also has spikes for
such resonant step sizes, and additionally, for the step sizes ℎ such that 3ℎ/(2c) ∈ Z,
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86 S. Blanes, F. Casas and A. Murua

which is due to the fact that the processor map cℎ has been designed to workwell for
problems for which I = {−4,−3,−2,−1, 0, 1, 2, 3, 4}. Away from such resonant
step sizes, the energy error of processed Strang is considerably smaller than that of
unprocessed Strang.

5.8. More general assumptions

The results given in the present section are also valid with small modifications in
the more general setting of systems (5.2) such that the eigenvalues of � lie on the
imaginary axis. In the most general case, where such eigenvalues are not integer
multiples of l i, the exponential eC � is quasi-periodic with a finite number of basic
frequencies (l1, . . . , lA ) ∈ RA . Under such conditions, e−C � 52(eC �G) admits a
multi-variable Fourier expansion∑

:∈ZA
ei〈:,l〉 C 6:(G), (5.53)

where : nowdenotes an A-tuple of integers : = (:1, . . . , :A ) ∈ ZA ,l = (l1, . . . , lA )
is the vector of basic frequencies, and 〈:, l〉 = :1l1+· · ·+:AlA . The set of indices
I is then defined as

I = {: ∈ ZA : 6: ≠ 0}.

Under these more general assumptions and notation, all previous formulae are valid
if each occurrence of :l with : ∈ I is replaced by 〈:, l〉, the only exception being
the explicit construction of the processing map cℎ carried out in Section 5.7. It
is worth remarking that, compared to the periodic case, in the quasi-periodic one
there are typically more resonant step sizes, that is, step sizes ℎ such that

〈:, l〉ℎ
2c

∈ Z\{0} or
〈(: + ℓ), l〉ℎ

2c
∈ Z\{0}

for some :, ℓ ∈ I.

6. Splitting methods for PDEs
6.1. Splitting, LOD and ADI methods

Splitting methods can also be applied to partial differential equations (PDEs), in
which case equation (1.1) has to be viewed as the abstract system associated with
the PDE initial value problem in autonomous form, and 5 as a spatial partial
differential operator. For clarity, in this section we write

DC (G, C) = 5 (G, D(G, C)), D(G, 0) = D0(G) (6.1)

to distinguish between the unknown D(G, C) defined in a certain function space and
the spatial variable G ∈ R3 , but for notational purposes it is convenient to drop the
dependence of D and 5 on G. To introduce the basic concepts and methods it is
not necessary at this stage to specify the dimension 3, the number of components
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of D, the relevant function space and the boundary conditions. These will be
considered when analysing particular applications. Moreover, for simplicity in the
presentation, only the autonomous case will be treated. If 5 depends explicitly on
time, then we can take C as a new coordinate, as is done in Section 3.5.

Very often, the operator 5 contains contributions coming from very different
physical sources, so we may decompose it into two (or more) parts, and use
different schemes to solve each sub-problem approximately. For instance, in a
reaction–diffusion system, 5 (D) = ∇ · (�∇D) + 6(D), where � and 6 may also
depend on G, it makes sense to split the diffusion from the reaction terms, that is,

5 (D) = 51(D) + 52(D), with 51(D) = ∇ · (�∇D), 52(D) = 6(D).

Algorithm 1.1 can of course be used in this setting, but we still have to specify
how to solve each initial value sub-problem in practice with appropriate boundary
conditions. A simple possibility consists in applying the backward Euler scheme,
thus resulting in the so-called Marchuk–Yanenko operator-splitting scheme

D=+1/2 = D= + ℎ 51(D=+1/2),
D=+1 = D=+1/2 + ℎ 52(D=+1), = = 0, 1, 2, . . . ,

(6.2)

where, for consistency with the rest of the paper, we have denoted ℎ ≡ ΔC, the
time step size. In spite of its low order of consistency (order one)5 and the fact
that the intermediate stage D=+1/2 is not a consistent approximation to the exact
solution, its simplicity and robustness make it a useful alternative way to deal with
complicated problems and even non-smooth operators (Glowinski et al. 2016a).
It is also appropriate for parabolic problems, since it incorporates the damping
properties of the backward Euler method (Hundsdorfer and Verwer 2003).
If, instead of using the backward Euler scheme to integrate each sub-problem

in Algorithm 1.1, we apply the second-order implicit trapezoidal rule, it results
in Yanenko’s Crank–Nicolson method (Hundsdorfer and Verwer 2003, Marchuk
1990):

D=+1/2 = D= +
ℎ

2
51(D=) + ℎ

2
51(D=+1/2),

D=+1 = D=+1/2 +
ℎ

2
52(D=+1/2) + ℎ

2
52(D=+1), = = 0, 1, 2, . . .

(6.3)

In the end, however, it is also of first order of consistency.
Another widely popular class of spitting methods in the domain of PDEs is the

Peaceman–Rachford scheme and its variants. Although initially designed for the
numerical solution of elliptic and parabolic equations (Peaceman and Rachford
1955, Douglas and Rachford 1956), they also apply to more general situations. The
procedure goes as follows. Given an approximation D= for the solution of (6.1)

5 Here ‘order’ should be understood as the order of consistency with respect to the solution of the
ODE problem on a fixed spatial grid, not with respect to the underlying PDE solution (Hundsdorfer
and Verwer 2003).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492923000077
Downloaded from https://www.cambridge.org/core. IP address: 3.133.122.230, on 11 Sep 2024 at 14:39:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492923000077
https://www.cambridge.org/core


88 S. Blanes, F. Casas and A. Murua

at C = C=, the approximation D=+1 is computed using the backward (resp. forward)
Euler scheme with respect to 51 (resp. 52) on the sub-interval [C=, C=+1/2]. Then
the roles of 51 and 52 are interchanged on the sub-interval [C=+1/2, C=+1]. In other
words, the Peaceman–Rachford scheme corresponds to the sequence

D=+1/2 = D= +
ℎ

2
51(D=+1/2) + ℎ

2
52(D=),

D=+1 = D=+1/2 +
ℎ

2
51(D=+1/2) + ℎ

2
52(D=+1), = = 0, 1, 2, . . . ,

(6.4)

which is of second order of consistency. Notice that, in contrast to methods (6.2)
and (6.3), both 51 and 52 appear in each of the two stages, and thus the intermediate
value D=+1/2 provides a consistent approximation at C = C=+1/2. On the other hand, it
does not possess a natural formulation where 5 is split intomore than two operators.
In general, 51 and 52 can be nonlinear, unbounded and even multi-valued. For a
more detailed treatment, the reader is addressed to Glowinski, Pan and Tai (2016b)
and references therein.
A classical alternative to scheme (6.4), of first order, is the Douglas–Rachford

method (Douglas and Rachford 1956), which instead reads

D̂=+1 = D= + ℎ 51(D̂=+1) + ℎ 52(D=),
D=+1 = D= + ℎ 51(D̂=+1) + ℎ 52(D=+1), = = 0, 1, 2, . . . ,

(6.5)

and can be generalized to decompositions of 5 involving more than two operators.
Notice that the roles of 51 and 52 in (6.5) are not symmetric, in contrast to the
Peaceman–Rachford method. On the basis of many numerical experiments, Glow-
inski et al. (2016b) conclude that the scheme (6.5) is faster and more robust than
(6.4) for problems where one of the operators is non-smooth, in particular when
we are interested in approximating steady-state solutions.
Let us now analyse the particular case when 5 in (6.1) is a linear spatial differen-

tial operator. Assuming that an appropriate semidiscretization of (6.1) in the space
variable G has been carried out, we end up with the system

d*
dC

= �1* + �2*, (6.6)

where �1, �2 ∈ C"×" , �1�2 ≠ �2�1 in general, and * ∈ C" approximates D on
the space grid points G1, . . . , G" (see below). Then a step of theMarchuk–Yanenko
scheme (6.2) reads

*=+1 = (� − ℎ�2)−1 (� − ℎ�1)−1*=, (6.7)

where *= ≈ (D(G1, C=), . . . , D(G" , C=))>. Notice that (6.7) corresponds to applying
the [0/1] Padé approximant to the exponentials in the Lie–Trotter scheme *=+1 =
eℎ�2 eℎ�1*=, whence the first order of the approximation is obtained at once. On the
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other hand, applying (6.3) results in the sequence

*=+1 =

(
� − ℎ

2
�2

)−1(
� + ℎ

2
�2

)(
� − ℎ

2
�1

)−1(
� + ℎ

2
�1

)
*=. (6.8)

In other words, it corresponds to the application of the [1/1] Padé approximant
to the exponentials in the Lie–Trotter scheme. It is then clear that, although a
second-order Crank–Nicolson method is carried out for each exponential, their
combination (6.8) is of first order, since in the end we are using only a variant of
the Lie–Trotter scheme.
By the same token, a straightforward computation shows that the Peaceman–

Rachford scheme (6.4) applied to the linear equation (6.6) can be written as

*=+1 =

(
� − ℎ

2
�2

)−1(
� + ℎ

2
�1

)(
� − ℎ

2
�1

)−1(
� + ℎ

2
�2

)
*=. (6.9)

As a matter of fact, all these algorithms can be formulated by applying properly
chosen compositions of the implicit and explicit Euler methods. This observation
may eventually lead to the construction of methods of higher order or improved
behaviour, but in the same family. Suppose 5 in (6.1) is of the form 5 = 51 + 52 and
that the solution of each equation DC = 5:(D), : = 1, 2, is numerically approximated
by the maps

D=+1 = k
:4
ℎ (D=) ≡ D= + ℎ 5:(D=), explicit Euler,

D=+1 = k
:8
ℎ (D=) ≡ D= + ℎ 5:(D=+1), implicit Euler,

so that by combining all variants, we form the following first-order schemes (and
their corresponding adjoints):

q1
ℎ = k

14
ℎ ◦ k

24
ℎ , q1∗

ℎ = k28
ℎ ◦ k

18
ℎ ,

q2
ℎ = k

14
ℎ ◦ k

28
ℎ , q2∗

ℎ = k24
ℎ ◦ k

18
ℎ ,

q3
ℎ = k

18
ℎ ◦ k

24
ℎ , q3∗

ℎ = k28
ℎ ◦ k

14
ℎ ,

q4
ℎ = k

18
ℎ ◦ k

28
ℎ , q4∗

ℎ = k24
ℎ ◦ k

14
ℎ .

(6.10)

Then we can conclude the following.

• The Marchuk–Yanenko operator-splitting scheme (6.2) can be expressed as
D=+1 = q1∗

ℎ
(D=). Therefore compositions

D=+1 = q
1∗
ℎ/2 ◦ q

1
ℎ/2(D=) and D=+1 = q

1
ℎ/2 ◦ q

1∗
ℎ/2(D=)

yield time-symmetric second-order approximations.
• Yanenko’s Crank–Nicolson method (6.3) corresponds to the composition

D=+1 = k
28
ℎ/2 ◦ k

24
ℎ/2 ◦ k

18
ℎ/2 ◦ k

14
ℎ/2(D=), (6.11)

which is not time-symmetric and therefore only of first order. Notice, however,
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that (6.11) can also be expressed as

D=+1 = k
28
ℎ/2 ◦

(
q2∗
ℎ/2 ◦ q

2
ℎ/2
)
◦
(
k28
ℎ/2
)−1(D=),

so it is conjugate to a time-symmetric second-order method. This feature
could account for its observed good behaviour in practice.
• The Peaceman–Rachford scheme (6.4) is just the symmetric composition

D=+1 = q
3∗
ℎ/2 ◦ q

3
ℎ/2(D=),

and is therefore of second order. It is also worth mentioning that whereas all
symmetric second-order compositions

qℓ∗
ℎ/2 ◦ q

ℓ
ℎ/2 and qℓ

ℎ/2 ◦ q
ℓ∗
ℎ/2, ℓ = 1, . . . , 4

provide consistent approximations at the midpoint, the steady-state solution
is captured only when ℓ = 3: if 5 (F) = 0, then

q3∗
ℎ/2 ◦ q

3
ℎ/2(F) = q3

ℎ/2 ◦ q
3∗
ℎ/2(F) = F.

The Douglas–Rachford method (6.5) can be alternatively formulated as a splitting
method in an extended space as follows. Consider the enlarged system

FC =

(
D̂C
EC

)
=

(
51(D̂) + 52(E)

0

)
+
(

0
51(D̂) + 52(E)

)
= 61(F) + 62(F), (6.12)

with initial conditionF(0) = (D̂(0), E(0)) = (D0, D0) and solutionF(C) = (D̂(C), E(C)) =
(D(C), D(C)). Take F= = (D=, D=) and form the composition

F̂=+1 = q
1∗
ℎ (F=) = k28

ℎ ◦ k
18
ℎ (F=), = ≥ 0,

providing F̂=+1 = (D̂=+1, E=+1). Then scheme (6.5) is recovered by taking D=+1 =
E=+1, and consideringF=+1 = (D=+1, D=+1) as the starting point for the next iteration.

Example. The two-dimensional heat equation with source term and Dirichlet
boundary conditions on the unit squaremay serve as an illustration of thesemethods
(Hundsdorfer and Verwer 2003). Specifically, the system reads

DC = DGG + DHH + 6(G, H, C) on Ω = (0, 1) × (0, 1),
D(G, H, C) = DΓ(G, H, C) on Γ = mΩ,
D(G, H, 0) = D0(G, H) on Ω.

(6.13)

Suppose we take a Cartesian grid in Ω based on " + 1 equally spaced intervals in
the G and H directions, so that ΔG = ΔH = 1/(" + 1) and apply finite differences
to approximate the space derivatives. Then we end up with "2 interior points and
the aim is to get approximations of D at these points, i.e. to determine D8, 9(C) '
D(G8 , H 9 , C) for 8, 9 = 1, 2, . . . , " . The problem can be conveniently formulated in
terms of the ‘supervector’ * = (D>1 , . . . , D

>
"

)>, with D8 = (D8,1, . . . , D8," )>, and
"2 components

*ℓ(C) = D8, 9(C), ℓ = 9 + "(8 − 1).
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Using standard second-order finite differences for mGG and mHH we get a linear
system of the form* ′ = �* + B(C), where B(C) contains sources and boundary data,
and � = �1 + �2, with

�1 = �" ⊗ �" , �2 = �" ⊗ �" , �" =
1

(ΔG)2


−2 1 · · · 0

1 −2 . . .
...

...
. . .

. . . 1
0 1 −2

.
Here �" is the identity matrix, �" the differentiation matrix and ⊗ denotes the
tensor product. Notice that �1 acts in the G-direction and �2 in the H-direction, so
both �1 and �2 are essentially one-dimensional. Since �1 is a tridiagonal matrix,
the linear system resulting from the application of the previous implicit schemes
can be solved in an efficient way, whereas �2 is equivalent to a tridiagonal matrix,
so the same considerations apply (Iserles 1996).
First consider the homogeneous equation with zero Dirichlet boundary condi-

tions. The solution for one time step is

*(C= + ℎ) = eℎ(�1+�2)*(C=),

whereas the application of the Peaceman–Rachford scheme leads to the approxim-
ation (6.8):

*=+1 = (q3∗
ℎ/2 ◦ q

3
ℎ/2)*= = eℎ(�1+�2)*= +$(ℎ3).

When a dimensional splitting is done, as in this case, applying schemes (6.7) and
(6.8) corresponds essentially to carrying out computations in only one dimension.
This is the reason why (6.2) and (6.3) are called locally one-dimensional (LOD)
methods. Analogously, given the alternate use of �1 and �2 in this setting, the
name alternating direction implicit (ADI) is usually attached to methods (6.4) and
(6.5).
Regarding these ADI/LOD methods as composition schemes allows us to get

approximations in the non-homogeneous case too, with only minor changes, while
keeping any favourable properties (if no order reduction occurs due to the Dirichlet
boundary conditions). To illustrate this point, we again apply the explicit and impli-
cit Euler methods to the equation* ′ = B(C) corresponding to the non-homogeneous
term

*=+1 = k
B4
ℎ

(*=) = *= + ℎ B(C=), *=+1 = k
B8
ℎ

(*=) = *= + ℎ B(C=+1),

and consider the first-order scheme q̂3
ℎ
= k18

ℎ/2 ◦ k
24
ℎ/2 ◦ k

B4
ℎ
. Then

*=+1 =
(
q̂3∗
ℎ/2 ◦ q̂

3
ℎ/2
)
*= =

(
k
B8
ℎ/2 ◦ k

28
ℎ/2 ◦ k

14
ℎ/2 ◦ k

18
ℎ/2 ◦ k

24
ℎ/2 ◦ k

B4
ℎ/2
)
*=

=
ℎ

2
B(C=+1) +

(
� − ℎ

2
�2

)−1(
� + ℎ

2
�1

)(
� − ℎ

2
�1

)−1(
� + ℎ

2
�2

)(
*= +

ℎ

2
B(C=)

)
produces a symmetric second-order scheme.
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It is not only reaction–diffusion problems that can be treated in this way. For
instance, systems of hyperbolic conservation laws in three dimensions, such as

DC + ∇ · 5 (D) = 0, D(G, H, I, 0) = D0(G, H, I),

can be numerically approximated with dimensional splitting by applying a specially
tailored numerical scheme to each scalar conservation law DC + 5 (D)G = 0, etc.
(Holden, Karlsen, Lie and Risebro 2010).
The one-dimensional convection–diffusion problem

DC + 5 (D)G = �(D)GG , D(G, 0) = D0(G)

with a scalar non-decreasing function �(·), �(0) = 0, possesses a rich set of
phenomena depending on the interplay of the different nonlinearities. In this
case we can split the problem into a convective and a diffusion part and apply
Algorithm 1.1. This formally results in the so-called Godunov split (Holden et al.
2010). Specifically, letting U [1]

ℎ
denote the solution operator corresponding to the

scalar conservation law DC + 5 (D)G = 0, and lettingU [2]
ℎ

denote the solution operator
corresponding to the (weak) solution of the nonlinear heat equation DC = �(D)GG ,
the scheme then reads

D(G, C= + ℎ) ≈ D=+1 = U [2]
ℎ

(
U [1]
ℎ

(D=)
)
.

Of course, we can also use the Strang splitting

D(G, C= + ℎ) ≈ D=+1 = U [2]
ℎ/2
(
U [1]
ℎ

(
U [2]
ℎ/2(D=)

))
.

To get a numerical approximation, each of the two operators must be approximated.
This can be done, for example, by a front-trackingmethod forU [1]

ℎ
and by a standard

implicit finite-difference method for the parabolic operator U [2]
ℎ

. A convergence
analysis of such schemes has been carried out in Holden et al. (2010).
Although the analysis of splitting methods can be done by power series expan-

sions and the formalism of Lie operators, there are fundamental differences with
respect to the ODE case. Nonlinear PDEs in general possess solutions that exhibit
complex behaviour in small regions of space and time, such as sharp transitions and
discontinuities, and thus they lack the usual smoothness required for the analysis.
Moreover, even if the exact solution of the original problem is smooth, it may well
happen that the composition defining the splitting method provides non-smooth
approximations. Therefore, it is necessary to develop an appropriate mathematical
framework to analyse the convergence of the numerical solution to the correct solu-
tion of the original problem, and this has to be done very often on a case by case
basis; see e.g. Holden et al. (2010) and references therein. Thus, in particular, the
first- and second-order convergence of the Godunov and Strang splitting methods
on the Korteweg–de Vries equation DC −DDG +DGGG = 0 has been proved in Holden,
Karlsen, Risebro and Tao (2011) if the initial data are sufficiently regular, whereas
the result has been extended in Holden, Lubich and Risebro (2013) to equations
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Splitting methods for differential equations 93

of the form DC = �D + DDG , when � is a linear differential operator such that the
full equation is well-posed. More recently, convergence results and error estimates
have also been obtained for initial conditions with low regularity, namely D0 ∈ �B
with 0 < B ≤ 3/2, where �B denotes the Sobolev space (Rousset and Schratz
2022).
Another source of difficulties related to the application of splitting methods to

PDEs is the treatment of boundary conditions. In this respect, we should take into
account that the boundary conditions are defined for the whole operator 5 in (6.1),
and they do not necessarily hold for the subproblems defined by each part 51 and
52. Therefore, we cannot expect the numerical solution obtained by a splitting
method to belong to the domain of 5 . This results in severe order reductions in
reaction–diffusion problems when Dirichlet or Neumann boundary conditions are
considered (Hansen and Ostermann 2009b, Hundsdorfer and Verwer 2003). In
particular, the order reduction for the Strang splitting is one in the infinity norm.
Similar order reductions for advection–reaction problems have also been reported
(Hundsdorfer and Verwer 1995).
Several procedures have been considered in the literature to avoid this order

reduction in the case of reaction–diffusion problems. One possibility, proposed
in Einkemmer and Ostermann (2015, 2016), consists in introducing a smooth
correction function in such a way that the new reaction flow is compatible with the
prescribed boundary conditions. For time-invariant Dirichlet boundary conditions,
this correction can be computed only once at the beginning of the simulation, but for
time-dependent Dirichlet, Neumann or Robin boundary conditions, the correction
is time-dependent and has to be computed at each time step. Various techniques
to deal with this problem are explored in Einkemmer, Moccaldi and Ostermann
(2018). An alternative approach requiring additional calculations with grid values
on the boundaries, and not on grid values on the total domain, is proposed in
Alonso-Mallo, Cano and Reguera (2018, 2019).

6.2. IMEX methods

IMEX schemes are suitable combinations of implicit and explicit schemes and
constitute a popular technique for approximating the solution of PDEs that involve
terms of a different nature (Ascher, Ruuth and Wetton 1995, Ascher, Ruuth and
Spiteri 1997, Hundsdorfer and Verwer 2003). Thus, for convection–diffusion or
reaction–diffusion problems where the convection or reaction terms are moderately
stiff, it might be appropriate to use an explicit scheme for these parts and an implicit
scheme for the diffusion term. We next analyse the connections of some popular
IMEX methods with splitting and composition methods.
Suppose we have the semidiscrete system DC = 51(D) + 52(D), where 51 is (still)

a diffusion term and 52 a nonlinear term suitable for explicit integration. Then the
simple composition (see (6.10))

D=+1 = q
3
ℎ(D=) = k18

ℎ ◦ k
24
ℎ (D=) = D= + ℎ ( 51(D=+1) + 52(D=))
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94 S. Blanes, F. Casas and A. Murua

corresponds to the linear one-step IMEX scheme of Ascher et al. (1997).
Letting q [2,: ]

ℎ
, : ≥ 2, denote an explicit :th-order (Runge–Kutta or multistep)

method for the equation DC = 52(D), it turns out that many IMEX methods from the
literature have the structure

D=+1 = k
18
ℎ/2 ◦ q

[2,: ]
ℎ
◦ k14

ℎ/2(D=), (6.14)

thus yielding second-order approximations.
Let us consider, for instance, the popular Crank–Nicolson–leapfrog (IMEX-

CNLF) method (Hundsdorfer and Verwer 2003)

D=+1 = D=−1 + 2ℎ 52(D=) + ℎ( 51(D=+1) + 51(D=−1)), (6.15)

to be initiated with, for example, D1 = D0 + ℎ( 51(D0) + 52(D0)). It is equivalent to
the one-step method

D=+1 = D= + ℎ∗ 52(D=+1/2) + ℎ
∗

2
( 51(D=+1) + 51(D=)), (6.16)

with ℎ∗ = 2ℎ, which requires us to compute the approximation at the midpoint and
so advances every half time step. If we take the explicit second-order midpoint rule
as q [2,2]

ℎ
in (6.14), then we get the following sequence of maps:

k14
ℎ/2 : * = D= +

ℎ

2
51(D=),

q
[2,2]
ℎ

:
+ = * +

ℎ

2
52(*)

+̂ = * + ℎ 52(+)

,
k18
ℎ/2 : D=+1 = +̂ +

ℎ

2
51(D=+1),

or equivalently

* = D= +
ℎ

2
51(D=),

+ = * + ℎ
2
52(*),

D=+1 = D= + ℎ 52(+) + ℎ
2

( 51(D=) + 51(D=+1)).

(6.17)

This scheme is in fact quite similar to (6.16) for ℎ = ℎ∗ since + is a first-order
approximation to D=+1/2, the solution at the midpoint. Notice that by replacing
52(D=+1/2) in (6.16) with 52(+), where + depends explicitly on D=, it allows us to
advance from D=+1 to D=+2 without evaluating the solutions at D=+3/2 and therefore
halving the computational cost to solve the implicit equations involved.

Although the method is not symmetric (due to the lack of symmetry of the
explicit scheme q [2,2]

ℎ
), by instead using an explicit method of order : > 2, the

overall scheme will be time-symmetric up to this order : and therefore we can
apply extrapolation to get a method of order : in an efficient way.
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Splitting methods for differential equations 95

Another IMEX Runge-Kutta method that combines the implicit and expli-
cit trapezoidal methods and shows a fairly good performance on examples is
(Hundsdorfer and Verwer 2003)

* = D= + ℎ( 51(D=) + 52(D=)),

D=+1 = D= +
ℎ

2
( 51(D=) + 52(D=)) + ℎ

2
( 51(D=+1) + 52(*)).

(6.18)

If we take the system

F′ =

(
D

*

)′
=

(
51(D) + 52(*)

0

)
+
(

0
51(D) + 52(D)

)
= 61(F) + 62(F), (6.19)

and form, as before, the composition

F=+1 = k
18
ℎ/2 ◦ q

[2]
ℎ
◦ k14

ℎ/2(F=), (6.20)

where q [2]
ℎ

denotes the exact solution of F′ = 62(F), and F= = (*=, D=) = (D=, D=),
then we get

D1/2 = D= +
ℎ

2
( 51(D=) + 52(D=)),

*=+1 = D= + ℎ( 51(D1/2) + 52(D1/2)), (6.21)

D=+1 = D= +
ℎ

2
( 51(D=) + 52(D=)) + ℎ

2
( 51(D=+1) + 52(*=+1)).

Scheme (6.18) is recovered by replacing D1/2 with D= in the expression of *=+1.
However, if in (6.21) we do not restart the value of*= at each step, the method will
be symmetric and therefore we can apply extrapolation to increase its order.
Higher-order IMEX methods have been built involving implicit multistep or

Runge–Kutta methods. Although splitting methods are no longer appropriate to
advance the diffusion term due to the presence of negative coefficients for orders
higher than two, we can incorporate higher derivatives or complex coefficients and
form new higher-order splitting IMEX methods (or consider extrapolation from a
basic symmetric second-order method).

6.3. Schrödinger equations

)–+ splitting. Until now, in the context of PDEs, we have dealt with splitting
methods of orders one and two. There are, however, relevant problems where high-
order splitting methods can be and have been safely used, and where a rigorous
convergence analysis can be established. This is the case, in particular, for the
time-dependent Schrödinger equation, already considered in Section 1.6. The
numerical experiments presented there clearly indicate that the Strang splitting
based on kinetic and potential energy in combination with a pseudo-spectral space
discretization, i.e. method (1.45), provides approximations of order two in the time
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96 S. Blanes, F. Casas and A. Murua

step, in accordance with

e
g
2 + eg) e

g
2 + = eg() ++ ) +$(g3(‖) ‖ + ‖+ ‖)3), (6.22)

where g = −iℎ. Be aware, however, that this error estimate only makes sense for
bounded ) and + . In fact, when the norm of ) or + is very large (as is usually
the case when the number of space discretization points " is large), then (6.22) is
of no practical use, and thus other estimates are necessary to explain the observed
good behaviour.
Error bounds for the Strang splitting are actually derived in Jahnke and Lubich

(2000). They clearly show that the method is indeed of order two when applied to
pseudo-spectral discretizations of the time-dependent Schrödinger equation under
some regularity conditions and periodic boundary conditions. Specifically, assume
that the potential +(G) is C5-smooth, periodic and bounded, ‖+k‖ ≤ V‖k‖, V > 0.
Then, if D(G, C) denotes the trigonometric interpolation polynomial of the solution
of the pseudo-spectral method and D=(G) is the corresponding trigonometric inter-
polation polynomial built from the numerical approximations obtained from the
Strang splitting (1.45) at time C = C= = =ℎ, for the local and global errors we get
the following bounds:

‖D1 − D(·, g)‖!2 ≤ �1 |g |3‖D0‖� 2 ,

‖D= − D(·, C=)‖!2 ≤ �2 |g |2‖D0‖� 2 ,
(6.23)

respectively. Here ‖ · ‖� 2 denotes the usual Sobolev norm, and the constants �1,
�2 are independent of the initial data D0 and the discretization parameters " , = and
g, with 0 ≤ C= ≤ C 5 for some finite C 5 . The case when + is time-dependent and
bounded for any C has been recently treated in del Valle and Kropielnicka (2023),
where new schemes are proposed and analysed.
The previous results for the Strang splitting have been extended in Thalhammer

(2008) to splitting methods of the general form

D=+1 =
B∏
9=1

e1 9 g+ e0 9 g) D= = e1Bg+ e0Bg) · · · e11g+ e01g) D=, (6.24)

whose coefficients 0 9 , 1 9 satisfy the order conditions up to order A . In that case

‖D= − D(·, C=)‖!2 ≤ �‖D(·, 0) − D0‖!2 + � |g |A ‖D(·, 0)‖�A , 0 ≤ C= ≤ C 5 (6.25)

is valid with some constant � depending on C 5 , but not on = and ℎ. This error
bound implies, in particular, that the splittingmethods of Section 8 retain their order
of convergence when applied to the Schrödinger equation with periodic boundary
conditions, provided that the data are sufficiently differentiable; see also Hansen
and Ostermann (2009a). Otherwise, an order reduction may occur.
We can also take advantage of the property (1.41) and include the commutator
[+, [),+]] in the composition (6.24), as in RKN splitting methods, so that we end
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Splitting methods for differential equations 97

up with

D=+1 =
B∏
9=1

e1 9 g+ +2 9 g
3 [+ , [) ,+ ] ] e0 9 g) D=. (6.26)

Even in this case the resulting schemes retain their order of convergence if the
solution is sufficiently regular, as shown in Kieri (2015). It is then also possible to
apply the RKN schemes presented in Section 8.

Symplectic splitting. In Section 3.4 we reviewed the symplectic structure involved
in the (semidiscretized) Schrödinger equation and illustrated how the Strang split-
ting (and, for that matter, all methods presented in Section 8) can be applied if �
is a real and symmetric matrix. They are formulated as products of exponentials
of the nilpotent matrices � and � given in (3.13),(

@=+1
?=+1

)
=

B∏
9=1

e1 9ℎ� e0 9ℎ�
(
@=
?=

)
= exp

[
ℎ

(
0 �

−� 0

)] (
@=
?=

)
+$(ℎA+1),

(6.27)
and orders A = 2, 4, 6, 8, 10 and 12 have been achieved with only B = A exponentials
e0 9ℎ� and e1 9ℎ� (Gray and Manolopoulos 1996, Zhu, Zhao and Tang 1996, Liu,
Ding, Hong and Wang 2005).
The processing technique has also been used to construct splitting schemes with

two different goals inmind: to attainmaximal stability andmaximal accuracy. They
have the general structure %−1(ℎ�) (ℎ�)%(ℎ�), where  (the kernel) is built as a
composition (6.27) with a large number of stages B, and % (the processor) is taken
as a polynomial. Although these methods are neither unitary nor unconditionally
stable, they are symplectic and conjugate to unitary schemes. In consequence,
neither the average error in energy nor the norm of the solution increases with time.
Specifically, Blanes, Casas and Murua (2006b, 2008a) have proposed kernels with
up to 19, 32 and 38 stages, either to construct methods of orders A = 10, 16 and
20, or to bring highly accurate second-order methods with an enlarged stability
domain.
This approach to approximating eg�D is closely related to other polynomial

approximations of the form

eg�D ≈ %<(ℎ�)D, (6.28)

where %<(H) is a polynomial in H approximating the exponential e−iH . Different
choices for such %<(H) are available: truncated Taylor or Chebyshev series ex-
pansions of e−iH for an appropriate real interval of H, or a Lanczos approximation,
where the polynomial is determined by a Galerkin approximation on the Krylov
space spanned by D, �D, . . . , �<−1E (Lubich 2008).
Given a prescribed error tolerance, some appropriate estimates of the upper

and lower bounds of the eigenvalues of the matrix �, �min and �max, and a time
integration interval, [C0, C 5 ], in the Chebyshev approach we choose, according to
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98 S. Blanes, F. Casas and A. Murua

some known error bounds, the lowest-degree polynomial that provides the solution
with such accuracy. The coefficients of the polynomial are determined for each
case and the action of the polynomial on a vector is computed recursively using
the Clenshaw algorithm (Lubich 2008). On the other hand, in the Taylor approach
we have to adjust the maximum degree allowed with the time step ℎ to reach
the desired accuracy with the minimum number of matrix–vector products. As a
result, in general, Chebyshev turns out to be between two and three times faster
than Taylor, depending on the final time at which the output is desired. Chebyshev
and Lanczos approximations have quite similar error bounds (see Lubich 2008)
and their relative performance depends on the particular problem considered.
It is worth remarking that, whereas in the approach (6.28) the approximation

of eg�D is constructed by computing products of the form �D, where D ∈ C" ,
with symplectic splitting methods of the form (6.27) we proceed by successively
computing real matrix–vector products �@ and �? with different weights. With
splitting methods, the real and imaginary parts of eg�D ≡ e−iℎ� (@ + i?) are
approximated in a different way, with a considerably reduced computational cost.
Blanes et al. (2015) construct several optimized symplectic splittingmethods and

present an algorithm that automatically selects themost efficient one for a prescribed
error tolerance under the same conditions as when using the Chebyshev method.
The resulting algorithm is between 1.4 and 2 times faster than the Chebyshev
method for the same accuracy, with reduced energy and unitarity errors for large
values of ℎ. The computation of the coefficients of the schemes is largely based
on the stability and error analysis of splitting methods carried out in Blanes, Casas
and Murua (2008a, 2011).
In contrast to )–+ splitting methods, which preserve unitarity by construction

and are thus unconditionally stable, the previous polynomial approximations suffer
from a step size restriction. Given ℎ, ΔG and<, the degree of the polynomial, these
methods must satisfy the restriction

ℎ

<ΔG2 ≤ �,

so the time interval that one can advance per matrix–vector product is proportional
to ΔG2 or, equivalently, the number of matrix–vector products to reach the final
time is inversely proportional to ΔG2.

Time-dependent potentials. We have assumed so far that the potential in the
Schrödinger equation (1.40) does not depend explicitly on time or, if it does, it
only varies slowly with time, so that in each sub-interval [C=, C=+1] the correspond-
ing matrix + is obtained from the average of +(G, C) on this interval. In general,
however, we have to deal with situations in which this approximation is no longer
valid. In that case, and in contrast to other approaches based on Chebyshev or
Lanczos approximations, splitting methods can still be applied with some appro-
priate modifications.
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Splitting methods for differential equations 99

In a similar way to classical Hamiltonian problems, one may take C in the
potential as an additional coordinate, G3+1 = C, introduce its canonical momentum,
?3+1 = −8 mG3+1 , and deal with the system in the extended phase space, �̃ =

() + ?3+1) ++(G, G3+1). Since the action of the operator ?3+1 just corresponds to a
shift in the variable G3+1, i.e. e0ℎmC+(C, G) = +(C + 0ℎ, G), and moreover

e0ℎmC e−i1ℎ+ (C ,G) e−0ℎmC = e−i1ℎe0ℎmC+ (C ,G) = e−i1ℎ+ (C+0ℎ,G),

composition (6.24) applied to the corresponding non-autonomous problem now
simply reads (notice that ) and ?3+1 commute)

D=+1 =
B∏
9=1

e1 9 g+ (C=+2 9ℎ) e0 9 g) D=, with 2 9 =

9∑
:=1

0: , 9 ∈ {1, . . . , B}, (6.29)

and analogously if the scheme includes modified potentials; see also e.g. Chin and
Chen (2002) and references therein.
For a generic time-dependent Hamiltonian�(C), the Schrödinger equation imCk =

�(C)k can be recast as a non-autonomous evolution equation of the form

D′(C) = �(C)D(C), D(C0) = D0, C ∈ [C0, C 5 ], (6.30)

defined by a family of time-dependent linear operators (�(C))C ∈[C0,C 5 ] , which, as-
suming a spatial discretization has been carried out, are generally complex matrices
of large dimension and large norm.
It turns out that standard Ath-order splitting methods defined by coefficients

(0 9 , 1 9)B9=1 can be applied in this setting simply by adding the trivial relation
(d/dC)C = 1 to equation (6.30). This results in the scheme

D=+1 =
B∏
9=1

eℎ1 9�(C=+2 9ℎ)D=, with 2 9 =

9∑
:=1

0: , 9 ∈ {1, . . . , B} (6.31)

of the same formal order A as the method originally designed for autonomous
problems.
A different approach is based on the use of the Magnus expansion (Magnus

1954) to get a formal solution representation of (6.30) as the exponential of an
infinite series:

D(C= + ℎ) = eΩ(ℎ)D=, Ω(ℎ) =
∞∑
<=1

Ω<(ℎ), (6.32)

where each term Ω< involves multiple integrals of nested matrix-commutators
(Blanes, Casas, Oteo and Ros 2009). By appropriately truncating this series and
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100 S. Blanes, F. Casas and A. Murua

approximating the integrals by quadratures, efficient integrator schemes can be
constructed (Iserles, Munthe-Kaas, Nørsett and Zanna 2000). Thus, for instance,
taking the two-stage Gauss–Legendre quadrature rule with nodes

21,2 =
1
2
∓
√

3
6

results in the scheme

Ω[4](ℎ) =
1
2
ℎ(�1 + �2) +

√
3

12
ℎ2 [�2, �1],

D=+1 = eΩ
[4] (ℎ)D=,

(6.33)

with � 9 = �(C= + 2 9ℎ), 9 = 1, 2. For the Schrödinger equation with �(C) = −i() +
+(C)) and a smooth time-dependent potential +(C), Hochbruck and Lubich (2003)
showed that Magnus integrators retain their full order of convergence (without
bounds on ) in the error bound) for sufficiently regular solutions, uniformly with
respect to the space discretization.
There are, however, several issues related to Magnus integrators due to the pres-

ence of iterated commutators. Thus, computing the action of iterated commutators
on vectors can be very costly due to the number of matrix–vector products required.
This is particularly relevant when considering problems in two and three space di-
mensions (Bader, Iserles, Kropielnicka and Singh 2016). In addition, the evolution
equations defining high-order Magnus integrators in general involve differential
operators of different nature from the original problem (Blanes, Casas, González
and Thalhammer 2021b).

A different class of exponential integrators that circumvent these difficulties
whilst still retaining the favourable properties of Magnus integrators is formed by
the so-called commutator-free quasi-Magnus (CFQM)methods: the basic idea is to
replace the single exponential in (6.32) with a composition of several exponentials
involving linear combinations of the values of the operator � at certain nodes, 2: ,
of a quadrature rule:

D=+1 = eℎ �=� · · · eℎ �=1 D= ≈ D(C=+1) = eΩ(ℎ) D(C=),
2: ∈ [0, 1], �=: = �(C= + 2:ℎ), : ∈ {1, . . . ,  },
�= 9 = 0 91 �=1 + · · · + 0 9 �= , 9 ∈ {1, . . . , �}.

Particular examples of CFQM exponential integrators are the exponential midpoint
rule (order two)

� =  = 1, 21 =
1
2 , 011 = 11 = 1,

D=+1 = eℎ �(C=+ 1
2 ℎ) D=

(6.34)
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and the fourth-order scheme

� =  = 2, U =
√

3
6 , 21 =

1
2 − U, 22 =

1
2 + U,

011 = 022 =
1
4 + U, 012 = 021 =

1
4 − U,

� 9(ℎ) = 0 91 �(C= + 21ℎ) + 0 92 �(C= + 22ℎ), 9 ∈ {1, 2},
D=+1 = eℎ �2(ℎ) eℎ �1(ℎ) D=.

(6.35)

A detailed treatment and specific schemes up to order six can be found in Blanes,
Casas and Thalhammer (2017b, 2018) and up to order eight in Alvermann and
Fehske (2011), whereas Blanes et al. (2021b) have proved that CFQM methods
applied to the Schrödinger equation with Hamiltonian �(C) = − 1

2Δ + +(C) are
unconditionally stable in the underlying Hilbert space and retain full order of
convergence under low regularity requirements on the initial state.

Semiclassical regime. The so-called semiclassical Schrödinger equation

iYmCk(G, C) =
(
−Y

2

2
Δ ++(G)

)
k(G, C) (6.36)

(in atomic units), with a small parameter Y � 1, arises in particular when applying
the time-dependent Born–Oppenheimer approximation for the motion of nuclei
as driven by the potential energy surface of the electrons (Lubich 2008). In that
case Y2 represents the mass ratio of nuclei and electrons. Recall that (6.36) has
highly oscillatory solutions with wavelength ∼ Y, so grid-based numerical schemes
require a resolution of this order in both space and time, which is computationally
very expensive. One of the challenges, therefore, is to construct numerical methods
that are robust in the limit Y → 0.

Several options have been proposed and analysed in detail; see, for instance, the
recent review by Lasser and Lubich (2020). Among others, we can recount the
following.

• Split the equation into the usual kinetic and potential energy parts and ap-
ply the Strang splitting in time in combination with trigonometric spectral
methods (Bao, Jin and Markowich 2002). Although the resulting scheme
is unconditionally stable, time-reversible and preserves the position density,
it requires very fine resolution, in both space and time, for small Y (Jin,
Markowich and Sparber 2011).
• Use a Gaussian wave packet as an approximation for the wave function k(G, C)
depending on certain parameters and apply a variational splitting to get ap-
proximate solutions for the differential equations they satisfy (Faou andLubich
2006). The resulting algorithm is symplectic, time-reversible and preserves
the unit !2-norm of the wave packets.
• Another variant of this approach instead consists in taking Hagedorn wave
packets. They provide a spectral approximation in space with a time-
dependent set of basis functions giving the exact solution of the Schrödinger
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102 S. Blanes, F. Casas and A. Murua

equation with the potential locally approximated by a quadratic function. The
potential +(G) is split into the quadratic term *(@(C), G) in the Taylor expan-
sion of+ , around the time-dependent classical position @(C) and the remainder
(Faou, Gradinaru and Lubich 2009). The overall algorithm has a number of
conservation and limit properties, as listed in Faou and Lubich (2006), for ex-
ample. In addition, highly efficient splitting methods for perturbed problems
can also be applied (Blanes and Gradinaru 2020).

• A different class of exponential splittings is proposed in Bader, Iserles,
Kropielnicka and Singh (2014) for the one-dimensional case. Essentially,
the formal solution of the space-discretized equation D′ = i(Y) − Y−1+)D is
approximated as

eiℎ(Y) −Y−1+ ) ≈ e'0e'1 · · · e'Be)B+1e'B · · · e'1e'0

with error $(Y2B+2). Here '0 = $(Y0), ': = $(Y2:−2), : ≥ 1, and )B+1 =
$(Y2B). In this approach the number of exponentials grows linearly with B
and the exponentials can be computed efficiently, although the terms ': and
)B+1 contain nested commutators.

Nonlinear Schrödinger equations. Introducing nonlinear effects in the Schrödinger
equation allows us to model some relevant physical phenomena taking place in
nonlinear optics, quantum superfluids, plasmas, water waves, etc.; see e.g. Sulem
and Sulem (1999) and references therein. Consider in particular a Bose–Einstein
condensate (BEC), the ground state of a system of interacting bosons very close
to zero temperature. It was first predicted by Einstein in 1925 and experimentally
realized by Anderson et al. (1995). Mathematically, a BEC of an atomic species
trapped in an external potential +(G) is modelled by the (normalized) Gross–
Pitaevskii equation (GPE)

imCk(G, C) =
(
−1

2
Δ ++(G) + f |k(G, C)|2

)
k(G, C), (6.37)

with asymptotic boundary conditions k(G, C)→ 0 as |G | → ∞. Here the parameter
f originates from the mean-field interaction between the particles: repulsive forces
lead to f > 0, whereas f < 0 represents attractive forces. Equation (6.37) has
been the subject of many different studies, including the existence of solutions and
its numerical treatment. Concerning the first aspect, we refer to Cazenave (2003),
Carles (2008) and references therein.
With respect to the numerical integration of the GPE equation, a combination of

spectral discretization in space with splitting methods in time constitutes a natural
option, and in fact has been explored in detail in the literature; see e.g. Bao, Jin and
Markowich (2003b), Bao, Jaksch and Markowich (2003a, 2004) and Thalhammer,
Caliari and Neuhauser (2009). If (6.37) is expressed as

imCk(G, C) = (� + �(G, k))k(G, C), k(G, 0) = k0(G), (6.38)
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Splitting methods for differential equations 103

with

� = −1
2
Δ, �(G, k) = +(G) + f |k |2, (6.39)

it is clear that the solution of the initial value problem ikC = �k, k(G, 0) = k0(G) is

k(G, C) = e−iC �k0(G)

and (an approximation to) k(G, C) is obtained by representing the initial value with
respect to the (truncated) Fourier basis functions.
On the other hand, given a real function �, the solution of

imCk(G, C) = �(G, |k(G, C)|)k(G, C) (6.40)

leaves the norm invariant, i.e. |k(G, C)| = |k(G, 0)|, and therefore

k(G, C) = e−iC�(G, |k(G,0) |) k(G, 0). (6.41)

In consequence, the initial value problem imCk = �k, k(G, 0) = k0(G) is also
solvable. Splitting methods can also be applied in the more general situation when
the potential + is explicitly time-dependent, as explained earlier for the linear
Schrödinger equation.

6.4. Parabolic evolution equations

Let us now consider the evolution equation

D′(C) = !D(C) = �D(C) + �D(C), C ≥ 0, D(0) = D0, (6.42)

where the linear, possibly unbounded, operators �, � and ! generate�0 semigroups
over an infinite-dimensional Banach space - . We recall that if ! is the infinitesimal
generator of the �0 semigroup )(C) on - and D0 ∈ D(!), the domain of ! (which is
dense in -), then D(C) = )(C)D0 is a classical solution of (6.42) (Partington 2004).
Since in the special case of a bounded linear operator ! the solution is given by
the familiar expression D(C) = eC!D0 (Engel and Nagel 2006), the semigroup )(C)
is also denoted by the symbol eC!; see Engel and Nagel (2006), Pazy (1983) and
Yosida (1971) for an introduction to the theory of �0 semigroups.
A prototypical example is the linear heat equation with potential

DC (C, G) =
1
2
ΔD(C, G) −+(G)D(C, G). (6.43)

Here +(G) ≥ 0, C ≥ 0 and G ∈ R3 (or G ∈ T3). In that case (�D)(G) = 1
2ΔD(G),

(�D)(G) = −+(G)D(G) and � generates only a �0 semigroup. This can be seen
by considering the equation DC = 1

2ΔD on 0 < G < 1 with Dirichlet boundary
conditions: the :th Fourier mode of the solution is 2:e− 1

2 (: c)2C , which is generally
not well-defined for C < 0.

Hansen and Ostermann (2009a) have established the following result. Assuming
that ‖eC �‖ ≤ elC , ‖eC�‖ ≤ elC for the same value of l ≥ 0 and all C ≥ 0, and
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104 S. Blanes, F. Casas and A. Murua

that for any operator �A+1 obtained as the product of exactly A + 1 factors chosen
amongst � and �, there is a constant �̃ > 0 such that

‖�A+1eC(�+�)D0‖ ≤ �̃.
Then a splitting method Ψ(ℎ) =

∏B
9=1 e1 9ℎ� e0 9ℎ�, with all 0 9 ≥ 0 and 1 9 ≥ 0 and

of classical order A , retains its order when applied to (6.42):

‖(Ψ(ℎ)= − e=ℎ!)D0‖ ≤ �ℎA , for = ℎ ≤ C 5 , (6.44)

where the constant� is independent of = and ℎ on the bounded time interval [0, C 5 ].
In practice, however, the positivity requirement on the coefficients restricts the

splitting method to be of at most order two. If, in addition, [�, [�, �]] is a bounded
operator and ‖eC [�, [�,�] ] ‖ ≤ elC , then the same result (6.44) also holds for splitting
methods involving double commutators,

Ψ(ℎ) =
B∏
9=1

e1 9ℎ�+2 9ℎ
3 [�, [�,�] ] e0 9ℎ�

and positive 0 9 , 1 9 (Kieri 2015). Efficient schemes within this class up to order
four specially tailored to the problem at hand have recently been proposed in Blanes
et al. (2023).

Example: imaginary time propagation. The imaginary-time evolution method is a
well-known approach to computing the ground state (and its corresponding eigen-
value) of a quantum system with Hamiltonian � = − 1

2Δ + + (Auer, Krotscheck
and Chin 2001, Lehtovaara, Toivanen and Eloranta 2007, Bader et al. 2013). Es-
sentially, under the time transformation C = −iB, the time-dependent Schrödinger
equation (1.40) is transformed into (ℏ = 1)

mBk(G, B) =
1
2
Δk(G, B) −+(G)k(G, B), k(G, 0) = k0(G), (6.45)

that is, a linear heat equation of the form (6.43). If we denote the (real) eigenvalues
of � as � 9 , with �0 < �1 < · · · , and the corresponding eigenfunctions as q 9 ,
9 = 0, 1, 2, . . . , the initial wave function k0(G) can be expanded in the orthonormal
basis {q 9},

k0(G) =
∑
9≥0

2 9 q 9(G), 2 9 = 〈q 9 | k(·, 0)〉,

where 〈· | ·〉 is the usual !2-scalar product. Then the solution of (6.45) can be
written as

k(G, B) = e−B�k(G, 0) =
∑
9≥0

e−B� 9 2 9 q 9(G). (6.46)

Notice that for sufficiently large B we get k(G, B) → e−B�020q0, since the other
exponentials decay more rapidly. In other words, any given wave function at B = 0
for which 20 ≠ 0, converges towards the ground state solution when B → ∞.
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Figure 6.1. Imaginary time propagation of the Schrödinger equation. (a) Double-
well potential, initial and (normalized) final wave function obtained with a mesh
with # = 256 and repeated with # = 510 (the two results overlap visually).
(b) Discrete !2-norm error in the normalized solution at the final time, B 5 = 1,
vs. number of FFTs for different values of the time step obtained with the same
methods as in Figure 1.5: solid lines for " = 256 and dashed lines for " = 512
discretization points of the space interval.

Once an accurate approximation to q0 is obtained, the associated eigenvalue �0
is easily obtained by computing �0 = 〈q0 | �q0〉. Other functions q 9 can also be
approximated, for example by propagating different wave functions simultaneously
in time (Aichinger and Krotscheck 2005).
To illustrate the technique, we next consider the same example as in Section 1.6,

but now integrating in imaginary time up to B 5 = 1. We take the same initial
conditions (which is slightly closer to one of the minima of the potential) and
normalize the solution at the final time. Figure 6.1(a) shows the potential, initial
conditions and the normalized wave function at the final time when the spatial
interval, G ∈ [−13, 13], is divided into " = 256 and " = 512 parts, leading
to the same visual results. In Figure 6.1(b) we show the !2-norm error in the
normalized wave function at the final time versus the number of FFTs required
by the same methods as previously, both for " = 256 (solid lines) and " = 512
(dashed lines). We notice that one scheme suffers from step size restriction because
it involves negative coefficients, and this is inversely proportional to ΔG2. However,
the schemes with positive coefficients are insensitive to the spatial mesh.

One possible way to circumvent this order barrier for splitting methods when
applied to problem (6.42) consists in considering schemeswith complex coefficients
08 , 18 having positive real part. As shown in Castella, Chartier, Descombes and
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106 S. Blanes, F. Casas and A. Murua

Vilmart (2009) and Hansen and Ostermann (2009b), any splitting method

Ψ(ℎ) =
B∏
9=1

e1 9ℎ� e0 9ℎ�

within this class still retains its classical order if the previous assumptions are
convenientlymodified. Specifically, we have to extend the notion of a�0 semigroup
)(C) to the sector Σ\ in the complex plane, for some angle 0 < \ < c/2,

Σ\ = {C ∈ C : | arg(C)| < \},

so that )(C) is analytic in C for all C ∈ Σ\ (Engel and Nagel 2006, Pazy 1983).
Thus, if

• !, � and � generate analytic semigroups on - (now a complex Banach space)
in the sector Σ\ , 0 < \ < c/2, with

‖eC �‖ ≤ el |C |, ‖eC�‖ ≤ el |C |

for l ≥ 0 and all C ∈ Σ\ ,
• ‖�A+1eC(�+�)D0‖ ≤ �, where �A+1 is a composition of the operators � and �
that consist of exactly A + 1 factors,

then the splitting method of classical order A with coefficients 08 , 18 ∈ Σ\ ⊂ C
satisfies

‖(Ψ(ℎ)= − e=ℎ!)D0‖ ≤ �ℎA , 0 ≤ =ℎ < C 5 . (6.47)

SinceΨ(ℎ)D0 is complex-valued, this approach cannot be applied in principle when
the operators � and � are real, i.e. for problems defined in a real Banach space
- . The most straightforward remedy consists in projecting the numerical solution
after each time step on the real axis, i.e. computing the approximations D= ≈ D(C=),
as D= = Re(Ψ(ℎ)D=−1). In that case we still have the bound (6.47) for the resulting
integration scheme (Hansen and Ostermann 2009b).

Although this is only valid in the linear case, similar results are observed in
practice in the nonlinear heat equation mCD = ΔD + �(D) with periodic boundary
conditions, at least when � is analytic (Castella et al. 2009, Blanes, Casas, Chartier
andMurua 2013a), so they constitute a strongmotivation to study splitting methods
with complex coefficients in general. This is precisely the subject of the following
section.

7. Splitting methods with complex coefficients
It has been known for a long time that, besides real solutions, the order conditions
arising from splitting and composition methods (see Section 2) also admit complex
solutions (Bandrauk and Shen 1991, Suzuki 1990, 1991, 1995). In fact, some of the
resulting methods were explored in the context of Hamiltonian (Chambers 2003)
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Splitting methods for differential equations 107

and quantum mechanics (Bandrauk, Dehghanian and Lu 2006, Prosen and Pizorn
2006) before being used more recently to overcome the order barrier in parabolic
partial differential equations (Castella et al. 2009, Hansen and Ostermann 2009b).
The use of the complex plane to solve problems formulated in the real line

has proved to be very fruitful in many branches of mathematics, as illustrated by
Painlevé’s famous dictum.6 By applying the same logic in the particular case of
splitting methods, it is reasonable to ask what benefits (if any) might result from
carrying out the integration along paths in the complex plane.
We have already seen at the end of Section 6 that a strategy to develop effective

methods of order higher than two for systems evolving in a semigroup, such as
the heat equation,7 consists precisely in applying splitting schemes with complex
coefficients having positive real part. Moreover, the large number of complex
solutions for the order conditions might offer more flexibility in the final choice of
coefficients, and perhaps lead to schemes with smaller truncation errors and new
symmetries.
On the other hand, when dealing with problems formulated in the real line, the

use of complex arithmetic introduces an additional computational cost with respect
tomethods with purely real coefficients. From a theoretical point of view, the vector
field appearing in the differential equation has to be analytic at least in a domain
containing the path where the actual integration is carried out in the complex plane.
Otherwise, order reductions are to be expected unless the implementation is not
conveniently adapted.
In this section we summarize some of the issues involved in the construction and

analysis of splitting methods with complex coefficients, and also review some of
their most salient properties with regard to preservation of qualitative properties,
in both classical Hamiltonian and quantum systems.
For brevity, henceforth we denote a complex number 0 with positive real part by

writing 0 ∈ C+, sowe are only interested inmethodswhose coefficients 0 9 , 1 9 ∈ C+.

7.1. Compositions

Most of the existing splittingmethodswith complex coefficients have been construc-
ted by applying the composition technique of Section 2.1. Here, for completeness,
we review the process, starting with the Lie–Trotter scheme jℎ = i [2]ℎ ◦ i

[1]
ℎ

as
the basic method and composing it with different weights. The simplest situation
corresponds of course to

q
[2]
ℎ
≡ jW1,2ℎ ◦ jW1,1ℎ . (7.1)

6 ‘Il apparut que, entre deux vérités du domaine réel, le chemin le plus facile et le plus court passe
bien souvent par le domaine complexe’ (Painlevé 1900).

7 This in fact constitutes Problem 10 in the list of open problems posed in McLachlan and Quispel
(2002).
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In accordance with Section 2.1.2, q [2]
ℎ

is of order two if the coefficients satisfy
equation (2.14), that is,

W1,1 =
1
2
± 1

2
i, W1,2 = W1,1 =

1
2
∓ 1

2
i.

If we try to construct a method of order three, a composition of at least four maps
jℎ is needed, since in that case there are four order conditions. Although there
are eight solutions (+cc), only four have positive real part. In fact, two of these
solutions result from composing q [2]

ℎ
, namely

q
[3]
ℎ
= q

[2]
W2,2ℎ
◦ q [2]

W2,1ℎ
, (7.2)

by requiring that W2,1 + W2,2 = 1, W3
2,1 + W

3
2,2 = 0. Notice that in (7.2) W2,2 = W2,1.

This procedure can in principle be repeated by considering the recurrence

q
[A+1]
ℎ

= q
[A ]
WA,<A ℎ

◦ · · · ◦ q [A ]
WA,1ℎ

, A = 1, 2, . . . (7.3)

to construct higher-order methods with any first-order integrator q [1]
ℎ

(not neces-
sarily the Lie–Trotter scheme). It turns out, however, that q [4]

ℎ
and higher-order

schemes obtained from (7.3) have at least one coefficient with negative real part
(Blanes et al. 2013a). Thus, if we are interested in schemes having only coefficients
inC+, A = 3 indeed constitutes an order barrier for this type of composition (Hansen
and Ostermann 2009b).

Let us now consider the Strang splitting as the basic method. Then composition
(2.1) with B = 2 already provides a method of order three:

(
[3]
ℎ
= (
[2]
W2ℎ
◦ ( [2]

W1ℎ
, with W1 =

1
2
± i
√

3
6
, W2 = W1. (7.4)

Again, higher-order methods can be obtained by applying the recursive procedure

(
[A+1]
ℎ

= (
[A ]
WA,2ℎ
◦ ( [A ]

WA,1ℎ
, A = 2, 3, . . . , (7.5)

with WA ,1 + WA ,2 = 1, WA+1
A ,1 + W

A+1
A ,2 = 0 (see (2.52)). The solution with the smallest

phase is given by

W:,1 =
1
2
± i

2
tan
(

c

2(A + 1)

)
, WA ,2 = WA ,1, (7.6)

but only schemes up to order six with coefficients in C+ are possible with this
approach (Hansen and Ostermann 2009b).
As we have already seen, the triple jump (2.4) allows us to raise the order by

two. Thus, starting from (
[2]
ℎ

, the composition

(
[4]
ℎ
= (
[2]
W3ℎ
◦ ( [2]

W2ℎ
◦ ( [2]

W1ℎ
(7.7)
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Splitting methods for differential equations 109

has, apart from the real solution (2.3),

W1 = W3 =
1

2 − 21/3e2iℓ c/3 , W2 = 1 − 2U1, ℓ = 1, 2, (7.8)

corresponding to a time-symmetric composition, and

W1 = W3 =
1
4
± i

1
4

√
5
3
, W2 =

1
2
, (7.9)

possessing the same symmetry as (7.2) and (7.4). Palindromic methods up to order
eight with coefficients having positive real part are possible by applying the triple
jump composition, whereas if we instead consider the quadruple jump,

(
[2: ]
W:,1ℎ
◦ ( [2: ]

W:,2ℎ
◦ ( [2: ]

W:,2ℎ
◦ ( [2: ]

W:,1ℎ
,

we can achieve order 14 with all coefficients in C+. These order barriers have been
rigorously proved in Blanes et al. (2013a).
Compositions (7.4) and (7.7) can be reformulated as splitting methods when ( [2]

ℎ

is the Strang splitting. Thus

(
[3]
ℎ
= i

[1]
01ℎ
◦ i [2]

11ℎ
◦ i [1]

02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ
, (7.10)

with

01 =
1
4
± i
√

3
12
, 11 =

1
2
± i
√

3
2
, 02 =

1
2
,

whereas the palindromic version of (7.7) reads

(
[4]
ℎ,%

= i
[1]
01ℎ
◦ i [2]

11ℎ
◦ i [1]

02ℎ
◦ i [2]

12ℎ
◦ i [1]

02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ
, (7.11)

with

01 =
W1
2
, 11 = W1, 02 =

1
2
− 01, 12 = 1 − 211,

respectively. Finally, solution (7.9) leads to

(
[4]
ℎ,�

= i
[1]
01ℎ
◦ i [2]

11ℎ
◦ i [1]

02ℎ
◦ i [2]

12ℎ
◦ i [1]

02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ
, (7.12)

with

01 =
11
2
, 11 =

1
4
± i

1
4

√
5
3
, 02 =

1
4

(211 + 1), 12 =
1
2
.

Before proceeding further, it is useful to illustrate how the different symmetries of
these third- and fourth-order schemes manifest in practice on a simple example.

Example: two-level system. We consider the time evolution of a two-level quantum
system, described by (Messiah 1999)

i
d*
dC

= �* = (f1 + f2)*, with f1 =

(
0 1
1 0

)
, f2 =

(
0 −i
i 0

)
(7.13)
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Figure 7.1. (a) Evolution of error in unitarity for system (7.13) integrated with
third- and fourth-order splitting methods with complex coefficients. (b) Efficiency
diagram computed for a final time C 5 = 10. Different patterns in the coefficients
lead to different qualitative behaviour.

and*(0) = �. Clearly,*(C) is a 2× 2 unitary matrix and det*(C) = 1. We test both
the preservation of unitarity in the numerical approximations and the computational
efficiency of the previous third- and fourth-order schemes. To this end, we take
i
[ 9 ]
ℎ
= egf 9 , 9 = 1, 2, with g = −iℎ, and compare with the exact solution eg(f1+f2).

Notice that for problems formulated in complex variables, the use of complex
coefficients does not generally increase the overall cost of the algorithm.
We fix C 5 = 1000 as the final time, and adjust ℎ (and therefore the number of

steps =) so that all the methods require the same computational effort. Specifically,
= = 6000 (ℎ = 1/6) for scheme (7.10) and = = 4000 (ℎ = 1/4) for the fourth-order
methods (7.11) and (7.12). Finally we compute |‖*app( 9 ℎ)‖ − 1|, 9 = 1, 2, . . . , =,
where *app( 9 ℎ) denotes the approximate solution after 9 steps, which is shown in
Figure 7.1(a). The dashed (red) line corresponds to scheme (7.11), the solid (black)
line is produced by (7.12), and finally the dot-dashed line is the result obtained with
the third-order scheme (7.10). Notice the different behaviour of different classes of
integrators with complex coefficients: whereas error in the preservation of unitarity
does not grow with time for methods (7.12) and (7.10), it certainly does for the
palindromic scheme (7.11).

Figure 7.1(b) shows an efficiency diagram of these integrators, together with the
classical triple jumpwith real coefficients (dotted line). It is produced by integrating
(7.13)with different values of ℎ and computing the error of the approximation (in the
2-norm) at the final time C 5 = 10 as a function of the computational cost (estimated
as the number of exponentials involved in the whole integration). We observe
the surprisingly good performance of scheme (7.10) and the superior efficiency
of the fourth-order methods with complex coefficients in comparison to their real
counterpart. This is related to the difference in size of the main error term in
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the expansion of the modified operator associated with each fourth-order method,
which is typically associated with the coefficient multiplying E5 = |

∑3
9=1 W

5
9
|. Thus,

E5 is about 200 times smaller for the schemes (7.8) and (7.9) than for the triple
jump with real coefficients (Blanes, Casas and Escorihuela-Tomàs 2022a).

7.2. Symmetric-conjugate methods and unitary problems

The previous example shows that the time-symmetric character of a method with
complex coefficients does not necessarily guarantee good preservation properties,
whereas the situation is different for schemes (7.12) and (7.10). They belong to the
general class of methods

kℎ = i
[1]
0B+1ℎ

◦ i [2]
1Bℎ
◦ i [1]

0Bℎ
◦ · · · ◦ i [1]

02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ
, (7.14)

whose coefficients verify

0B+2− 9 = 0 9 , 1B+1− 9 = 1 9 , 9 = 1, 2, . . . (7.15)

and can be properly called symmetric-conjugate. They possess the following dis-
tinctive feature: assume our differential equation G ′ = 5 (G) is reversiblewith respect
to complex conjugation, in the sense that 5 (G) = − 5 (G) for all G ∈ C, and the same
holds for each piece 5 9 in 5 = 51 + 52. Then scheme (7.14)–(7.15) verifies

kℎ = k
−1
ℎ , (7.16)

so that the map kℎ is also reversible with respect to complex conjugation (Hairer
et al. 2006, sect. V.1). Notice that (7.16) is not satisfied by palindromic composi-
tions involving complex coefficients.
Property (7.16) has some major consequences. Suppose we are dealing with the

linear problem

i
dD
dC
= �D, D(0) = D0, D ∈ C# , (7.17)

where � is an # × # real matrix of the form � = �1 + �2, with �1, �2 also real,
so that the symmetric-conjugate method (7.14)–(7.15) reads

kg = e01g�1 e11g�2 e02g�1 · · · e02g�1 e11g�2 e01g�1 (7.18)

with g = −iℎ. Bernier, Blanes, Casas and Escorihuela-Tomàs (2023) have proved
that if all the eigenvalues of� are real and simple, then, for sufficiently small ℎ, there
exist real matrices �g (diagonal) and %g (invertible) such that k=g = %g e=g�g%−1

g ,
all the eigenvalues of the linear map kg have modulus 1 and the norm |D |2 and the
energy D>�D are almost preserved for long times. In other words, any symmetric-
conjugate splitting method kg applied to (7.17) is similar to a unitary method for
sufficiently small values of the step size ℎ.
We should recall that the time-dependent Schödinger equation, once discretized

in space, leads to an equation of the form (7.17), with both �1 and �2 real and
symmetric matrices: �1 = ) is associated with the second-order periodic spectral
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differentiation matrix and �2 = + is the (diagonal) matrix corresponding to the po-
tential evaluated at the grid points. It is then admissible to use symmetric-conjugate
methods in this setting, since they also guarantee preservation of invariants for suf-
ficiently small values of ℎ. We should notice, however, that both positive and
negative imaginary parts are present in the scheme if 0 9 ∈ C (since the method is
consistent), and this may lead to severe instabilities due to the unboundedness of
the Laplace operator (Castella et al. 2009, Hansen and Ostermann 2009b). It then
seems appropriate to consider in this setting only symmetric-conjugate splitting
methods with 0 < 0 9 < 1 and 1 9 ∈ C+. Different schemes of orders three to
six within this family have been proposed and tested in Bernier et al. (2023), also
showing promising results in terms of efficiency.
If, on the other hand, the equation to integrate is of the form

dD
dC
= �D = (�1 + �2)D, D(0) = D0, D ∈ R# (7.19)

with �1, �2 real symmetric matrices, then a symmetric-conjugate splitting method
kℎ of order A satisfies

(kℎ)> = kℎ,

for all values of ℎ. In consequence, there exists a family of unitary matrices *ℎ
and a family of real diagonal matrices �ℎ depending smoothly on ℎ such that

(kℎ)= = *ℎ e=ℎ�ℎ (*ℎ)>,

where Im(*ℎ) = $(ℎA ) and �ℎ is a perturbation of order A of the matrix �0
diagonalizing �. If D= = (kℎ)=D0, then the quantity ‖Im(D=)‖/‖D=‖ remains
bounded along the numerical trajectory, since the error in the imaginary part is
only due to the transformation*ℎ. Again, this is not true for palindromic schemes
with complex coefficients.
We can then conclude that symmetric-conjugate splitting methods can be safely

used to integrate equation (7.19) when �1 and �2 are real symmetric, as for
palindromic (or time-symmetric) schemeswith real coefficients, with one important
difference: whereas in splitting methods with real coefficients at least one 0 9 and
at least one 1 9 are negative when the order A ≥ 3, symmetric-conjugate methods
of order A ≥ 3 do exist with coefficients having positive real part.

Several parabolic PDEs lead to equation (7.19) after space discretization. This
is the case, in particular, for the time-dependent Schrödinger equation in imaginary
time (6.45).

7.3. Projecting on the real axis

In the general case of an equation G ′ = 5 (G) = 51(G) + 52(G) with 51, 52 real, the
usual practice consists in projecting the numerical evolution after each time step
to its real part, since we are interested in getting real approximations to the exact
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solution. Thus, if kℎ is a splitting method of order A , by following this approach,
we are actually applying the scheme

'ℎ =
1
2

(kℎ + kℎ), (7.20)

which is also at least of order A , in agreement with the comments at the end of
Section 6 (Hansen and Ostermann 2009b). In fact, the order of 'ℎ is actually A + 1
if kℎ is symmetric-conjugate and A is odd. This was already noticed by Chambers
(2003) for the third-order method (7.10) and proved in general by Blanes, Casas,
Chartier and Escorihuela-Tomàs (2022c).
This feature of symmetric-conjugate methods has some effects, especially when

constructing high-order schemes to be used by projecting on the real axis. Although
apparently a symmetric-conjugate composition requires us to solve the same num-
ber of order conditions to achieve order A as a general composition (and more than
a palindromic one for orders higher than four), additional reductions take place
for the projected method (7.20) (Blanes et al. 2022c), and in fact the resulting 'ℎ
requires fewer stages. Thus, in particular, it is possible to construct a composition
of the form

kℎ = (
[2]
U1ℎ
◦ ( [2]

U2ℎ
◦ · · · ◦ ( [2]

U2ℎ
◦ ( [2]

U1ℎ
, (7.21)

with ( [2]
ℎ

a time-symmetric second-order method, with only five stages so that its
projected part 'ℎ is of order six, whereas schemes based on palindromic composi-
tions require at least seven stages. The reduction is more notable for higher orders:
thus, a composition (7.21) of order five involving nine appropriately chosen stages
leads to a projected method 'ℎ of order eight. By contrast, 15 stages are required
by palindromic compositions.
One of the salient features of splitting and composition methods is that they pre-

serve by construction qualitative features of the exact solution, as seen in Section 4.
These favourable properties are of course lost when the special linear combination
(7.20) is considered, but nevertheless the resulting scheme 'ℎ still preserves them
up to an order much higher than the order of the method itself. More specifically,
suppose ( [2]

ℎ
is a time-symmetric second-order and symplectic method applied to

a Hamiltonian system. Then we have the following result (Blanes et al. 2022c).

• If the symmetric-conjugate composition kℎ given in (7.21) is of odd order
A = 2: −1, : ≥ 2, then the method 'ℎ (of order 2:) preserves time-symmetry
up to order 4: − 1, that is,

'ℎ ◦ '−ℎ = id +$(ℎ4:),

and symplecticity up to the same order,

('′ℎ)> � '′ℎ = � +$(ℎ4:),

where � denotes the canonical symplectic matrix and '′
ℎ
is the Jacobian.
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• If kℎ is symmetric-conjugate and of even order A = 2: , then 'ℎ (which is also
of order 2:) preserves time-symmetry and symplecticity up to order 4: + 3.
• If kℎ is palindromic of order A = 2: , then the resulting 'ℎ (also of order 2:)
preserves time-symmetry and symplecticity up to order 4: + 1.

8. A collection of splitting methods
Once the order conditions for a splitting or composition method of a given order
A have been explicitly obtained, the next step in the construction of particular
schemes consists of course in solving these polynomial equations to determine
the coefficients. To begin, we consider compositions with as many parameters as
equations and try to use a computer algebra system to determine all real solutions.
Nevertheless, solving the order conditions in this way is only possible for moderate
values of A , and thus we have to turn to numerical techniques. Since the number
of real solutions usually increases with the order, the problem is how to select the
particular solution expected to give the best performance when the integrator is
applied to practical problems. This is typically done by minimizing some objective
function, depending on the particular class of schemes considered. Thus, in the
case of splitting methods of the form (2.17), we try to minimize the leading error
term in the asymptotic expansion of log(Ψ(ℎ)) in (2.21), namely

∑2A+1
9=1 V 9�A+1, 9 ,

where �A+1, 9 denote the elements of the Lyndon basis associated with Lyndon
words with A + 1 letters. The objective function is then

�A+1 =

(2A+1∑
9=1
|V 9 |2

)1/2
.

However, we have to take into account that �A+1 will change if another basis of
Lie brackets is considered. We are also assuming that all these brackets contribute
in a similar way, something that is not guaranteed to take place in general. It
makes sense, then, to introduce other quantities as possible estimators of the error
committed. In particular, it has been noticed that large coefficients 0 9 , 1 9 in the
splitting method usually lead to large truncation errors, since higher-order terms in
Ψ(ℎ) depend on increasingly higher powers of these coefficients. For this reason,
it is also convenient to keep track of the quantities

Δ ≡
∑
9

(|0 9 | + |1 9 |) and X ≡ max
9

(|0 9 |, |1 9 |) (8.1)

and eventually discard solutions with large values of Δ or X. In the case of com-
positions (2.15) of a basic first-order method and its adjoint, and compositions of
Strang maps, (2.1), a frequently used criterion is to choose the solution that minim-
izes

∑2B
9=1 |U 9 | and

∑B
9=1 |W 9 |, respectively. Other possibilities include minimizing

only those terms in the truncation error that are not removable by a processor, in
accordance with the analysis carried out in Sections 4 and 5.
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Including additional maps (stages) in the composition provides additional para-
meters that may lead to smaller values of the chosen objective function. It is
important at this point to remark that the efficiency of a method is measured by
taking into account the computational cost required to achieve a given accuracy.
Thus, if we have several methods of order A with different computational cost (usu-
ally measured as the number of stages or evaluations of the functions involved), the
most efficient method does not necessarily correspond to the cheapest method: the
extra cost of some methods can be compensated by an improvement in the accuracy
obtained. In fact, this is what usually happens in practice, although solving the
polynomial equations with additional stages (and free parameters) is by no means a
trivial task. Continuation techniques have been shown to be very useful in this con-
text; see e.g. Blanes et al. (2013b) and Alberdi, Antoñana, Makazaga and Murua
(2019).
The use of the processing technique also allows us to construct methods of a

given order typically requiring a reduced computational effort, so that the over-
all efficiency of the resulting schemes is enlarged if the output is not frequently
computed.
With all these considerations in mind, our purpose in this section is to present a

comprehensive overview of (most of) the existing methods with real coefficients by
classifying them into different families and giving the appropriate references. The
corresponding coefficients can be found atwww.gicas.uji.es/SplittingMethods.html.

8.1. Symmetric compositions of time-symmetric second-order schemes

Perhaps the first method in this family corresponds to the fourth-order method
obtained from the triple jump composition (2.4) when : = 2. It was known and
internally used in the accelerator physics community during the 1980s (Forest and
Ruth 1990) but was independently discovered afterwards in several settings: in
Candy and Rozmus (1991), in Campostrini and Rossi (1990) as an algorithm for
hybrid Monte Carlo simulations, and also in Creutz and Gocksch (1989) as the
more general composition

(
[2:+2]
ℎ

=
(
(
[2: ]
W1ℎ

)?◦( [2: ](1−2?W1)ℎ◦
(
(
[2: ]
W1ℎ

)?
, with W1 =

1
2? − (2?)1/(2:+1) . (8.2)

This recursion was also obtained in Suzuki (1990, 1991), whereas the case ? = 1
became immensely popular following Yoshida (1990). It was in a certain sense
generalized by McLachlan (2002), who provided a rule of thumb to select the
optimal value of ? for different orders, also valid for processed methods.

As stated in Section 2.1, other choices for the coefficients W 9 in the more general
composition

kℎ = (
[2]
WBℎ
◦ ( [2]

WB−1ℎ
◦ · · · ◦ ( [2]

W1ℎ
(8.3)

lead to more efficient schemes when A ≥ 6. It turns out that virtually all published
methods of this form correspond to time-symmetric compositions, i.e. WB+1− 9 = W 9 ,
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Table 8.1. Symmetric compositions of second-order symmetric methods of order
A = 4, 6, 8, 10 published in the literature. We indicate the number of stages s and
the pertinent reference. Processed methods are preceded by P. The recommended
methods, in accordance with the experiments in the Appendix, are framed .

kℎ = (
[2]
WBℎ
◦ ( [2]

WB−1ℎ
◦ · · · ◦ ( [2]

W1ℎ

A = 4 A = 6 A = 8 A = 10

3-CR90
5 -SUZ90,MCL95b

7-YOS90
9-MCL95b,KR97
11- 13 -SS05

15-YOS90,SUZ93,
MCL95b,KR97

17-MCL95b,KR97
19- 21 -SS05
24-CSS93

31-SUZ93,KR97,SS05
33-KR97,TSI99,

HLW02,SS05
35 -SS05

P:3-17-MCL02 P: 11 -13-BCM06 P: 13 -19-BCM06 P:19- 23 -BCM06

and are therefore of even order. There are at least two reasons for that: (i) the task of
constructing new schemes is simplified, since the number of order conditions to be
solved ismuch reduced, and (ii) the resultingmethods also require a smaller number
of stages B, since the number of order conditions at even orders (automatically
satisfied by a time-symmetric composition) is greater than the total number of
order conditions divided by 2, for sufficiently large A . For instance, constructing a
non-symmetric eighth-order scheme requires at least B = 16 (and therefore to solve
a system of 16 polynomial equations), whereas B = 15 is the minimum number
for a symmetric composition, so that only eight polynomial equations have to be
solved.
In Table 8.1 we present the most relevant schemes of this type found in the

literature. At each order, A , we label each method by the number of stages s and
an acronym indicating the author(s) and year when it was first published. We also
include processed methods, referred to as P:s, where s is the number of stages of
the kernel. The following list provides additional information about the collected
schemes.

CR90. Collective name given to the triple jump composition, (8.2) with : = ? = 1.
SUZ90. Recursion (8.2) with : = 1, ? = 2, proposed in Suzuki (1990).
YOS90. Yoshida (1990) gives three sixth-order compositions with B = 7 and five

eighth-order methods with B = 15.
CSS93. Calvo and Sanz-Serna (1993b) obtain a seventh-order non-symmetric

scheme which can be written as composition (8.3) with B = 12. After
symmetrization, it provides a 24-stage eighth-order method.
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SUZ93. Suzuki and Umeno (1993) provide one sixth-order method with B = 14,
six eighth-order methods with B = 15 and four tenth-order schemes with
B = 31.

MCL95b. McLachlan (1995b) gives several optimized schemes: one fourth-order
method with B = 5, one sixth-order method with B = 9, and two eighth-order
methods with B = 15 and B = 17.

KR97. Kahan and Li (1997) also present several optimized schemes: two sixth-
order methods with B = 9, three eighth-order methods (one with B = 15 and
two with B = 17), and five tenth-order methods (two with B = 31 and three
with B = 33).

TSI99. Tsitouras (1999) constructs one optimized tenth-order method with B = 33.
MCL02. Construction of kernel with recurrence (8.2) for several values of ? in

McLachlan (2002).
HLW02. Hairer, Lubich andWanner (2006, first edition published in 2002) provide

one optimized tenth-order method with B = 33, the most efficient at the time.
SS05. Sofroniou and Spaletta (2005) carry out an exhaustive search of sixth-order

schemes with B = 11, 13, eighth-order methods with B = 19, 21, and tenth-
order methods with B = 31, 33, 35.

BCM06. Blanes, Casas and Murua (2006a) give several processed methods: two
sixth-order kernels with B = 11 and B = 13, two eighth-order kernels with
B = 13 and B = 19, and two tenth-order kernels with B = 19 and B = 23.

8.2. Splitting into two parts / composition of a basic first-order method and its
adjoint

Although the order conditions for the two types of scheme,

kℎ = i
[1]
0B+1ℎ

◦ i [2]
1Bℎ
◦ i [1]

0Bℎ
◦ · · · ◦ i [1]

02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ
(8.4)

and
kℎ = jU2Bℎ ◦ j∗U2B−1ℎ

◦ · · · ◦ jU2ℎ ◦ j∗U1ℎ
, (8.5)

are equivalent by virtue of the relationship (2.18), the optimization procedures to
get the most efficient schemes may differ. In consequence, a particular method
optimized for systems that are separable into two parts is not necessarily the best
scheme when written as (8.5), although in practice their performances are closely
related.
Since schemes of order A ≥ 6 require more stages than taking the composition

(8.3) with ( [2]
ℎ
= jℎ/2 ◦ j∗ℎ/2 or (

[2]
ℎ
= i

[1]
ℎ/2 ◦ i

[2]
ℎ
◦ i [1]

ℎ/2, only methods with A ≤ 4
seem promising. Note, however, that a sixth-order symmetric composition (8.3)
with B = 7 has only three real solutions for the W 9 , whereas symmetric versions of
(8.4) and (8.5) require at least B = 9 stages to solve the nine order conditions. This
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Table 8.2. Symmetric composition schemes of the form (8.4) (appropriate when
the ODE is split in two parts) and (8.5) (composition of a first-order method and
its adjoint) of order A = 2, 3, 4, 6 with real coefficients. The notation is the same
as in Table 8.1.

kℎ = jU2Bℎ ◦ j∗U2B−1ℎ
◦ · · · ◦ jU2ℎ ◦ j∗U1ℎ

,

kℎ = i
[1]
0B+1ℎ

◦ i [2]
1Bℎ
◦ i [1]

0Bℎ
◦ · · · ◦ i [1]

02ℎ
◦ i [2]

11ℎ
◦ i [1]

01ℎ

A = 2 A = 3 A = 4 A = 6

2 -MCL95b,OMF03,BCS14
3-BCS14

3-RUT83,SUZ92 4-5-MCL95b
6 -BM02

9-FOR92
10 -BM02

P:3, 4 -BCR99
P: 6 -BCM06

P:5-BCR99
P: 9 -BCM06

enlarged number of equations might then provide some solution leading to smaller
error terms.
The schemes presented in Table 8.2 have been specifically designed to deal with

these problems, and cannot be obtained as particular cases of the composition (8.3).
In more detail, they correspond to the following.

RUT83. Ruth (1983) gives the first three-stage third-order non-symmetric method
for systems separable into two parts.

SUZ92. Suzuki (1992) presents a family of three-stage third-order methods for the
composition (8.5) with B = 3 and U6 = 0.

FOR92. Forest (1992) gives a sixth-order method for separable systems with B = 9.

MCL95b. McLachlan (1995b) gives an optimized two-stage second-order method
and two optimized fourth-order schemes of the form (8.4) with B = 4 and
B = 5.

BCR99. Blanes, Casas and Ros (1999b) present several processed methods for
separable systems: fourth-order methods with B = 3 and B = 4, one fifth-order
method with a non-symmetric kernel and B = 4, and finally one sixth-order
scheme with B = 5.

BM02. Blanes and Moan (2002) obtain one fourth-order method with B = 6 and
one sixth-order method with B = 10, both optimized for separable systems.

OMF03. Omelyan, Mryglod and Folk (2003) rediscover the optimized two-stage
second-order scheme of McLachlan (1995b) as an efficient method with
positive coefficients.
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BCM06. Blanes, Casas and Murua (2006a) provide one fourth-order processed
method with B = 6 and two sixth-order processed schemes with B = 9 and
B = 10.

BCS14. Blanes, Casas and Sanz-Serna (2014) propose efficient symmetric second-
order methods with B = 2 and B = 3, designed for hybrid Monte Carlo
simulations.

8.3. Runge–Kutta–Nyström methods

Given the relevance of the problem H′′ = 6(H), and the simplifications arising when
splitting methods are applied to this system (see Section 3.1), many RKN splitting
schemes have been obtained in the literature. Since �1 and �2 play different roles
here, it is convenient to classify them according to the sequence of coefficients as

AB : i
[�]
0Bℎ
◦ i [�]

1Bℎ
◦ · · · ◦ i [�]

01ℎ
◦ i [�]

11ℎ
,

BA : i
[�]
1Bℎ
◦ i [�]

0Bℎ
◦ · · · ◦ i [�]

11ℎ
◦ i [�]

01ℎ
,

(8.6)

although in fact the two types are conjugate to each other, thus providing similar
efficiency. A word of caution is necessary: in all the RKN splitting methods pub-
lished in the literature the operator �1 as defined in Section 3.1 is in fact associated
with the map i [�]C , and �2 is associated with i [�]C , so that [�1, [�1, [�1, �2]]] = 0.
Thus, in particular, in classical and quantum mechanics, � corresponds to the kin-
etic energy and � to the potential energy. This should be taken into account when
implementing the schemes collected here.
It is also convenient to take profit of the FSAL (first same as last) property, and

thus we may consider the non-equivalent compositions

ABA : i
[�]
0B+1ℎ

◦ i [�]
1Bℎ
◦ i [�]

0Bℎ
◦ · · · ◦ i [�]

11ℎ
◦ i [�]

01ℎ
,

BAB : i
[�]
1B+1ℎ

◦ i [�]
0Bℎ
◦ i [�]

1Bℎ
◦ · · · ◦ i [�]

01ℎ
◦ i [�]

11ℎ
,

(8.7)

as well as their time-symmetric versions (0B+2−8 = 08 , 1B+1−8 = 18 for ABA and
1B+2−8 = 18 , 0B+1−8 = 08 for BAB, respectively).
In Table 8.3we present themost representativemethodswithin this class. We add

S or N to distinguish symmetric from non-symmetric schemes and the subscript
AB, ABA and BAB to denote the different alternatives (8.6), (8.7). Processed
methods have also been included. Explicitly, they correspond to the following.

FOR92. Forest (1992) gives a sixth-order method with B = 7.
MA92. McLachlan andAtela (1992) present non-symmetric fourth- and fifth-order

methods with B = 4 and B = 6, respectively.
CSS93. Calvo and Sanz-Serna (1993a) obtain one fourth-order non-symmetric

BAB method with B = 4.
OS94. Okunbor and Skeel (1994) obtain four fifth-order methods with B = 5 and

sixteen sixth-order symmetric methods with B = 7.
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Table 8.3. RKN splitting integrators of order A = 4, 5, 6, 8. Since the role of
the flows i [�]

ℎ
and i [�]

ℎ
is not interchangeable here, we distinguish symmetric S

and non-symmetric N compositions with a subscript AB,ABA,BAB. As usual,
processed methods are preceded by P and the recommended schemes are framed .

RKN splitting methods

A = 4 A = 5 A = 6 A = 8

4NAB-MA92
4NBAB-CSS93
4,5SABA-MCL95b
6 SABA,BAB-BM02
4,5SABA,BAB-OMF03

5NABA-OS94
6 NAB-MA92
6NAB-CHO00

7SABA-FOR92,OS94
7SBAB-FOR92
11SBAB-BM02
14 SABA-BM02

17SABA-OL94
17,18, 19 SABA,BAB-BCE22

P: 2 NAB-BCR99 P:4-6SABA,BAB-BCR01a
P: 7 SBAB-BCR01b

P:9SABA-BCR01a
P: 11 SBAB-BCR01b

OL94. Okunbor and Lu (1994) obtain one eighth-order ABA method with B = 17.
MCL95b. McLachlan (1995b) gives optimized RKN methods of order four with

B = 4 and B = 5, and of order six with B = 7.
BCR99. Blanes, Casas and Ros (1999b) present a processed fourth-order method

with a non-symmetric kernel and B = 2.
CHO00. Chou and Sharp (2000) get a non-symmetric scheme of order five with

B = 6.
BCR01a. Blanes, Casas andRos (2001a) present one processed sixth-ordermethod

with B = 6
BCR01b. Blanes, Casas and Ros (2001b) give one sixth- and one eighth-order

processed method with B = 7 and B = 11, respectively.
BM02. Blanes and Moan (2002) obtain one BAB fourth-order method with B = 6

and two sixth-order methods: one BAB with B = 11 and one ABA with
B = 14.

OMF03. Omelyan, Mryglod and Folk (2003) propose fourth-ordermethods of type
ABA and BAB with B = 4 and B = 5.

BCE22. Blanes, Casas and Escorihuela-Tomàs (2022b) obtain optimized eighth-
order methods with B = 17, 18 and 19 of type ABA and BAB.

As we have seen in Section 3.2, the particular structure of problem H′′ = 6(H)
allows us to include the flows corresponding to nested commutators in the previous
compositions (8.6)–(8.7). This may on one hand lead to more efficient schemes,
and on the other hand allow us to achieve order four with only positive coefficients.
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Table 8.4. RKN splitting methods of order A = 4, 6, 8 with modified potentials.
Schemes are coded as in Table 8.3.

RKN splitting methods with commutators

A = 4 A = 6 A = 8

2SABA,BAB-KOS93,CHI97
4SABA,BAB-SUZ95
3, 4 ,5SABA,BAB-CHI06,OMF02

4, 5 SABA,BAB-OMF02 11SABA,BAB-OMF02

P: 1 SBAB-TI84,ROW91,
WHT96,BCR99

P:2SBAB-LSS97

P: 3 SABA,BAB-BCR99 P:4SABA-BCR01a
P:5SBAB-BCR01a,BCR01b

In Table 8.4 we present some relevant methods within this class, both processed
and non-processed. They correspond to the following.

TI84. Takahashi and Imada (1984) obtain the kernel of a fourth-order processed
method with B = 1.

ROW91. Rowlands (1991) rediscovers the kernel of the fourth-order processed
method with B = 1.

KOS93. Koseleff (1993) obtains the first fourth-order BAB method with positive
coefficients with B = 2 (but with a misprint in one of the coefficients).

SUZ95. Suzuki (1995) gives fourth-order ABA and BAB methods with B = 3.

WHT96. Wisdom, Holman and Touma (1996) obtain one fourth-order processed
method with B = 1.

LSS97. López-Marcos, Sanz-Serna and Skeel (1997) obtain fourth-order pro-
cessed methods with B = 2.

CHI97. Chin (1997) rediscovers the fourth-order method of Koseleff (1993) (but
now with the correct coefficients) and shows its efficiency in practice.

BCR99. Blanes, Casas and Ros (1999b) obtain the following processed methods:
one fourth-order method with B = 1, one non-symmetric fifth-order method
with B = 2 and one sixth-order method with B = 3.

BCR01a. Blanes, Casas and Ros (2001a) present one sixth-order method with
B = 2 and higher-order commutators and two sixth-order methods with B = 3.

BCR01b. Blanes, Casas and Ros (2001b) propose one optimized sixth-order
method with B = 3 and one eighth-order method with B = 5.
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OMF03. Omelyan,Mryglod and Folk (2003) present a detailed treatment of fourth-
order methods with 2 ≤ B ≤ 5 and sixth-order methods with B = 4, 5 both
ABA and BAB and different number of modified potentials.

CHI06. Chin (2006) obtains families of fourth-order schemes with coefficients
written analytically in terms of free parameters for B > 2.

8.4. Methods for near-integrable systems

Aswe have seen in Section 3.3, splittingmethods are outstanding for near-integrable
systems of the form G ′ = 51(G) + Y 52(G): the presence of two parameters, ℎ (the
step size) and Y (the size of the perturbation), allows us to reduce the number of
order conditions and still construct highly efficient schemes. There are problems
where, in addition, we can use the same techniques as for RKN methods and also
incorporate the flows of nested commutators into the algorithm. This is the case,
in particular, for Hamiltonian systems of the form � = �1 + Y�2, when �1 is
the sum of two-body Kepler problems and �2 depends only on coordinates. If
we let �1 denote the operator associated with �1, and let �2 denote the operator
associated to the perturbation �2, then [�2, [�2, [�2, �1]]] = 0, and the analysis
done in Section 3.1 can be applied here (with the obvious interchange �1 ↔ �2).

In Table 8.5 we separate, as usual, non-processed from processed schemes
(preceded by P). We also include methods when [�2, [�2, [�2, �1]]] = 0 (second
row) and schemes with nested commutators (denoted by a label ∗) in the last two
rows of processed methods.
WH91. Wisdom and Holman (1991) present the first (2, 2) method.
MCL95a. McLachlan (1995a) gives families of symmetric (2B, 2) schemes of type

ABA and BAB with B ≤ 5 and positive coefficients, one BAB (6,4) method
with B = 4 and two (8,4) ABA and BAB schemes with B = 5.

WHT96. Wisdom, Holman and Touma (1996) present one processed (:, 2)method
with : = 16 and B = 1.

BCR00. Blanes, Casas and Ros (2000) give several processed methods: (i) one
non-symmetric (6,4,3) method with B = 2, one (7,6,4) method with B = 3,
one (7,6,5,4) method with B = 4, and (ii) several RKN methods, one (6,4)
with B = 2 and one (7,6,5) with B = 3 both non-symmetric. In addition,
with modified potentials, they give one (6,4) with B = 1 and a non-symmetric
(7,6,5) with B = 2.

LR01. Laskar and Robutel (2001) carry out a systematic study of (2B, 2) methods,
and obtain new schemes up to B = 10 with positive coefficients. The order
of these methods is increased to (2B, 4) by including an appropriate modified
potential.

BCF13. Blanes et al. (2013b) present several schemes of type ABA: one (10,4)
with B = 7, one (8,6,4) with B = 7 and one (10,6,4) with B = 8.
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Table 8.5. Splitting methods for near-integrable systems of the form G ′ =
51 + Y 52. For processed methods we also include methods applicable when
[�2, [�2, [�2, �1]]] = 0 (the last two rows of processed methods) and schemes
with modified flows (labelled ∗).

Splitting methods of generalized order

(=, 2) (=, 4) (=, 6, 4)

1 (2,2)S-WH91
n (2n,2)SABA,BAB-MCL95a,LR01

4(6,4)SBAB-MCL95a
5 (8,4)SABA,BAB-MCL95a
7(10,4)SABA-BCF13

7 (8,6,4)SABA-BCF13
8 (10,6,4)SABA-BCF13

P:1(17,2)-WHT96 P: 3 (7,6,4)SABA-BCR00

P: 2 (6,4)SAB-BCR00 P: 3 (7,6,5)SAB-BCR00

P:1(6,4)S∗ABA-BCR00
P:n(n,4)S∗ABA-LR01

P:2(7,6,5)S∗AB-BCR00

9. Splitting everywhere: some relevant applications
9.1. Splitting and extrapolation

Extrapolation methods constitute a class of efficient high-order schemes for solving
initial value problems when the local error of the basic integrator has an asymptotic
expansion containing only even powers of the step size ℎ. In this subsection we
review how some of the previous techniques used in the construction and analysis
of splitting and composition methods can also be applied to simplify the analysis
of extrapolation.

9.1.1. The Gragg/GBS method
Given the initial value problem G ′ = 5 (G), G(C0) = G0, Gragg proposed the following
algorithm to produce the quantity )ℎ∗(C). Denoting C = C0 + 2=ℎ∗, C8 = C0 + iℎ∗, it
reads

G1 = G0 + ℎ∗ 5 (G0),
G8+1 = G8−1 + 2ℎ∗ 5 (G8), 8 = 1, 2, . . . , 2=,

)ℎ∗(C) =
1
4

(G2=−1 + 2G2= + G2=+1).
(9.1)

Subsequently, he proved that )ℎ∗(C) possesses an asymptotic expansion in even
powers of ℎ∗ (Gragg 1965), so that it can then be used for Richardson extrapolation.
The original proof was simplified by Stetter (1970) when he realized that (9.1) can
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124 S. Blanes, F. Casas and A. Murua

be interpreted as a one-step algorithm. Later on, Hairer et al. (1993) showed that
this scheme is consistent with the differential equation in the extended phase space

D′ = 5 (E), D(C0) = D0 = H0,

E′ = 5 (D), E(C0) = E0 = H0,
(9.2)

whose exact solution is D(C) = E(C) = G(C). In fact, to prove that )ℎ∗(C) only contains
even powers of ℎ∗ is trivial by noticing that system (9.2) can be expressed as

d
dC

(
D

E

)
=

(
0
5 (D)

)
+
(
5 (E)
0

)
= 51(D) + 52(E),

(
D(C0)
E(C0)

)
=

(
G0
G0

)
, (9.3)

and that the Strang splitting with step size ℎ = 2ℎ∗ gets

E1/2 = E8−1 +
ℎ

2
5 (D8−1),

D8 = D8−1 + ℎ 5 (E1/2), 8 = 1, 2, . . . , =,

E8 = E1/2 +
ℎ

2
5 (D8).

Then, clearly, )ℎ∗ = 1
2 (D=+E=), and the result is obtained by noticing that the Strang

splitting is time-symmetric.
On the other hand, application of the Gragg method (9.1) to the second-order

equation
H′′ = 6(H), H(C0) = H0, H′(C0) = H′0, (9.4)

produces the equivalent formula (Hairer et al. 1993)

H8+1 − 2H8 + H8−1 = ℎ
26(H8), 8 = 1, 2, 3, . . . , (9.5)

again with ℎ = 2ℎ∗. As is well known, by considering the equivalent first-order
system

d
dC

(
H

H′

)
=

(
H′

0

)
+
(

0
6(H)

)
= 51(H′) + 52(H), (9.6)

and then applying the Strang splitting i [2]
ℎ/2 ◦ i

[1]
ℎ
◦ i [2]

ℎ/2,

H=+1 = H= + ℎH′= +
ℎ2

2
6(H=),

H′=+1 = H
′
= +

ℎ

2
(6(H=) + 6(H=+1)),

reproduces Störmer’s rule (9.5) after simplification. In fact, one can also apply the
other variant of the Strang splitting, i.e. i [1]

ℎ/2 ◦ i
[2]
ℎ
◦ i [1]

ℎ/2, to (9.6), thus yielding

H′=+1 = H
′
= + ℎ6

(
H= +

ℎ

2
H′=

)
,

H=+1 = H= +
ℎ

2
(H′= + H′=+1).

(9.7)
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Splitting methods for differential equations 125

This (slightly cheaper) scheme could also be used as the basic method for extra-
polation, as for the Störmer rule, but since 51(H′) and 52(H) may have different
qualitative properties, the resulting schemes would also be different.

9.1.2. Multi-product expansions
Linear combinations of splitting methods∑

:

2:
(
i
[2]
1:,8: ℎ

◦ i [1]
0:,8: ℎ

◦ · · · ◦ i [2]
1:,1ℎ
◦ i [1]

0:,1ℎ

)
offer much freedom in the choice of parameters {2: , 0:,8 9 , 1:,8 9 } to approximate
the flow of G ′ = 51(G)+ 52(G), although they no longer provide approximations with
the same preservation properties as the original system. As shown in Sheng (1989),
if all {0:,8 9 , 1:,8 9 } were to be positive, then any individual composition has to be at
most of second order, and some coefficients 2: must be negative. The choice of the
Strang splitting ( [2]

ℎ
(or more generally a time-symmetric second-order integrator)

as the basic scheme in the composition is particularly relevant due to the structure
of the truncation error. Suppose {:1, :2, . . . , :<} denotes a given set of < integer
numbers, and form the linear combination

qℎ ≡
<∑
8=1

28
(
(
[2]
ℎ/:8

):8
. (9.8)

Then qℎ furnishes an approximation of order 2< if the coefficients satisfy the linear
equations

�0 =

<∑
8=1

28 = 1, �2+2 9 =
<∑
8=1

28

:
2+2 9
8

= 0, 9 = 0, 1, . . . , < − 2,

with solutions

28 =

<∏
9=1(≠8)

:2
8

:2
8
− :2

9

.

Schemes of the form (9.8) are referred to as multi-product expansions (Chin and
Geiser 2011) and allow us to construct in an easy way efficient high-order integrat-
ors. In general, if we start with a basic time-symmetric geometric method of order
2=, the corresponding linear combination (9.8) provides a scheme of order 2= + 2ℓ,
ℓ = 1, . . . , =, which, quite remarkably, preserves the geometric properties of the
system (e.g. symplecticity for Hamiltonian problems) up to order 4= + 1 or higher
(Blanes, Casas and Ros 1999a, Chan and Murua 2000). This can be shown by
appropriately rewriting the differential operator associated with (9.8) as a product
of exponentials of operators (Blanes and Casas 2016).
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9.2. Crouch–Grossman methods

The nonlinear differential equation

. ′ = �(. )., . (0) = .0 ∈ G, (9.9)

where � ∈ R3×3 andG is amatrix Lie group, appears in relevant physical fields such
as rigid body mechanics, in the calculation of Lyapunov exponents (G ≡ SO(3))
and other problems arising in Hamiltonian dynamics (G ≡ Sp(3)). In fact, it can
be shown that every differential equation evolving on a matrix Lie group G can be
written in the form (9.9) (Iserles et al. 2000).
A class of methods providing by construction approximations in G was proposed

in Crouch and Grossman (1993) by appropriately modifying Runge–Kutta schemes
as follows; see also Hairer et al. (2006, sect. IV.8).

Let 18 , 08, 9 , (8, 9 = 1, . . . , B) be real numbers. Then an explicit B-stage Crouch–
Grossman method is given by

. (1) = .=,  1 = �(. (1)),
...

. ( 9) = eℎ0 9, 9−1 9−1 · · · eℎ0 9,1 1 .=,  9 = �(. ( 9)), 2 ≤ 9 ≤ B,

.=+1 = eℎ1B B · · · eℎ11 1.=.

(9.10)

As usual, the order conditions to be satisfied by the coefficients 18 , 08, 9 , (8, 9 =
1, . . . , B) can be found by comparing the Taylor series expansions of the exact
and numerical solutions. It has been shown that the order conditions for classical
Runge–Kutta methods form a subset of those for the Crouch–Grossman methods
(Owren and Marthinsen 1999). Notice that the B-stage scheme (9.10) involves a
total of B(B + 1)/2 matrix exponentials.
In Crouch and Grossman (1993) there are several three-stage methods of order

three, whereas Owren and Marthinsen (1999) present a fourth-order scheme with
B = 5 stages (or equivalently 15 exponentials). Achieving higher order within
this approach is by no means simple, and the resulting methods require a large
number of exponentials. It turns out, however, that splitting can also be used here
to construct schemes of any order with a reduced number of matrix exponentials.
To illustrate the technique, we consider the separable system in the extended phase
space

d
dC

(
*

+

)
=

(
�(+)*

0

)
+
(

0
�(*)+

)
, (9.11)

to which we apply the Strang splitting. This leads to

*1/2 = e
ℎ
2 �(+=)*=,

+=+1 = eℎ�(*1/2)+=,

*=+1 = e
ℎ
2 �(+=+1)*1/2.

(9.12)
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Notice that (9.12) is simply a particular example of (9.10) with B = 3, that is,

. (1) = .=,  1 = �(. (1)),

. (2) = eℎ02,1 1 .=,  2 = �(. (2)),

. (3) = eℎ03,2 2 eℎ03,1 1 .=,  3 = �(. (3)),
.=+1 = eℎ13 3 eℎ12 2 eℎ11 1 .=,

(9.13)

with

02,1 =
1
2
, 03,2 = 1, 03,1 = 0, 11 =

1
2
, 12 = 0, 13 =

1
2
.

Since 03,1 = 12 = 0 and 02,1 = 11, then the whole scheme can be computed with
only three exponentials, instead of six by applying the recursion (9.10). Higher-
order methods can be obtained in the same way by applying appropriate splitting
schemes to the enlarged system (9.11). Thus, in particular, it is possible to get a
Crouch–Grossman scheme of order four with seven exponentials.

9.2.1. Positivity-preserving splitting methods
Differential equations G ′ = 5 (G) modelling population dynamics must satisfy pos-
itivity and frequently mass preservation, that is,

(i) G8(0) ≥ 0 ⇒ G8(C) ≥ 0 ∀ C, 8 = 1, . . . , � (positivity preservation)
(ii) 1>G(C) = 1>G(0), with 1 = (1, . . . , 1)> (mass conservation)

Both of them are automatically fulfilled if the differential equation can be written
as G ′ = �(G)G, where � is a matrix such that

• if G8 ≥ 0, 8 = 1, . . . , �, then �(G):,ℓ ≥ 0 when : ≠ ℓ, and �:,: ≤ 0, for
:, ℓ = 1, . . . , � (to guarantee positivity);

• ∑�
:=1 �:,ℓ = 0 for ℓ = 1, . . . , � (to ensure mass conservation).

In such situations, it is of course expedient to use a numerical integrator that
also satisfies these features at the discrete level when carrying out simulations.
Unfortunately, there is also an order barrier here for two of the most used families
of schemes, namely Runge–Kutta and multistep methods: if they unconditionally
preserve positivity, then they cannot be better than first-order (Bolley and Crouzeix
1978).
It turns out, however, that splitting methods are able to overcome this order

barrier. To see this point, again consider the problem in the extended phase space

H′ = �(I)H, H(0) = H0 = G0,

I′ = �(H)I, I(0) = I0 = G0,
(9.14)

where G(C) = H(C) = I(C). Now, as in the previous subsection, we apply the Strang
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splitting to the system (9.14), that is,

H1/2 = e
1
2 ℎ�(I0)H0,

I1 = eℎ�(H1/2)I0, (9.15)

H1 = e
1
2 ℎ�(I1)H1/2.

Then both H1 and I1 are second-order approximations to the exact solution G(ℎ)
preservingmass and positivity. This can be easily checked by realizing that 1>� = 0
and so 1>e�G = 1>G. On the other hand, for ℎ > 0, if G8 ≥ 0 then (eℎ�(G)) 9: ≥ 0
for all 8, 9 , : .
If ℎ < 0, positivity is no longer preserved with this approach; see Blanes, Iserles

and Macnamara (2022d) for a more detailed treatment of this topic.

9.3. Exact splitting

There are equations for which a clever decomposition of the vector field in fact
provides the exact solution. The resulting factorization is called exact splitting
and, in the case of partial differential equations, allows us to get very accurate
approximations once each subsystem is solved by pseudo-spectral methods and
pointwise multiplication. Early applications of this idea to the time integration of
the Gross–Pitaevskii equation are contained in Chin and Krotscheck (2005) and
Bader and Blanes (2011), and a convenient generalization to a large class of PDEs,
called inhomogeneous quadratic differential equations, has been recently proposed
in Bernier (2021). These PDEs are of the form

DC (C, G) = −?FD(C, G), D(0, G) = D0(G), C ≥ 0, G ∈ R3 , (9.16)

where 3 ≥ 1, D0 ∈ !2(R3) and ?F is the quadratic differential operator

?F = (G, −i∇G)&
(

G

−i∇G

)
+ .>

(
G

−i∇G

)
+ 2.

Here& is a constant 23 ×23 symmetric matrix with complex coefficients, . ∈ C23

and 2 ∈ C is constant. If (−?F ) is such that the real part of the polynomial
?(-) = ->&- + .>- + 2 is bounded from below on R23 , then it generates a
strongly continuous semigroup, denoted e−C ?FD0. It was shown in Bernier (2021)
that e−C ?F can be factorized as a product of operators that can be exactly evaluated.
Notice that some relevant equations are of the form (9.16), so this technique allows
us to construct numerical methods that are spectral in space and exact in time
using only a small number of fast Fourier transforms. This has been illustrated in
Bernier, Crouseilles and Li (2021) in the case of kinetic and nonlinear Schrödinger
equations.

As an illustrative example of this technique, let us consider the Schrödinger
equation with a quadratic potential

iDC =
1
2

(−mGG + G2) D ≡ 1
2

(%2 + -2) D.
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Then, for |ℎ| < c, we have

D(ℎ, G) = e−iℎ(%2/2+-2/2) D(0, G) = e−i 5 (ℎ)(-2/2) e−i6(ℎ)(%2/2) e−i 5 (ℎ)(-2/2) D0(G),

with

5 (ℎ) =
1 − cos(ℎ)

sin(ℎ)
, 6(ℎ) = sin(ℎ),

so the action of each exponential can be easily evaluated.

9.4. Gravitational #-body problem

The long-time numerical integrations of the whole Solar System carried out in
Sussman and Wisdom (1992) and Wisdom and Holman (1991), suggesting its
chaotic nature, represented a major boost for the development of new and efficient
symplectic algorithms. The integrator used in these simulations, referred to in the
dynamical astronomy literature as the Wisdom–Holman map, is simply the Strang
splitting method applied to the Hamiltonian system

�̂(@̂, ?̂) = �1(@̂, ?̂) + �2(@̂), (9.17)

where �1 and �2 are given by (1.39) in terms of Jacobi coordinates, as described
in Section 1.5. Here �1 represents the # − 1 independent Keplerian motions of
the planets (which can be efficiently solved) and �2 accounts for the gravitational
interactions among the planets. Moreover, as shown in Section 1.5, �2(@̂) =
$(Y) with Y ≡ (1/<0) max1≤8≤#−1 <8 . For the Solar System, Y ≈ 10−3. In
consequence, splittingmethods for near-integrable systems, such as those presented
in Sections 3.3 and 8.4, are particularly appropriate. In fact, the Wisdom–Holman
map, in the terminology of Section 3.3, corresponds to a method of generalized
order (2, 2).
Very often, splitting methods are used when very long-time integrations are

involved and getting high accuracy is not of particular concern, but rather when
having good behaviour of the error over the whole integration period is the crucial
point. For instance, in the situation analysed in Sussman and Wisdom (1992), the
important issue was to decide whether the motion is regular or chaotic, and not to
compute accurately the state of the Solar System after a long time.
The experiment we describe next illustrates that even when short-time integ-

rations are involved and very high accuracy is required, splitting methods can
outperform standard integrators once the particular structure of the problem is
incorporated into their very formulation.
Specifically, we again deal with the simplified model of the outer Solar System

addressed in Section 1.5, with the same initial conditions and an integration interval
of 2×105 days, and compare splitting methods specially tailored for near-integrable
systems with some popular standard integrators. Thus, Figure 9.1 shows efficiency
diagrams for the error in energy (a) and in positions (b) at the final time vs.
the number of force evaluations, obtained with three different splitting methods
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Figure 9.1. Outer Solar System. Efficiency diagrams showing the relative error in
energy (a) and in positions @ (b) at the final time C 5 = 2 × 105 days vs. the number
of force evaluations, obtained with different schemes: extrapolation of order A = 2,
4, 6, 8, 10, 12 (grey curves), Matlab routines ode23, ode45 and ode113, and
splitting methods of generalized order (2,2), (8,2) and (10,6,4).

of generalized orders (2,2), (8,2) and (10,6,4), in comparison with extrapolation
methods of orders 2-12 (grey lines) and the Matlab routines ode23, ode45 and
ode113.
As stated before, extrapolation methods are particularly appropriate for second-

order differential equations when high accuracy is required (Hairer et al. 1993).
They take the symmetric second-order scheme (9.5) as the basic method in the
linear combination (9.8) with the harmonic sequence :8 = 8, 8 = 1, 2, . . . , <, to
get a method of order A = 2< at the cost of <(< + 1)/2 + 1 evaluations of the
force,8 On the other hand, ode23 and ode45 solve the ODE with variable time
step using embedded Runge–Kutta methods of orders 2–3 and 4–5, respectively,
whereas ode113 does it with variable time step and variable order using multistep
methods up to order 13. Due to the smoothness of the problem and the low cost
of evaluating the highest order, the latter procedure provides better results than
extrapolation methods of high order, as shown in the figure. Nevertheless, none of
them can compete with the specially designed splitting methods for this particular
problem at all accuracies. This is so even when a very short integration interval is
considered. In fact, this relative superiority will only increase for longer integration
intervals due to their different error propagation mechanism.

8 One evaluation can be saved if the basic scheme (9.7) is taken instead. This is the actual
implementation we use in our experiments here.
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9.5. Molecular simulations

In the simulation of the dynamics of large molecules, two classes of algorithms
are commonly used: (i) molecular dynamics, and (ii) those based on stochastic
differential equations and the Monte Carlo method.
In classical molecular dynamics, the motion of the atoms in the molecule is

determined by integrating Newton’s second law,

"@′′ = −∇@*(@),

where @ is a vector containing all positions (in Cartesian coordinates), " is a
diagonal matrix whose elements are the atomic masses and*(@) is the (empirical)
potential function modelling the inter-particle interactions. Popular models include
the Lennard-Jones and Morse potentials, although many other choices are being
used for different molecules; see e.g. Leimkuhler and Matthews (2015) for more
details. In any case, the number of atoms may be exceedingly large (up to 100 000)
and the resulting system is highly nonlinear, exhibiting sensitive dependence on
perturbations. In addition, the initial velocities are typically assigned randomly,
so there is no point in trying to obtain accurate trajectories. Thus, although in
principle Runge–Kutta–Nyström splitting methods can be used in this setting, the
method of choice in practice is the Störmer–Verlet scheme, given its excellent
stability properties and low computational cost (Leimkuhler et al. 1996). Other
variants include the use of multiple time-stepping (and in particular the mollified
impulse method: García-Archilla, Sanz-Serna and Skeel 1999), and symplectic
schemes specially designed for Hamiltonian systems with constraints, such as
SHAKE (Ryckaert, Ciccotti and Berendsen 1977) and RATTLE (Andersen 1983).
To take into account the influence of a medium (say, a solvent or air) on a mo-

lecular system, typically as external random impacts, a common practice consists
in extending the molecular dynamics approach by incorporating a stochastic com-
ponent in the equations of motion. The resulting system is referred to as Langevin
dynamics and is described by the stochastic differential equation

d@ = "−1? dC,

d? = −∇@*(@) dC − W? dC +
√

2W:�)"1/2 d,
(9.18)

in terms of coordinates @ ∈ R3 and momenta ? ∈ R3 . Here W > 0 is the
friction coefficient or collision frequency, :� is the Boltzmann constant, ) is
the temperature and, is a Wiener process. We may regard (9.18) as modelling a
system of particles immersed in a fluid bath consisting ofmany particles, giving rise
to much weaker interactions than those modelled by the potential * (Leimkuhler
and Matthews 2015).
As with deterministic equations, splitting methods can be constructed to deal

with Langevin dynamics. One possible approach consists in decomposing (9.18)
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into three parts as follows:(
d@
d?

)
=

(
"−1?

0

)
dC︸         ︷︷         ︸

�

+
(

0
−∇@*(@)

)
dC︸             ︷︷             ︸

�

+
(

0
−W? dC + f"1/2 d,

)
︸                         ︷︷                         ︸

$

, (9.19)

with f ≡
√

2W:�) . Each of the parts can be exactly solved: the solution of the
first is a drift in position,

i
[�]
ℎ

(@, ?) = (@ + ℎ"−1?, ?),

the second corresponds to a kick in momentum,

i
[�]
ℎ

(@, ?) = (@, ? − ℎ∇@*(@)),

and the third piece defines an Ornstein–Uhlenbeck process in ? which can be
exactly sampled,

i
[$]
ℎ

(@, ?) = (@, e−Wℎ? +
√
:�)(1 − e−2Wℎ)"1/2'),

where ' is a vector of independent and identically distributed normal random
numbers. In Leimkuhler and Matthews (2013a,b), several splitting methods con-
structed along these lines are designed and tested on numerical experiments. They
are denoted by the acronym resulting from concatenating the previous symbols �,
� and $. Thus, BAOAB corresponds to

i
[�]
ℎ/2 ◦ i

[�]
ℎ/2 ◦ i

[$]
ℎ
◦ i [�]

ℎ/2 ◦ i
[�]
ℎ/2 ,

and so on. The analysis carried out in Leimkuhler and Matthews (2013a,b) and
Leimkuhler, Matthews and Stolz (2016) for the large friction limit, and in Alamo
and Sanz-Serna (2016) for the general case, shows that BAOAB offers an improved
behaviour with respect to other members of this family. Other Langevin integrators
are given in Leimkuhler and Matthews (2015).
Another approach to molecular simulations, rather than approximating Hamilto-

nian trajectories, consists in studying the paths originating from the collection of all
initial conditions within a given set. This perspective allows us to apply statistical
mechanics for calculating averages.
Specifically, if�(@, ?) denotes theHamiltonian function of the system in thermal

equilibrium at temperature ) , then the probability measure ` in R23 with density

/−1e−V� (@,?), where / =

∫
R23

e−V� (@,?) d@ d? < ∞, (9.20)

is preserved by the flow of �(@, ?). Here V = 1/(:�)). The measure ` is called
the Boltzmann–Gibbs distribution and / is the partition function. Intuitively, `
provides the distribution of (@, ?) over an ensemble of many copies of the given
system when it is embedded in a much larger system acting as a ‘heat bath’ at
constant temperature. In other words, /−1e−V� (@,?) d@ d? represents the fraction
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of copies with momenta between ? and ? + d?, and configuration between @ and
@ + d@ (Bou-Rabee and Sanz-Serna 2018). Then the average energy is given by

�̃ = /−1
∫
R23

�(@, ?) e−V� (@,?) d@ d?.

In general, �̃ cannot be obtained analytically, and even the use of numerical
quadratures is unfeasible if the dimension 3 is large. A common practice to
approximate this class of integrals then consists in applying Monte Carlo methods,
and more specifically, Markov chainMonte Carlo methods (Brooks, Gelman, Jones
and Meng 2011).

9.6. Hamiltonian Monte Carlo

For Hamiltonian systems of the form

�(@, ?) =
1
2
?>"−1? +*(@), (9.21)

we can factorize the (non-normalized) density (9.20) as

e−V� (@,?) = e−
1
2 V?

>"−1? e−V* (@),

so that @ and ? are stochastically independent (Bou-Rabee and Sanz-Serna 2018):
the marginal distribution of the configuration variables @ has probability density
∝ e−V* (@), whereas the momenta ? obey a Gaussian distribution with zero mean
and covariance matrix " . Therefore, samples from the ?-marginal are easily
obtained, and thus one may concentrate on generating samples with probability
density

/−1
@ e−V* (@), where /@ =

∫
R3

e−V* (@) d@. (9.22)

This can be carried out with the so-called Hamiltonian (or hybrid) Monte Carlo
method (HMC). In fact, HMC was proposed in the landmark paper by Duane,
Kennedy, Pendleton and Roweth (1987), not in the context of molecular simulation
but in lattice quantum chromodynamics. Later on, it was used in data science and
statistics (Liu 2008, Neal 2011). More generally, HMC can be used to sample
from any continuous probability distribution on R3 for which the density function
can be evaluated (perhaps up to an unknown normalizing constant): given a target
distribution Π(@), if *(@) denotes the negative logarithm of the (not necessarily
normalized) probability function of the target, then it is clear that Π(@) is given
by (9.22) (with V = 1). HMC then generates samples (@8 , ?8) ∈ R23 from the
Boltzmann–Gibbs distribution corresponding to �, that is,

%(@, ?) = (2c)−3/2 | det" |−1/2e−
1
2 ?
>"−1? /−1

@ e−* (@), (9.23)

by means of a Markov chain so that %(@, ?) is an invariant of this chain. The
corresponding marginal @8 ∈ R3 chain then leaves invariant the target distribution
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Table 9.1. HMC algorithm. The function � = (1/2)?>"−1? + *(@) is the
Hamiltonian. The algorithm generates a Markov chain @(0) ↦→ @(1) ↦→ · · · ↦→
@(<max) reversible with respect to the target probability distribution ∝ exp(−*(@)).

Given @(0) ∈ R3 , <max ≥ 1, set < = 0.
1 (Momentum refreshment.) Draw ?(<) ∼ N (0, ").
2 (Integration leg.) Compute (@∗, ?∗) (@∗ is the proposal) by integrating, by

means of a reversible, volume-preserving integrator with step size ℎ, the
equations of motion derived from the Hamiltonian (9.21) over an interval
0 ≤ C ≤ #ℎ. The initial condition is (@(<), ?(<)).

3 (Accept/reject.) Calculate

0(<) = min(1, exp(�(@(<), ?(<)) − �(@∗, ?∗)))

and draw D(<) ∼ U(0, 1). If 0(<) > D(<), set @(<+1) = @∗ (acceptance);
otherwise set @(<+1) = @(<) (rejection).

4 Set < = < + 1. If < = <max stop; otherwise go to step 1.

Π(@), and this allows us to estimate the multidimensional integral of a certain
function � with respect to Π by averaging � at the points (@8) of the Markov chain.
Since the HMC algorithm has been thoroughly reviewed in the excellent survey

by Bou-Rabee and Sanz-Serna (2018), we only summarize here those aspects most
closely related to splitting methods. The basic HMC procedure is described in
Table 9.1, although more elaborate possibilities exist. Notice that, when generating
the proposal, the integrator to be used has to be both reversible and volume-
preserving. Given the structure of �, it is clear that palindromic splitting methods
constitute the natural choice for this task.
One of the most salient features of the algorithm is that it is able to generate

proposal moves that, while being far away from the current state of the Markov
chain, has a high probability of acceptance, thus reducing the correlation between
samples.
As the main contribution to the computational cost of HMC resides in the

numerical integration of the equations of motion, it is of paramount interest to
use methods requiring as few evaluations of the force −∇@*(@) as possible, with
small energy errors (to avoid rejections) and able to use large step sizes ℎ. Taking
these considerations into account, it is hardly surprising that the Störmer–Verlet
algorithm is the method of choice, especially in low dimensions. If 3 increases,
however, there are more favourable alternatives. In particular, the three-stage
method

i
[) ]
01ℎ
◦ i [+ ]

11ℎ
◦ i [) ]

02ℎ
◦ i [+ ]

12ℎ
◦ i [) ]

02ℎ
◦ i [+ ]

11ℎ
◦ i [) ]

01ℎ
,
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with

01 = 0.11888010966548, 11 = 0.29619504261126, 02 =
1
2
− 01, 12 = 1−211,

provides better results at the same computational cost as the standard Störmer–
Verlet method (Blanes et al. 2014). The rationale behind this and other multi-stage
splitting methods presented in Blanes et al. (2014) is that the coefficients 0 9 , 1 9
are chosen to minimize the energy error in the proposal for relatively large val-
ues of ℎ (and not, as in the usual numerical integration domain, to increase the
accuracy in the limit ℎ → 0). An extension of this idea is the so-called adapt-
ive integration approach (AIA) (Fernández-Pendás, Akhmatskaya and Sanz-Serna
2016, Akhmatskaya, Fernández-Pendás, Radivojević and Sanz-Serna 2017): here
the user chooses the value of ℎ to be used, and then the AIA algorithm itself finds
the coefficients of the method within a given family of B-stage splitting integrators
providing the best acceptance rate. The efficiency can be further enhanced by
using a conveniently modified version of processing so that time-reversible kernels
provide time-reversible integrations (Blanes, Calvo, Casas and Sanz-Serna 2021a).

In many situations of interest in statistics, the target density is a perturbation of
a Gaussian density, so the corresponding Hamiltonian is given by (5.1), that is,

�(@, ?) =
1
2
?>"−1? + 1

2
@>#@ +*(@),

where # is a constant symmetric, positive definitive 3 × 3 matrix whose spectral
radius typically grows with the dimension 3. In that case it is advantageous to pre-
condition the dynamics by choosing the mass matrix (which is free in this setting)
as " = # , since now all the 3 frequencies of the preconditioned system are 1, and
the only restriction on the step size used by Störmer–Verlet is ℎ < 2, independently
of ℎ (Bou-Rabee and Sanz-Serna 2018). Furthermore, the considerations on sta-
bility exposed in Section 4.2 indicate that the Strang integrators (4.10) based on the
exact solution of the quadratic part of � and the perturbation *(@) constitute the
best option. In fact, the numerical experiments collected in Casas, Sanz-Serna and
Shaw (2022) show that these methods, together with preconditioning, dramatically
reduce the computational cost in all test problems and all observables considered,
in comparison with the standard Störmer–Verlet scheme. It is worth remarking that
all the theory developed in Section 5 is valid here, and in particular, the explicit
processor built in Section 5.7 for the Strang splitting is expected to reduce the error
in �, and thus it might contribute to increasing the acceptance probability.

9.7. Quantum statistical mechanics

The description of a quantum system in thermal equilibrium at temperature ) with
Hamiltonian � is based on the thermal density matrix

d = e−V� ,
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where, again, V = 1/(:�)) (Feynman 1972). In fact, most of the properties of the
system can be obtained from d, but now as an average on the different quantum
states. Thus the equilibrium value of an operator $̂ corresponding to a physical
observable $ for a system of # quantum particles in a volume + is given by

〈$̂〉 = /−1 Tr(e−V� $̂) = /−1
∑
=

〈=|e−V� $̂ |=〉, (9.24)

where the partition function / now reads

/ = Tr (e−V� ) =
∑
=

〈=|e−V� |=〉, (9.25)

and the states |=〉 form a complete, orthonormal basis set (Ceperley 1995, Landau
and Binder 2005). Since the eigenvalues of the Hamiltonian � are not generally
known, we try to evaluate the traces in (9.24) and (9.25) without diagonalizing
the Hamiltonian. This can be done with the Feynman path-integral approach. To
proceed, we consider the position representationwhere the particle is labelled. Then
the density matrix is given by d(', '′; V) ≡ 〈' |e−V� |'′〉, where ' ≡ {A1, . . . , A# },
A8 is the position of the 8th particle and the elements of d(', '′; V) are positive and
can be interpreted as probabilities. The partition function is then

/ =

∫
d' 〈' |e−V� |'〉 =

∫
d' d(', '; V). (9.26)

Since e−V� = (e−Y� )" , with Y = V/" for any positive integer " , the density
matrix can be expressed as

d('0, '" ; V) =
∫
· · ·

∫
d'1 d'2 · · · d'"−1 d('0, '1; Y)

× d('1, '2; Y) · · · d('"−1, '" ; Y). (9.27)

The action for a given link : is defined as

(: ≡ ((':−1, ': ; Y) = − ln(d(':−1, ': ; Y)),

so (9.27) becomes

d('0, '" ; V) =
∫
· · ·

∫
d'1 d'2 · · · d'"−1 exp

(
−

"∑
:=1

(:

)
, (9.28)

and the goal is then to construct a sufficiently accurate approximation to d while
minimizing the number of integrals involved in (9.28) (the number of beads ").

On the other hand, the partition function (9.26) can be written as

/ =

∫
· · ·

∫
d'0 d'1 d'2 · · · d'"−1 d('0, '1; Y)

× d('1, '2; Y) · · · d('"−1, '0; Y), (9.29)
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where the first |'0〉 and the last |'" 〉 elements are identified as required by the
trace operations.
In practical applications, one must generally use approximations to d. To this

end, notice that, typically

� = ) ++ = −1
2

#∑
8=1
Δ8 ++. (9.30)

It then makes sense to approximate e−Y� by symmetric products of e−Y) and e−Y+ .
The simplest approximation is given, of course, by the Lie–Trotter scheme, known
in this setting as the primitive action, in which case

d('0, '2; Y) ≈
∫

d'1〈'0 |e−Y) |'1〉 〈'1 |e−Y+ |'2〉.

The operator+ is diagonal in the position representation, whereas the kineticmatrix
can be evaluated by using the eigenfunction expansion of ) (Ceperley 1995). It is
then possible to arrive at the discrete path-integral expression for the density matrix

d('0, '" ; V) =
∫
· · ·

∫
d'1 d'2 · · · d'"−1

(
1

2cYℏ2

)3#"/2

× exp
(
−

"∑
9=1

(
1

2Yℏ2 ‖' 9−1 − ' 9 ‖2 + Y+(' 9)
))

, (9.31)

providing an approximation of order $(Y2), since the Lie–Trotter method is of
effective order two. A significant improvement with respect to the primitive
approximation is achieved by considering the so-called Takahashi–Imada action
(Takahashi and Imada 1984), i.e. the approximation

e−Y() ++ ) ≈ e−
Y
2 ) e−Y+−

Y3
24 [+ , [) ,+ ] ] e−

Y
2 )

of effective order four in Y.
A typical method to compute the multidimensional integrals appearing in (9.26)

and (9.29) is to apply a Monte Carlo sampling according to the probability density
c ∝ exp(−∑"

:=1 (:), where / normalizes c. In this respect, notice that for the
Hamiltonian (9.30) we have 〈':−1 |e−08 Y) |':〉 ∝ exp(−‖':−1 − ': ‖2/(208Y)), so
the coefficient 0 9 cannot be negative for a probabilistic based simulation. Here again
the order barrier for splitting methods having positive coefficients is important:
no splitting method of order higher than two can be used for doing quantum
statistical calculations, unless nested commutators enter into their formulation. In
this context, the fourth-order scheme (3.4) is widely used, as well as the more
general two-parameter family of fourth-order methods

e01Y) eY,11 ,21 e02Y) eY,12 ,22 e02Y) eY,11 ,21 e01Y) , (9.32)
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with modified potential

,18 ,28 = 18+ + 28Y2 [+, [),+]] . (9.33)

In this case, the presence of two free parameters makes it possible tominimize some
of the sixth-order error terms and thus yield more efficient schemes. Numerical
simulations carried out in Sakkos, Casulleras and Boronat (2009) show that the
required number " in (9.28) to reproduce the exact energy of the system at low
temperatures is much smaller with scheme (9.32) than with the Lie–Trotter and
Takahashi–Imada methods; see Chin (2023) for a recent review.

9.8. Vlasov–Poisson equations

When a gas is brought to a very high temperature, electrons leave the atoms, thus
leading to an overall mixture of electrically charged particles (ions and electrons)
usually called plasma. There is a hierarchy of models to describe plasmas, ranging
from those based on # particles evolving with the laws of classical relativistic
mechanics and forces due to external and self-consistent electromagnetic fields,
to kinetic equations and fluid models, more appropriate when the plasma is in
thermodynamic equilibrium.
In kinetic models each species B in the plasma is characterized by a distribution

function 5B(G, E, C), so that 5B dG dE is the average number of particles of species
B with position and velocity in a box of volume dG dE centred at (G, E). In the
limit where the collective effects are dominant over collisions between particles,
the kinetic equation describing the system (in the non-relativistic regime) is the
Vlasov equation (Vlasov 1961)

m 5B

mC
+ E · ∇G 5B +

@B

<B
(� + E × �) · ∇E 5B = 0, (9.34)

where @B and <B denote the charge and mass of the particles of species B, and
� and � stand for the electric and magnetic field, respectively. Equation (9.34)
just expresses the fact that the distribution function 5B is conserved along the
trajectories of the particles, and is typically coupled with the Maxwell equations to
take into account the self-consistent electromagnetic field generated by the particles
(Sinitsyn, Dulov and Vedenyapin 2011).
The so-called Vlasov–Poisson equation describes a plasma with only one atomic

species (alternatively, electrons and positive ions) in the mean electric field derived
from the potential q created by the particles. Since <4 � <8 , then the effect of
the ions can be treated as a uniform neutralizing background. Taking all constants
equal to 1 and denoting the distribution by 5 , the relevant system of equations
describing the electron dynamics reads

m 5

mC
+ E · ∇G 5 − ∇Gq( 5 ) · ∇E 5 = 0

ΔGq( 5 )(G) = −
(∫

R3
5 (G, E) dE − 1

(2c)3

∫
T3×R3

5 (G, E) dG dE
) (9.35)
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in the domain (G, E) ∈ T3 × R3 , 3 = 1, 2, 3. The energy associated with equations
(9.35) is

H( 5 ) =
∫
T3×R3

|E |2
2
5 (G, E) dG dE +

∫
T3

1
2
|�( 5 )(G)|2 dG (9.36)

= T ( 5 ) + U( 5 )

and is preserved along the solution. In fact the system has infinitelymany invariants,
but not all of them can be preserved by numerical schemes. Taking into account that
the solution of the equations associated with T and U can be solved exactly (up to
a phase space discretization), it is then natural to consider splitting methods for the
time integration. Specifically, letting iTC ( 5 ) denote the solution of mC 5 +E ·∇G 5 = 0,
that is,

5 (C, G, E) = 5 (0, G − CE, E),

and letting iUC ( 5 ) be the solution of mC 5 − ∇Gq( 5 ) · ∇E 5 = 0, which reads

5 (C, G, E) = 5 (0, G, E − C�( 5 (0))),

where �( 5 (0)) is the value of the electric field at time C = 0, the numerical
integrators are of the form

iU1B+1ℎ( 5 ) ◦ iT0Bℎ( 5 ) ◦ iU1Bℎ( 5 ) ◦ · · · ◦ iU12ℎ
( 5 ) ◦ iT01ℎ

( 5 ) ◦ iU11ℎ
( 5 ).

The convergence of these schemes can be established by requiring the appropriate
smoothness of 5 and using the Hamiltonian structure of the system. Moreover, the
functionals T and U in the decomposition (9.36) satisfy the formal relation

[[[T ,U],U],U]( 5 ) = 0 for all 5 ,

where [·, ·] is the Poisson bracket associated with the infinite-dimensional Poisson
structure of the system (see Casas, Crouseilles, Faou and Mehrenberger 2017 for a
detailed treatment), so that Runge–Kutta–Nyström splitting methods can be safely
used in this setting. In addition, when 3 = 1,

[[T ,U],U]( 5 ) = 2<( 5 )U( 5 ), where <( 5 ) =
1

2c

∫
T×R

5 (G, E) dG dE.

Since <( 5 ) is a constant of the motion, this introduces additional simplifications.
In particular, methods involving nested commutators only require the evaluation of
U with appropriate coefficients, and thus methods up to order six can be designed
involving a reduced number of maps that, when combined with semi-Lagrangian
techniques in phase space, provides high efficiency (Casas et al. 2017)

9.9. Quantum simulation of quantum systems

As noted by Feynman (1982), simulating the full time evolution of arbitrary
quantum systems on a classical computer requires exponential amounts of com-
putational resources: the states of the system are wave functions that belong to a
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vector space whose dimension grows exponentially with the size of the system, so
that merely to record the state of the system is already cumbersome. For this reason,
he conjectured the possibility of using a specific quantum system (a quantum com-
puter) to simulate the behaviour of arbitrary quantum systems whose dynamics
are determined by local interactions. This conjecture was later shown to be cor-
rect (Lloyd 1996). Today, quantum computers can simulate a variety of systems
arising in quantum chemistry, quantum field theory and many-body physics, etc.;
see e.g. Berry et al. (2015), Childs and Su (2019) and the recent review byMiessen,
Ollitrault, Tacchino and Tavernelli (2023).
Simulating the time evolution of a quantum system with Hamiltonian � requires

approximating e−iC� (ℏ = 1). If the Hamiltonian is the sum over many local
interactions, then one can also use splitting methods for this purpose. Specifically,
suppose that for a system composed of = variables, � can be decomposed as

� =

ℓ∑
9=1

� 9 , (9.37)

where each � 9 acts on a space of dimension < 9 encompassing at most : of the
variables, and ℓ is a polynomial in =. For instance, the well-known Hubbard,
Ising and Heisenberg models belong to this class (Nielsen and Chuang 2010). The
important point is that, whereas e−iC� is difficult to compute, each e−iC� 9 acts
on a much smaller subsystem and can be straightforward to evaluate by quantum
circuits. In fact, the explicit quantum simulation algorithm proposed in Lloyd
(1996) is based on the Lie–Trotter method

jC = e−iC�ℓ · · · e−iC�2 e−iC�1 ,

whereas subsequent proposals include the Strang splitting

(
[2]
C = e−i C2�1 e−i C2�2 · · · e−iC�ℓ · · · e−i C2�2 e−i C2�1 ,

and especially the quintuple jump recursion (2.5)

(
[2:+2]
C =

(
(
[2: ]
W2: C

)2 ◦ ( [2: ](1−4W2: )C ◦
(
(
[2: ]
W2: C

)2 (9.38)

with W2: = 1/(4 − 41/(2:+1)). These schemes are known in this setting as product
formulas (Childs and Su 2019, Chen et al. 2022) and the procedure is called
Trotterization.
Product formulas provide approximations *app to the exact evolution e−iC� and

the goal is, given a time C and a maximum simulation error Y, to find an algorithm
(a quantum circuit) *app such that ‖*app − e−iC� ‖ < Y. In consequence, it is of
paramount importance to analyse and eventually provide tight bounds for the error
Y committed by product formulas / splitting methods when applied to Hamiltonian
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systems of the form (9.37). Thus, Childs et al. (2021) have shown that( [2: ]C − e−iC�  = $((�� )2:+1), with �� ≡
ℓ∑
9=1
‖� 9 ‖ C

if � 9 are Hermitian. As usual, if C is large, then the whole interval is divided into
# steps and (9.38) is applied within each step. In that case,(( [2: ]

C/#
)# − e−iC�  = $(Y)

provided that

# = $

(
(�� )1+1/(2:)

Y1/(2:)

)
.

As we have already pointed out, whereas the recursion (9.38) (as well as the triple
jump) constitutes a systematic way to achieve high-order approximations, it is not
necessarily themost efficient, both in terms of errors and the number of exponentials
involved. It makes sense, then, to consider some other methods in this setting, such
as those collected in Section 8. This requires, in particular, a detailed analysis to
achieve more stringent bounds for the corresponding errors than those obtained in
Childs et al. (2021).
Hamiltonian systems of the form � = − 1

2Δ + +(G) can also be simulated on
quantum computers by using an appropriate representation of the states and the pre-
vious product formulas with the quantum Fourier transform (Nielsen and Chuang
2010).

9.10. Other topics

Space and time constraints prevent us from including in this review additional
relevant applications where splitting methods have shown their merits, as well as
other closely related important issues. Let us briefly mention some of them.

• Except for a brief incursion into Langevin dynamics, we have restricted our
treatment to deterministic problems, although splitting methods have been
widely applied to both ordinary and partial stochastic differential equations.
Recent references in this area include Bréhier, Cohen and Jahnke (2023),
Bréhier, Cohen and Giordano (2024) and Foster, dos Reis and Strange (2024).
• The evolution of a particle of mass < and charge @ in a given electromagnetic
field is modelled by the Lorentz equation<G ′′ = @(�+G ′×�). By introducing
the velocity E = G ′ as a new variable, the resulting system of first-order ODEs
can be split into three explicitly solvable parts, so that composition methods
can be applied preserving volume in phase space (He, Sun, Liu and Qin 2015,
2016). The treatment can also be generalized to relativistic charged particles
(Zhang et al. 2015).
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• In addition to the Schrödinger equation, both linear and nonlinear, splitting
methods have been applied to other relevant partial differential equations
arising in quantum physics. This is the case, in particular, for the Dirac
equation (Bao, Cai and Yin 2020) and the Klein–Gordon equation (Bao, Cai
and Feng 2022).
• One important theoretical aspect not treated here refers to the convergence
analysis of splitting methods applied to the nonlinear Schrödinger equation
and other semi-linear Hamiltonian PDEs, as well as the use of the Birkhoff
normal forms. This fascinating topic is the subject of much attention in the
recent literature (see e.g. Faou 2012, Faou and Grébert 2011, Bernier and
Grébert 2022) and probably deserves a review in its own right. It might be of
interest to explore whether the formalism of extended word series, success-
fully applied in Murua and Sanz-Serna (2016) to construct formal invariants
and normal forms of general classes of finite-dimensional Hamiltonian sys-
tems, could be adapted and applied for semi-linear Hamiltonian PDEs.
• Here we have only considered the application of splitting and composition
methods with constant step size ℎ. This is essential if we are interested in
preserving qualitative properties of the system. As we have seen in Section 4,
the modified equation corresponding to the numerical scheme depends expli-
citly on ℎ, so that if ℎ is changed then so is the modified equation, and the
preserving properties that geometric integrators possess when ℎ is constant
are no longer guaranteed. In other problems, such as those defined by PDEs
with no particular structure, this is not a matter of concern. There are systems
which do possess a geometric structure that is advantageous to preserve by
the numerical scheme and where the use of an adaptive step size is of the
utmost importance to get efficient approximations. A relevant example is the
gravitational #-body problem when there are close encounters between some
of the bodies. In that case, one may apply splitting methods with variable
step size by using some specifically designed transformations involving the
time variable, in such a way that in the new variables the resulting time step
is constant; see e.g. Mikkola (1997), Calvo, López-Marcos and Sanz-Serna
(1998), Blanes and Budd (2005), Blanes and Iserles (2012) and Hairer et al.
(2006, sect. VIII.2).

Forse altro canterà con miglior plectro.
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Appendix: Testing splitting methods on matrices
In Section 8 we collected more than 80 different splitting and composition methods
that are available in the literature. Although they have been classified into different
categories according to the structure of the system to be integrated (RKN splitting
methods, near-integrable systems, etc.) and the type of scheme (composition of a
basic second-order time-symmetric method, splitting for a system separated into
two parts, etc.), it is not obvious in advance which particular method is the most
suitable for carrying out a given integration of a specific problem. There are many
factors involved in the final choice: type of problem, the qualitative properties we
are interested in preserving, computational cost, desired accuracy, time integration
interval and even initial condition.
For these reasons, it might be illustrative to fix a list of examples and apply to

them the most representative numerical integrators gathered in Section 8, just to
get some clues about their relative performances. To this end, we take the linear
system

d-
dC

= � -, -(0) = �, (A.1)

where � is a constant real 3×3 matrix and � is the identity, so that the exact solution
-(C) = eC� can be easily computed with any desired accuracy. Obviously, none of
the methods we test here should be used, in general, to approximate the exponential
of a matrix or its action on a vector (unless additional information on the structure
of the matrices is known which could make splitting an efficient technique). Our
purpose is rather to compare the relative performance of the different schemes.
Let Φ#

ℎ
, with C 5 = #ℎ, denote the matrix obtained with a given method applied

# times with step size ℎ that approximates eC� at C = C 5 . We then compute the
following relative errors:

E1 =
‖eC� −Φ#

ℎ
‖

‖eC� ‖ , E2 =
|tr(eC� ) − tr(Φ#

ℎ
)|

|tr(eC� )| .

The first, E1, measures the accuracy of the method, whereas E2 provides an estimate
of the accuracy of the scheme in the case where it is used as a kernel with an ideal
processor. In all cases, ‖ · ‖ refers to the 2-norm of the matrices considered.
The numerical experiments reported here have been carried out with Matlab,

and the function randn( ) has been used to construct the matrix elements ran-
domly from a normal distribution, initiated with the seed rng(1) for reproducib-
ility. Additional material related to these simulations can be found at our website
accompanying this paper.
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Figure A.1. Errors E1 (a,c) and E2 (b,d) vs. the number of evaluations of the basic
scheme for ( [2,1]

ℎ
(a,b) and ( [2,2]

ℎ
(c,d). The non-processed schemes selected in

Table 8.1 are shown in thick solid lines and the selected processed methods are
drawn as thick red dashed lines.

Symmetric compositions of time-symmetric second-order schemes. We take � =

� + � + �, with �, �, � matrices of dimension 50 × 50 constructed as previously
indicated, that is,

d=50; rng(1); A=randn(d); A=A/norm(A); B=randn(d); ...

To illustrate the role that the basic scheme may play in the overall performance of
the composition, we take the following two second-order time-symmetric methods:

(
[2,1]
ℎ

= eℎ�/2eℎ�/2eℎ�eℎ�/2eℎ�/2 (A.2)

and

(
[2,2]
ℎ

=

(
� − ℎ

2
�

)−1(
� − ℎ

2
�

)−1(
� − ℎ

2
�

)−1(
� + ℎ

2
�

)(
� + ℎ

2
�

)(
� + ℎ

2
�

)
.

(A.3)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492923000077
Downloaded from https://www.cambridge.org/core. IP address: 3.133.122.230, on 11 Sep 2024 at 14:39:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492923000077
https://www.cambridge.org/core


Splitting methods for differential equations 145

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 s
ol

.)
 MethAdj-Expm

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 tr
ac

e)

 MethAdj-Expm

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 s
ol

.)

 MethAdj-Rational

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 tr
ac

e)

 MethAdj-Rational(a)

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 s
ol

.)
 MethAdj-Expm

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 tr
ac

e)

 MethAdj-Expm

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 s
ol

.)

 MethAdj-Rational

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 tr
ac

e)

 MethAdj-Rational(b)
1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 s
ol

.)

 MethAdj-Expm

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 tr
ac

e)

 MethAdj-Expm

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 s
ol

.)

 MethAdj-Rational

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0
 lo

g
10

(E
rr

or
 tr

ac
e)

 MethAdj-Rational

(c)

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 s
ol

.)

 MethAdj-Expm

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 tr
ac

e)

 MethAdj-Expm

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0

 lo
g

10
(E

rr
or

 s
ol

.)

 MethAdj-Rational

1 1.5 2 2.5 3

 log10(N. eval.) 

-12

-10

-8

-6

-4

-2

0
 lo

g
10

(E
rr

or
 tr

ac
e)

 MethAdj-Rational

(d)

Figure A.2. Errors E1 (a,c) and E2 (b,d) vs. the number of evaluations of the basic
scheme for j [1,1]

ℎ
(a,b) and j [1,2]

ℎ
(c,d). Now the schemes are compositions of

j
[1, 9 ]
ℎ

and
(
j
[1, 9 ]
ℎ

)∗.
The two differ in their computational cost and error terms. For the most relevant
methods presented in Table 8.1, we plot the errors E1 and E2 as a function of the total
number of evaluations of the basic scheme. Figure A.1 shows the results obtained
for C 5 = 10 when the basic scheme is ( [2,1]

ℎ
(a,b) and ( [2,2]

ℎ
(c,d). Compositions

with B = 5, 13, 19 and 35 stages of order A = 4, 6, 8 and 10, respectively, which on
average show good performance in most tested examples, correspond to the thick
black lines, whereas the remaining non-processed methods are shown as thin lines.
On the other hand, the recommended processed methods in Table 8.1 with kernels
having B = 13, 19 and 23 stages of order 6, 8 and 10, respectively, are represented
by thick red dashed lines.
Looking at these figures, it is hardly possible to recommend a particular scheme

as the one leading to the best results for the example considered. We may only
conclude that for some intervals of accuracy, there are certain methods exhibiting
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Figure A.3. The same as in Figure A.2 but now for the splitting � = �+�.

the best performance. Moreover, this performance also depends on the particular
basic scheme chosen as ( [2]

ℎ
in the compositions and the nature of the composition

itself: whether it is intended to be used as the kernel of a processed method (with
an optimal processor). In many situations, the relative performance displayed
in Figure A.1(a,c) should be close to that of Figure A.1(b,d), when long-time
integrations are considered and the contribution from the processable error terms
can be neglected.

Splitting into two parts / composition of a basic method and its adjoint. We again
consider � = �+�+�, with �, �, � the same matrices as in the previous example,
but instead we take as basic methods the first-order compositions

j
[1,1]
ℎ

= eℎ�eℎ�eℎ� ,
(
j
[1,1]
ℎ

)∗
= eℎ�eℎ�eℎ�,

and

j
[1,2]
ℎ

= (� − ℎ�)−1(� − ℎ�)−1(� − ℎ�)−1,
(
j
[1,2]
ℎ

)∗
= (� + ℎ�)(� + ℎ�)(� + ℎ�).
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FigureA.4. RKNmethodswithout (a,b) andwith (c,d)modified potentials.

We plot the errors E1 and E2 versus the total number of evaluations of the basic
scheme for most of the methods presented in Table 8.2. Figure A.2 shows the
results obtained for C 5 = 10. As before, the thick black solid lines correspond to
the selected non-processed schemes and the thick red dashed lines correspond to
the selected processed ones. The dashed grey lines correspond to the most efficient
non-processed symmetric–symmetric schemes of orders 6, 8 and 10.
We repeat the same numerical experiments, but now taking� = 0, while keeping

�, � the same matrices as previously. Hence, the problem has to be seen as
separable into two parts. Notice that some methods have been optimized for this
particular case. Figure A.3 shows the results obtained, where the superiority of the
methods for this class of problems is clear for low-to-medium accuracy.
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Figure A.5. Methods for near-integrable systems.

Runge–Kutta–Nyström methods. To test the RKN splitting methods gathered in
Tables 8.3 and 8.4, we take � = � + �, with

� =

(
$3 $3
�1 $3

)
, � =

(
�1 �2
�3 �4

)
,

where �1, �8 , 8 = 1, 2, 3, 4 are matrices of dimension 3 = 50 with elements chosen
as in the previous cases, with the same seed, and $3 is the null matrix. With this
choice we have

[�, [�, �]] =
(

$3 $3
2�1�2�1 $3

)
and [�, [�, [�, �]]] = 0. For this particular choice, the computation of eℎ� domin-
ates the total cost of the method and the cost of evaluating eℎ� and eℎ�+ℎ3 [�, [�,�] ]

can be neglected. Obviously, we can add an artificial cost to these exponentials as
a test for different problems where this term can be more expensive to evaluate.
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Figure A.4(a,b) shows the results for most of the methods from Table 8.3 for
C 5 = 10 where, as previously, the thick black lines correspond to the selected
non-processed schemes, the thin lines correspond to the remaining non-processed
schemes, the thick red dashed lines are the processed ones and the dashed grey
lines correspond to the selected high-order symmetric–symmetric methods. Fig-
ureA.4(c,d) shows, for the samematrices, the results for themethods fromTable 8.4
with modified potentials.

Methods for near-integrable systems. Let� = �+Y�with �, � the samematrices as
for the separable problem in two parts and Y a small parameter which corresponds to
the relative norm of the matrices. We analyse the performance of methods tailored
for perturbed problems for two choices of the small parameter: Y = 10−1 and
Y = 10−3. Figure A.5 shows the results for the methods from Table 8.5 for C 5 = 10.
For small values of Y none of the previous splitting methods are competitive against
the most efficient ones from this family.
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