A CHARAGTERIZATION OF THE FINITE SIMPLE GROUP $\mathbf{P S p}_{4}$ (3)

ZVONIMIR JANKO

The aim of this paper is to characterize the finite simple group $\mathrm{PSp}_{4}(3)$ by the structure of the centralizer of an involution contained in the centre of its Sylow 2-subgroup. More precisely, we shall prove the following result.

Theorem. Let t_{0} be an involution contained in the centre of a Sylow 2-subgroup of $\mathrm{PSp}_{4}(3)$. Denote by H_{0} the centralizer of t_{0} in $\mathrm{PSp}_{4}(3)$.

Let G be a finite group of even order with the following two properties:
(a) G has no subgroup of index 2 , and
(b) G has an involution t such that the centralizer $C_{G}(t)$ of t in G is isomorphic to H_{0}.

Then G is isomorphic to $\mathrm{PSp}_{4}(3)$.
Remark. $\mathrm{PSp}_{4}(3)$ is the subgroup of index 2 of the group of the equation for the 27 lines on a general cubic surface.

The main difficulty in proving our theorem is to show that a group G with properties (a) and (b) possesses two conjugate classes of involutions and to determine the structure of the centralizer of an involution of G which is not conjugate to an involution in the centre of a Sylow 2 -subgroup of G. From the knowledge of the structure of such a centralizer the 3 -structure of G can be deduced. The identification of G with $\mathrm{PSp}_{4}(3)$ is then accomplished by using a theorem of J. G. Thompson (7).

1. A preparatory lemma. For the determination of the centralizers of involutions in a group with properties (a) and (b) the following proposition will be used:

Proposition. Let G be a finite group of even order with the following two properties:
(1) The centralizer $C_{G}(t)$ of an involution t contained in the centre of a Sylow 2 -subgroup of G is equal to $\langle t\rangle \times F$, where F is isomorphic to S_{4} (the symmetric group in four letters).
(2) If S is a Sylow 2-subgroup of G, then $C_{G}\left(S^{\prime}\right)=S$, where S^{\prime} denotes the commutator group of S.

Received June 10, 1966.

Then if G is soluble, $G=C_{G}(t)$. If, however, G is not soluble, then G is isomorphic to S_{6} (the symmetric group in six letters).

Proof. Let G be a finite group of even order satisfying the conditions (1) and (2). Put $F=V \cdot\langle\rho\rangle \cdot\langle\tau\rangle$, where $V=\left\langle\tau_{1}, \tau_{2}\right\rangle$ is a four-group, $V \cdot\langle\rho\rangle \cong A_{4}$, τ inverts ρ and centralizes $\tau_{1}, \rho^{-1} \tau_{1} \rho=\tau_{2}, \rho^{-1} \tau_{2} \rho=\tau_{1} \tau_{2}$, and $\tau \tau_{2} \tau=\tau_{1} \tau_{2}$. Obviously $S=(V \cdot\langle\tau\rangle) \times\langle t\rangle$ is a Sylow 2-subgroup of $C(t)$ and $V \cdot\langle\tau\rangle$ is a dihedral group of order 8 with the element $a=\tau \tau_{2}$ of order 4 . Also we have $\left\langle\tau_{1}\right\rangle=S^{\prime}$ and so $C_{G}\left(\tau_{1}\right)=S$. The four-group $\left\langle t, \tau_{1}\right\rangle$ is equal to the centre $Z(S)$ of S.

The involutions t, τ_{1}, and $t \tau_{1}$ lie in three different conjugate classes of G. In fact, suppose that any two of these three involutions are conjugate in G. Then by a theorem of Burnside, they are conjugate in $N_{G}(S)$ and hence in $N_{G}(Z(S))$. But $C_{G}(Z(S))=S$ and so $N_{G}(Z(S)) \supset S$. It follows that all three involutions t, τ_{1}, and $t \tau_{1}$ would lie in the same conjugate class in G. This is impossible since $\left|C_{G}\left(\tau_{1}\right)\right|=16$ and $\left|C_{G}(t)\right|=16 \cdot 3$. The intersections of the conjugate classes of $C(t)$ with S are $\{1\},\left\{\tau_{1}, \tau_{2}, \tau_{1} \tau_{2}\right\},\left\{t \tau_{1}, t \tau_{2}, t \tau_{1} \tau_{2}\right\},\left\{\tau, \tau \tau_{1}\right\},\left\{t \tau, t \tau \tau_{1}\right\},\left\{a, a^{-1}\right\}$, $\left\{t a, t a^{-1}\right\},\{t\}$.

The group G has precisely two conjugate classes of elements of order 4 . Suppose that a and $t a$ are conjugate in G. Then there is an element $x \in G$ such that $x^{-1} a x=t a$. Since $a^{2}=(t a)^{2}=\tau_{1}$, we get $x^{-1} \tau_{1} x=\tau_{1}$ and so $x \in S$. This is a contradiction since a and $t a$ lie in two different conjugate classes of S.

The focal group S^{*} of S in G contains V. This is obvious, since $\rho^{-1} \tau_{1} \rho=\tau_{2}$ and $\rho^{-1} \tau_{2} \rho=\tau_{1} \tau_{2}$. (For the concept of a focal group see D. G. Higman (5).)

If $S^{*}=V$, then $G=C_{G}(t)=\langle t\rangle \times F$. We have in this case a normal subgroup M of G such that $M \cap S=V$ and $[G: M]=4$. Because $\rho \in M$ and $V\langle\rho\rangle \cong A_{4}$, all involutions are conjugate in M and a Sylow 2 -subgroup of M is a four-group. Also we have $C_{M}\left(\tau_{1}\right)=V$. By a result of Suzuki (8) we have either $V \triangleleft M$ (and then $M=V\langle\rho\rangle, G=S \cdot M, G=C_{G}(t)=\langle t\rangle \times F$) or $M \cong A_{5}$. We shall show that the second case is impossible. Because the automorphism group of A_{5} is S_{5}, it follows that $C_{G}(M) \neq\langle 1\rangle$ and

$$
C_{G}(M) \cap M=\langle 1\rangle
$$

The condition $C_{G}\left(\tau_{1}\right)=S$ gives $C_{G}(M) \subseteq S$. Since $C_{S}(V)=\langle t\rangle \times V$, it follows that $C_{G}(M) \subseteq\langle t\rangle \times V$ and so $C_{G}(M)=\langle z\rangle$, where z is an involution contained in $(\langle t\rangle \times V) \backslash V$. It follows that $t=z \cdot v$, where $v \in V$. Both t and z centralize ρ. Hence v commutes with ρ. By the structure of $A_{4}, v=1$. We get $C_{G}(M)=\langle t\rangle$, which contradicts our assumption (1).

The case $S^{*}=S$ is not possible. Hence G must have a normal subgroup N of index 2 , and t cannot be an element of S^{*}. By way of contradiction, suppose that $t \in S^{*}$. Then at least one of the involutions τ or $t \tau$ must be conjugate in G to an involution in $Z(S)$. Replacing τ by $t \tau$, if necessary, we may suppose that τ is conjugate in G to an involution in $Z(S)$. Put $U=\langle Z(S), \tau\rangle$. Then

$$
C(\tau) \cap C(t)=U
$$

and a Sylow 2 -subgroup of $C_{G}(\tau)$ has order 16 . It follows that

$$
N_{G}(U) \cap C(t)=S
$$

and $N_{G}(U) \nsubseteq C(t)$. Also $C_{G}(U)=U$ and so $N_{G}(U) / U$ is isomorphic to a subgroup of GL $(3,2)$. Obviously 7 cannot divide $\left|N_{G}(U)\right|$ (because all involutions in U do not lie in the same conjugate class in G) and so 3 must divide $\left|N_{G}(U)\right|$. Let ζ be an element of order 3 contained in $N(U)$. We want to determine the orbits of ζ in $U \backslash\langle 1\rangle$. Since t, τ_{1}, and $t \tau_{1}$ lie in three different conjugate classes in G, it follows that t, τ_{1}, and $t \tau_{1}$ must lie in three different orbits under the action of ζ. In particular, ζ must fix one of these three involutions and since $\zeta \notin C(t)$ and $C_{G}\left(\tau_{1}\right)=S$, it follows that $\zeta^{-1} \cdot t \tau_{1} \cdot \zeta=t \tau_{1}$. The other two orbits are either $\left\{t, \tau, \tau \tau_{1}\right\},\left\{\tau_{1}, \tau t, \tau \tau_{1} t\right\}$ or $\left\{t, \tau t, \tau \tau_{1} t\right\},\left\{\tau_{1}, \tau, \tau \tau_{1}\right\}$. In the first case we get $S^{*}=\langle V, t \tau\rangle$ and in the second case $S^{*}=\langle V, \tau\rangle$. Hence in any case $t \notin S^{*}$. It follows that G has a normal subgroup N such that $G=\langle t\rangle \cdot N$ and replacing τ by $t \tau$, if necessary, we may suppose that $\tau \in N$ and so $F \subseteq N, N \cap C(t)=F$.

If G has no normal subgroup of index 4 , then $G \cong S_{6}$. In this case we have $G=\langle t\rangle \cdot N, N \triangleleft G, N \cap C(t)=F$, and $S^{*}=\langle V, \tau\rangle . N$ has no normal subgroup of index $2, C_{N}(t)=F$, and $C_{N}\left(\tau_{1}\right)=\langle V, \tau\rangle$. A Sylow 2 -subgroup of N is dihedral of order 8 and since N has no normal subgroup of index 2, all involutions in N are conjugate in N. Considering the action of V on $O(N)$ (and using the fact that the centralizer of any involution in N has order 8), it follows that $O(N)=\langle 1\rangle . N$ has no non-trivial normal subgroup of odd order. Using a result of Gorenstein and Walter (3), it follows that $N \cong \operatorname{PSL}(2, q), q$ odd, or $N \cong A_{7}$. However, the second case cannot happen since the order of the centralizer of an involution in A_{7} is divisible by 3 . Since the order of the centralizer of an involution in $\operatorname{PSL}(2, q), q$ odd, is $q+\epsilon$ $(\epsilon= \pm 1)$, it follows that $N \cong \operatorname{PSL}(2,7)$ or $N \cong \operatorname{PSL}(2,9) \cong A_{6}$. It is easy to see that the first case cannot happen. Suppose that $N \cong \operatorname{PSL}(2,7)$. The case $C_{G}(N)=\langle 1\rangle$ gives $G \cong \operatorname{Aut}(\operatorname{PSL}(2,7))=\operatorname{PGL}(2,7)$. We know that a Sylow 2 -subgroup of $\operatorname{PGL}(2,7)$ is dihedral of order 16 . This is a contradiction, since G has no elements of order 8 . Hence $C_{G}(N) \neq\langle 1\rangle$ and so $G=N \times C_{G}(N), \quad C_{G}(N)=\langle z\rangle$, where z is an involution contained in $(\langle t\rangle \times V) \backslash V$. It follows that $t=z v$ with $v \in V$. Both t and z centralize F and so v centralizes $F \cong S_{4}$. However, S_{4} has no non-trivial centre and so $v=1$. It follows that t centralizes N, a contradiction.

We have proved that $N \cong \operatorname{PSL}(2,9) \cong A_{6}$. The automorphism group \mathfrak{A} of A_{6} has the property that \mathfrak{H} / A_{6} is elementary abelian of order 4 . Certainly $C_{G}(N)=\langle 1\rangle$ and so G is a subgroup of \mathfrak{N} containing $N \cong A_{6}$. Also G is not isomorphic to $\operatorname{PGL}(2,9)$ because a Sylow 2-subgroup of $\operatorname{PGL}(2,9)$ is dihedral of order 16.

Now, \mathfrak{A} is the extension of $\operatorname{PGL}(2,9)$ by the field automorphism f of order 2. $\operatorname{PGL}(2,9)$ is the group of all 2×2 matrices

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right],
$$

where $a_{i j} \in \mathrm{GF}(9)$ considered modulo the group of all scalar matrices

$$
\left[\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right], \quad k \in \mathrm{GF}(9)
$$

and we have

$$
f \cdot\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot f=\left[\begin{array}{ll}
a_{11}{ }^{3} & a_{12^{3}} \\
a_{21}{ }^{3} & a_{22^{3}}{ }^{3}
\end{array}\right] .
$$

$\operatorname{PSL}(2,9)$ is the subgroup of $\operatorname{PGL}(2,9)$ consisting of all matrices whose determinant is square in $\mathrm{GF}(9)$. Let ζ be a generator of the multiplicative group of GF (9). Then $\zeta^{4}=-1$. Put

$$
\alpha=\left[\begin{array}{ll}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right], \quad \beta=\left[\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \delta=\left[\begin{array}{ll}
1 & 0 \\
0 & \zeta
\end{array}\right] \cdot f
$$

and verify that $\alpha^{4}=1, \beta^{2}=1, \beta \alpha \beta=\alpha^{-1}, \delta^{-1} \alpha \delta=\alpha^{-1}, \delta^{-1} \beta \delta=\alpha^{-1} \beta, \delta^{2}=\alpha^{2}$. Since $\langle\alpha, \beta\rangle$ is the dihedral Sylow 2 -subgroup of $\operatorname{PSL}(2,9)$, it follow that $\langle\alpha, \beta, \delta\rangle$ is a Sylow 2 -subgroup of $\langle\operatorname{PSL}(2,9), \delta\rangle$. Note that

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & \zeta
\end{array}\right]
$$

is an element of $\operatorname{PGL}(2,9) \backslash \operatorname{PSL}(2,9)$. However,

$$
(\delta \beta)^{2}=\delta^{2} \delta^{-1} \beta \delta \beta=\alpha^{2} \cdot \alpha^{-1} \beta \cdot \beta=\alpha
$$

and so $\delta \beta$ is an element of order 8 . Hence G cannot be isomorphic to $\langle\operatorname{PSL}(2,9), \delta\rangle$. It follows that G is isomorphic to $\langle\operatorname{PSL}(2,9), f\rangle$. Because $\operatorname{PSL}(2,9)$ has a subgroup isomorphic to A_{5}, we have $\operatorname{PSL}(2,9) \cong A_{6}$. Hence S_{6} is a subgroup of $\operatorname{Aut}(\operatorname{PSL}(2,9))$ containing A_{6}. Since S_{6} has no elements of order 8 , it follows that $S_{6} \cong\langle\operatorname{PSL}(2,9), f\rangle$ and so $G \cong S_{6}$. The proposition is completely proved.
2. Properties of H_{0}. We shall now study the structure of H_{0} where H_{0} denotes the centralizer in $\mathrm{PSp}_{4}(3)$ of an involution contained in the centre of a Sylow 2 -subgroup of $\mathrm{PSp}_{4}(3)$. Let F_{3} be the finite field of three elements. Let V be a four-dimensional vector space over F_{3} equipped with a non-singular skew-symmetric bilinear form $x \cdot y \in F_{3}(x, y \in V)$. Then V has a "symplectic basis," i.e. a basis $n_{1}, m_{1}, n_{2}, m_{2}$ such that $n_{1} \cdot n_{2}=m_{1} \cdot m_{2}=n_{1} \cdot m_{2}=m_{1} \cdot n_{2}=0$ and $n_{1} \cdot m_{1}=n_{2} \cdot m_{2}=1$. The group of all linear transformations σ of V such that $\sigma(x) \cdot \sigma(y)=x \cdot y$ for all x, y in V is called the symplectic group $\mathrm{Sp}_{4}(3)$. This group has the centre of order 2 and the corresponding factor-group is $\mathrm{PSp}_{4}(3)$. See Artin (1).

Obviously a linear transformation σ of V belongs to $\mathrm{Sp}_{4}(3)$ if and only if

$$
\begin{gathered}
\sigma\left(n_{1}\right) \cdot \sigma\left(n_{2}\right)=\sigma\left(m_{1}\right) \cdot \sigma\left(m_{2}\right)=\sigma\left(n_{1}\right) \cdot \sigma\left(m_{2}\right)=\sigma\left(m_{1}\right) \cdot \sigma\left(n_{2}\right)=0, \\
\sigma\left(n_{1}\right) \cdot \sigma\left(m_{1}\right)=\sigma\left(n_{2}\right) \cdot \sigma\left(m_{2}\right)=1 .
\end{gathered}
$$

It follows that a linear transformation σ given by the matrix ($\alpha_{i j}$) ($i, j=1, \ldots, 4$) in terms of the basis $n_{1}, m_{1}, n_{2}, m_{2}$, where

$$
\sigma\left(n_{1}\right)=\alpha_{11} n_{1}+\alpha_{12} m_{1}+\alpha_{13} n_{2}+\alpha_{14} m_{2}
$$

etc., belongs to $\mathrm{Sp}_{4}(3)$ if and only if

$$
\begin{aligned}
& \alpha_{11} \alpha_{32}-\alpha_{12} \alpha_{31}+\alpha_{13} \alpha_{34}-\alpha_{14} \alpha_{33}=0, \\
& \alpha_{21} \alpha_{42}-\alpha_{22} \alpha_{41}+\alpha_{23} \alpha_{44}-\alpha_{24} \alpha_{43}=0, \\
& \alpha_{11} \alpha_{42}-\alpha_{12} \alpha_{41}+\alpha_{13} \alpha_{44}-\alpha_{14} \alpha_{43}=0, \\
& \alpha_{21} \alpha_{32}-\alpha_{22} \alpha_{31}+\alpha_{23} \alpha_{34}-\alpha_{24} \alpha_{33}=0, \\
& \alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}+\alpha_{13} \alpha_{24}-\alpha_{14} \alpha_{23}=1, \\
& \alpha_{31} \alpha_{42}-\alpha_{32} \alpha_{41}+\alpha_{33} \alpha_{44}-\alpha_{34} \alpha_{43}=1 .
\end{aligned}
$$

Take

$$
t^{\prime}{ }_{0}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & -1
\end{array}\right]
$$

which is an involution in $\mathrm{Sp}_{4}(3)$. (We identify the linear transformations in $\mathrm{Sp}_{4}(3)$ with the corresponding matrices in terms of the basis $n_{1}, m_{1}, n_{2}, m_{2}$.) The centre of $\mathrm{Sp}_{4}(3)$ is generated by the following matrix:

$$
c=\left[\begin{array}{llll}
-1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right]
$$

Then a matrix $\left(\alpha_{i j}\right)$ from $\mathrm{Sp}_{4}(3)$ satisfies

$$
\left(\alpha_{i j}\right) \cdot t_{0}^{\prime}=t^{\prime}{ }_{0} \cdot\left(\alpha_{i j}\right) \cdot c^{r} \quad(r=0,1)
$$

if and only if

$$
\left(\alpha_{i j}\right)=\left[\begin{array}{llll}
\alpha_{11} & \alpha_{12} & & \\
\alpha_{21} & \alpha_{22} & & \\
& & \alpha_{33} & \alpha_{34} \\
& & \alpha_{43} & \alpha_{44}
\end{array}\right] \quad \begin{aligned}
& \text { with } \alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}=1 \\
& \text { and } \alpha_{33} \alpha_{44}-\alpha_{34} \alpha_{43}=1,
\end{aligned}
$$

or

$$
\left(\alpha_{i j}\right)=\left[\begin{array}{llll}
& & \alpha_{13} & \alpha_{14} \\
& & \alpha_{23} & \alpha_{24} \\
\alpha_{31} & \alpha_{32} & & \\
\alpha_{41} & \alpha_{42} & &
\end{array}\right] \quad \begin{aligned}
& \text { with } \alpha_{13} \alpha_{24}-\alpha_{14} \alpha_{23}=1 \\
& \text { and } \alpha_{31} \alpha_{42}-\alpha_{32} \alpha_{41}=1 .
\end{aligned}
$$

Denote by $H^{\prime}{ }_{0}$ the group of all elements $\left(\alpha_{i j}\right)$ of $\mathrm{Sp}_{4}(3)$ which "commute projectively" with t^{\prime}, i.e. which satisfy $\left(\alpha_{i j}\right) \cdot t^{\prime}{ }_{0}=t^{\prime}{ }_{0} \cdot\left(\alpha_{i j}\right) \cdot c^{r}(r=0,1)$ and denote by K^{\prime} the centralizer $C\left(t^{\prime}{ }_{0}\right)$ of $t^{\prime}{ }_{0}$ in $\mathrm{Sp}_{4}(3)$.

The matrix

$$
\beta^{\prime}=\left[\begin{array}{llll}
& & 1 & 0 \\
& & 0 & 1 \\
1 & 0 & & \\
0 & 1 & &
\end{array}\right]
$$

belongs to $H^{\prime}{ }_{0}$ and satisfies $\beta^{\prime 2}=1$ and

$$
\beta^{\prime} \cdot\left[\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & & \\
\alpha_{21} & \alpha_{22} & & \\
& & \alpha_{33} & \alpha_{34} \\
& & \alpha_{43} & \alpha_{44}
\end{array}\right] \cdot \beta^{\prime}=\left[\begin{array}{cccc}
\alpha_{33} & \alpha_{34} & & \\
\alpha_{43} & \alpha_{44} & & \\
& & \alpha_{11} & \alpha_{12} \\
& & \alpha_{21} & \alpha_{22}
\end{array}\right]
$$

We have $\left[H^{\prime}: K^{\prime}\right]=2$ and $H^{\prime}{ }_{0}=K^{\prime} \cdot\left\langle\beta^{\prime}\right\rangle$. Let $S^{\prime}{ }_{1}$ be the subgroup of K^{\prime} consisting of all matrices of the form

$$
\left[\begin{array}{cccc}
1 & 0 & & \\
0 & 1 & & \\
& & \alpha_{33} & \alpha_{34} \\
& & \alpha_{43} & \alpha_{44}
\end{array}\right] \text { with } \alpha_{33} \alpha_{44}-\alpha_{34} \alpha_{43}=1
$$

Then we have $K^{\prime}=S^{\prime}{ }_{1} \times S^{\prime}{ }_{2}, t^{\prime}{ }_{0} \in S^{\prime}{ }_{1}, S^{\prime}{ }_{1} \cong S^{\prime}{ }_{2} \cong \mathrm{SL}(2,3)$ with

$$
\beta^{\prime} \cdot S_{1}^{\prime} \cdot \beta^{\prime}=S_{2}^{\prime}
$$

Also β^{\prime} commutes projectively with a matrix ($\alpha_{i j}$) in K^{\prime} if and only if

$$
\left(\alpha_{i j}\right)=\left[\begin{array}{rr}
A & 0 \\
0 & \pm A
\end{array}\right],
$$

where A is any 2×2 matrix (over F_{3}) with determinant 1 . Now put $H_{0}=H^{\prime}{ }_{0} /\langle c\rangle$ and in the natural homomorphism from $H^{\prime}{ }_{0}$ onto H_{0} let the images of $t^{\prime}{ }_{0}, \beta^{\prime}, K^{\prime}, S^{\prime}{ }_{1}, S^{\prime}{ }_{2}$ be $t_{0}, \beta, K, S_{1}, S_{2}$ respectively. Then obviously H_{0} is the centralizer $C\left(t_{0}\right)$ of the involution t_{0} in $\mathrm{PSp}_{4}(3)=\mathrm{Sp}_{4}(3) /\langle c\rangle$. We have $S_{1} \cong S_{2} \cong S^{\prime}{ }_{1} \cong S^{\prime}{ }_{2} \cong \mathrm{SL}(2,3), H_{0}=K \cdot\langle\beta\rangle, \beta^{2}=1, K=S_{1} \cdot S_{2},\left[S_{1}, S_{2}\right]=1$ (which means that S_{1} and S_{2} commute elementwise), $S_{1} \cap S_{2}=\left\langle t_{0}\right\rangle$, and $\beta \cdot S_{1} \cdot \beta=S_{2}$. These relations completely determine the structure of H_{0}. But of course we have to show that t_{0} is in fact an involution contained in the centre of a Sylow 2 -subgroup of $\mathrm{PSp}_{4}(3)$.

Let Q be a Sylow 2-subgroup of K. Then $Q=Q_{1} \cdot Q_{2}, Q_{1} \cap Q_{2}=\langle t\rangle$, $\left[Q_{1}, Q_{2}\right]=1, \beta Q_{1} \beta=Q_{2}, Q_{1} \cong Q_{2}$ is the quaternion group (of order 8), where $Q_{i}=Q \cap S_{i}(i=1,2)$. Note that K is 2 -closed because S_{1} and S_{2} are 2-closed. It follows that $\langle\beta, Q\rangle$ is a Sylow 2 -subgroup of H_{0} and obviously the centre of $\langle\beta, Q\rangle$ is contained in Q. But the centre $Z(Q)$ of Q is equal to $\left\langle t_{0}\right\rangle$. It follows that $Z\left(H_{0}\right)=Z(\langle\beta, Q\rangle)=Z(Q)=\left\langle t_{0}\right\rangle$ and so $\langle\beta, Q\rangle$ has cyclic centre $\left\langle t_{0}\right\rangle$. Let S be a Sylow 2 -subgroup of $\mathrm{PSp}_{4}(3)$ containing $\langle\beta, Q\rangle$. Since

$$
C\left(t_{0}\right) \cap S=\langle\beta, Q\rangle
$$

it follows $Z(S) \subseteq\langle\beta, Q\rangle$ and so $Z(S)=\left\langle t_{0}\right\rangle$. But this gives $S=\langle\beta, Q\rangle$. Hence we have shown that $\langle\beta, Q\rangle$ is a Sylow 2 -subgroup of $\mathrm{PSp}_{4}(3)$ and since $Z(\langle\beta, Q\rangle)$ has only one non-trivial element it follows that the structure of $H_{0}=C\left(t_{0}\right)$ is uniquely determined. Also we know that $\mathrm{PSp}_{4}(3)$ is a simple group and this shows that $\mathrm{PSp}_{4}(3)$ is a finite group of even order satisfying conditions (a) and (b).

A previous remark shows that $C(\beta) \cap H_{0}=\left\langle t_{0}, \beta\right\rangle \times L$, where $\left\langle t_{0}, \beta\right\rangle$ is a four-group and $L \cong A_{4} \cong \operatorname{LF}(2,3)$.

We have $S_{1}=\left\langle\alpha_{1}, \beta_{1}, \sigma_{1}\right| \alpha_{1}{ }^{2}=\beta_{1}{ }^{2}=t_{0}, \quad t_{0}{ }^{2}=\sigma_{1}{ }^{3}=1, \quad \beta_{1}{ }^{-1} \alpha_{1} \beta_{1}=\alpha_{1}{ }^{-1}$, $\left.\sigma_{1}{ }^{-1} \alpha_{1} \sigma_{1}=\beta_{1}, \sigma_{1}^{-1} \beta_{1} \sigma_{1}=\alpha_{1} \cdot \beta_{1}\right\rangle$ because $S_{1} \cong \operatorname{SL}(2,3)$ and $\operatorname{SL}(2,3)$ is an extension of the quaternion group by an automorphism of order 3. Put $\alpha_{2}=\beta \cdot \alpha_{1} \cdot \beta, \beta_{2}=\beta \cdot \beta_{1} \cdot \beta, \sigma_{2}=\beta \cdot \sigma_{1} \cdot \beta$. Then $S_{2}=\left\langle\alpha_{2}, \beta_{2}, \sigma_{2}\right\rangle$. We may also put $L=\left\langle\sigma_{1} \cdot \sigma_{2}, \alpha_{1} \cdot \alpha_{2}\right\rangle$ because if we put $\rho=\sigma_{1} \sigma_{2}, \tau_{1}=\alpha_{1} \alpha_{2}, \rho^{-1} \tau_{1} \rho=\tau_{2}$, then $\left\langle\tau_{1}, \tau_{2}\right\rangle$ is a four-group normalized by $\rho,\left\langle\rho, \tau_{1}\right\rangle \subseteq C(\beta) \cap K$, and $\left\langle\rho, \tau_{1}\right\rangle \cap\left\langle t_{0}, \beta\right\rangle=1$. Every element of H_{0} can be written uniquely in the form $\alpha_{1}{ }^{i} \beta_{1}{ }^{j} \sigma_{1}{ }^{k} \tau_{1}{ }^{l} \tau_{2}{ }^{m} \rho^{n} \beta^{p}$, where $i=0,1,2,3 ; j=0,1 ; k=0,1,2 ; l=0,1 ; m=0,1$; $n=0,1,2 ; p=0,1$.

We shall now take a closer look at H_{0}. In particular we want to determine the conjugate classes of elements of H_{0}. Obviously $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ is a Sylow 3 -subgroup of H_{0}. This is an elementary abelian group of order 9 and so two non-trivial elements of $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ are conjugate in H_{0} if and only if they are conjugate in $N_{H_{0}}\left(\left\langle\sigma_{1}, \sigma_{2}\right\rangle\right)$. We want to determine this normalizer. Suppose that

$$
x_{1} \cdot x_{2} \in N_{H_{0}}\left(\left\langle\sigma_{1}, \sigma_{2}\right\rangle\right)
$$

where $x_{i} \in S_{i}(i=1,2)$. Then

$$
x_{2}^{-1} \cdot x_{1}^{-1} \cdot \sigma_{1} \cdot x_{1} x_{2}=x_{1}^{-1} \sigma_{1} x_{1} \in S_{1} \cap\left\langle\sigma_{1}, \sigma_{2}\right\rangle=\left\langle\sigma_{1}\right\rangle .
$$

But $N_{S_{1}}\left(\left\langle\sigma_{1}\right\rangle\right)=\left\langle t_{0}\right\rangle \cdot\left\langle\sigma_{1}\right\rangle$ and so $x_{1} \in\left\langle t_{0}, \sigma_{1}\right\rangle$. Considering $x_{2}^{-1} \cdot x_{1}{ }^{-1} \cdot \sigma_{2} \cdot x_{1} x_{2}$ we see that $x_{2} \in\left\langle t_{0}, \sigma_{2}\right\rangle$. This gives

$$
N_{K}\left(\left\langle\sigma_{1}, \sigma_{2}\right\rangle\right)=C_{K}\left(\left\langle\sigma_{1}, \sigma_{2}\right\rangle\right)=\left\langle t_{0}\right\rangle \times\left\langle\sigma_{1}, \sigma_{2}\right\rangle .
$$

Since β normalizes but does not centralize $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ it follows that

$$
C_{H_{0}}\left(\left\langle\sigma_{1}, \sigma_{2}\right\rangle\right)=\left\langle t_{0}\right\rangle \times\left\langle\sigma_{1}, \sigma_{2}\right\rangle
$$

and $N_{H_{0}}\left(\left\langle\sigma_{1}, \sigma_{2}\right\rangle\right)=\left\langle t_{0}, \beta\right\rangle \cdot\left\langle\sigma_{1}, \sigma_{2}\right\rangle$.
Hence the representatives of conjugate classes of elements of order 3 in H_{0} are $\sigma_{1}, \sigma_{1}^{-1}, \sigma_{1} \cdot \sigma_{2}, \sigma_{1}^{-1} \cdot \sigma_{2}^{-1}$, and $\sigma_{1}^{-1} \cdot \sigma_{2}$. In particular, H_{0} has only one real class consisting of elements of order 3 . We shall determine the centralizers in H_{0} of these representatives. Suppose that $x \in H_{0} \backslash K$ and $x \in C_{H_{0}}\left(\sigma_{1}\right)$. Then $x=\beta \cdot x^{\prime}$ with $x^{\prime} \in K$ and so $x^{-1} \sigma_{1} x=x^{\prime-1} \beta^{-1} \sigma_{1} \beta x^{\prime}=x^{\prime-1} \sigma_{2} x^{\prime} \in S_{2}$ since $S_{2} \triangleleft K$. But $S_{1} \cap S_{2}=\left\langle t_{0}\right\rangle$ and so $x^{\prime-1} \sigma_{2} x^{\prime} \neq \sigma_{1}$, a contradiction. Hence $C_{H_{0}}\left(\sigma_{1}\right) \subseteq K$. We have $C_{K}\left(\sigma_{1}\right) \supseteq S_{2}$ and so

$$
C_{K}\left(\sigma_{1}\right)=S_{2} \cdot C_{S_{1}}\left(\sigma_{1}\right)=S_{2} \cdot\left\langle\sigma_{1}, t_{0}\right\rangle=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \cdot Q_{2} .
$$

Similarly $C_{H_{0}}\left(\sigma_{1}{ }^{-1}\right)=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \cdot Q_{2}$. We see that a Sylow 2 -subgroup of $C_{H_{0}}\left(\sigma_{1}\right)$ and $C_{H_{0}}\left(\sigma_{1}^{-1}\right)$ is a quaternion group of order 8 . Since β centralizes $\sigma_{1} \cdot \sigma_{2}$, it follows that $C_{H_{0}}\left(\sigma_{1} \sigma_{2}\right)=\langle\beta\rangle \cdot C_{K}\left(\sigma_{1} \cdot \sigma_{2}\right)$. Suppose that $x_{1} \cdot x_{2} \in C\left(\sigma_{1} \cdot \sigma_{2}\right)$, where $x_{i} \in S_{i}(i=1,2)$. Then

$$
\sigma_{1}^{-1} \cdot x_{1}^{-1} \sigma_{1} x_{1}=\sigma_{2} \cdot x_{2}^{-1} \sigma_{2}^{-1} x_{2} \in S_{1} \cap S_{2}=\left\langle t_{0}\right\rangle
$$

The case $\sigma_{1}^{-1} \cdot x_{1}^{-1} \cdot \sigma_{1} \cdot x_{1}=t_{0}$ cannot occur because $\sigma_{1} \cdot t_{0}$ is of order 6 and $x_{1}^{-1} \cdot \sigma_{1} \cdot x_{1}$ is of order 3. Hence $x_{1}^{-1} \sigma_{1} x_{1}=\sigma_{1}, x_{1} \in C_{S_{1}}\left(\sigma_{1}\right)=\left\langle\sigma_{1}, t_{0}\right\rangle$. Similarly we get $x_{2} \in C_{S_{2}}\left(\sigma_{2}\right)=\left\langle\sigma_{2}, t_{0}\right\rangle$ and so $C_{K}\left(\sigma_{1} \cdot \sigma_{2}\right)=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \times\left\langle t_{0}\right\rangle$. We see that a Sylow 2 -subgroup of $C_{H_{0}}\left(\sigma_{1} \cdot \sigma_{2}\right)$ and $C_{H_{0}}\left(\sigma_{1}^{-1} \cdot \sigma_{2}^{-1}\right)$ is elementary abelian of order 4.

We shall now determine the "generalized centralizer" of $\sigma_{1}{ }^{-1} \cdot \sigma_{2}$ in H_{0} (i.e. the set of all x in H_{0} such that $x^{-1} \cdot \sigma_{1}{ }^{-1} \sigma_{2} \cdot x=\left(\sigma_{1}{ }^{-1} \sigma_{2}\right)^{ \pm 1}$). The generalized centralizer $C_{H_{0}}{ }^{*}\left(\sigma_{1}{ }^{-1} \cdot \sigma_{2}\right)$ contains β since β inverts $\sigma_{1}{ }^{-1} \sigma_{2}$. Hence

$$
C_{H 0} *\left(\sigma_{1}^{-1} \cdot \sigma_{2}\right)=\langle\beta\rangle \cdot C_{K}^{*}\left(\sigma_{1}^{-1} \cdot \sigma_{2}\right)
$$

Let $x_{1} \cdot x_{2} \in C_{K}{ }^{*}\left(\sigma_{1}^{-1} \cdot \sigma_{2}\right)$, where $x_{i} \in S_{i}(i=1,2)$. Then

$$
\sigma_{1} \cdot x_{1}^{-1} \sigma_{1}^{-1} x_{1}=\sigma_{2} \cdot x_{2}^{-1} \sigma_{2}^{-1} x_{2} \in\left\langle t_{0}\right\rangle
$$

or $\sigma_{1}{ }^{-1} \cdot x_{1}^{-1} \sigma_{1}{ }^{-1} x_{1}=\sigma_{2}^{-1} \cdot x_{2}{ }^{-1} \sigma_{2}{ }^{-1} x_{2} \in\left\langle t_{0}\right\rangle$. However, the second case cannot happen because

$$
C_{S_{i}} *\left(\sigma_{i}\right)=C_{S i}\left(\sigma_{i}\right) \quad(i=1,2) .
$$

The first case gives $x_{i} \in\left\langle t_{0}, \sigma_{i}\right\rangle(i=1,2), C_{H_{0}}{ }^{*}\left(\sigma_{1}{ }^{-1} \cdot \sigma_{2}\right)=\left\langle\beta, t_{0}\right\rangle \cdot\left\langle\sigma_{1}, \sigma_{2}\right\rangle$. We have proved that a Sylow 2 -subgroup of the centralizer in H_{0} of a real element of order 3 in H_{0} has order 2 .

Now $\alpha_{1} \cdot \alpha_{2}$ is an element of order 2 and we show easily that

$$
\widetilde{Q}=C_{H 0}\left(\alpha_{1} \cdot \alpha_{2}\right)=\left\langle\alpha_{1}, \alpha_{2}, \beta_{1} \cdot \beta_{2}, \beta\right\rangle,
$$

which is a non-abelian group of order 32 . We want to study the structure of \widetilde{Q}. Since

$$
\beta^{-1} \alpha_{1} \beta \alpha_{1}^{-1}=\alpha_{1}^{-1} \alpha_{2}=t_{0} \alpha_{1} \cdot \alpha_{2}
$$

and

$$
\left(\beta_{1} \beta_{2}\right)^{-1} \cdot \alpha_{1} \cdot \beta_{1} \beta_{2} \cdot \alpha_{1}^{-1}=t_{0}
$$

it follows that the four-group $\left\langle t_{0}, \alpha_{1} \alpha_{2}\right\rangle$ is contained in the centre and in the commutator group of \widetilde{Q}. Since $\widetilde{Q} /\left\langle t_{0}, \alpha_{1} \cdot \alpha_{2}\right\rangle$ is abelian, it follows that the commutator group ($\widetilde{Q})^{\prime}$ of \widetilde{Q} is equal to $\left\langle t_{0}, \alpha_{1} \cdot \alpha_{2}\right\rangle$. \widetilde{Q} is of class 2 . The centre $Z(\widetilde{Q})$ is obviously contained in $\left\langle\alpha_{1}, \alpha_{2}, \beta_{1} \cdot \beta_{2}\right\rangle$ and $Z\left(\left\langle\alpha_{1}, \alpha_{2}, \beta_{1} \cdot \beta_{2}\right\rangle\right)$ is contained in $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$. However, $\alpha_{1} \notin Z(\widetilde{Q})$ and so $Z(\widetilde{Q})=\left\langle t_{0}, \alpha_{1} \alpha_{2}\right\rangle$. We want to study the Sylow 2 -subgroup $\langle Q, \beta\rangle$ of H_{0}. Since

$$
\beta^{-1} \beta_{1} \beta \beta_{1}^{-1}=\beta_{1} \beta_{2} \cdot t_{0}
$$

it follows that the commutator group $\langle Q, \beta\rangle^{\prime}$ of $\langle Q, \beta\rangle$ is the elementary abelian group $\left\langle t_{0}, \alpha_{1} \cdot \alpha_{2}, \beta_{1} \cdot \beta_{2}\right\rangle$ of order 8 .

The non-central involutions of K are conjugate in K to $\alpha_{1} \cdot \alpha_{2}$. All elements of order 4 of K are conjugate to α_{1} in H_{0} and $C_{H_{0}}\left(\alpha_{1}\right)=\left\langle\alpha_{1}\right\rangle \cdot S_{2}$. It is now easy to determine the centralizers in H_{0} of elements $\sigma_{1} \cdot t_{0}$ (order 6), $\sigma_{1}{ }^{-1} \cdot t_{0}$ (order 6), $\sigma_{1} \cdot \alpha_{2}$ (order 12), $\sigma_{1}{ }^{-1} \cdot \alpha_{2}$ (order 12), $\sigma_{1} \cdot \sigma_{2} \cdot t_{0}$ (order 6), $\sigma_{1}{ }^{-1} \cdot \sigma_{2}{ }^{-1} \cdot t_{0}$ (order 6) and $\sigma_{1}^{-1} \cdot \sigma_{2} \cdot t_{0}$ (order 6). The fact that all these elements are nonconjugate in H_{0} follows easily from the fact that $\sigma_{1}, \sigma_{1}^{-1}, \sigma_{1} \sigma_{2}, \sigma_{1}^{-1} \sigma_{2}^{-1}$, and $\sigma_{1}^{-1} \sigma_{2}$ are non-conjugate in H_{0}. If, for instance, there exists $z \in H_{0}$ such that $z^{-1} \cdot \sigma_{1} t_{0} \cdot z=\sigma_{1}{ }^{-1} \cdot t_{0}$, then $z^{-1} \sigma_{1} z=\sigma_{1}{ }^{-1}$, a contradiction. Finally

$$
C_{H_{0}}\left(\sigma_{1} \cdot t_{0}\right)=C_{H_{0}}\left(\sigma_{1}\right), \quad C_{H_{0}}\left(\sigma_{1}^{-1} t_{0}\right)=C_{H_{0}}\left(\sigma_{1}^{-1}\right),
$$

etc., and

$$
\begin{aligned}
C_{H 0}\left(\sigma_{1} \cdot \alpha_{2}\right) & =C_{H_{0}}\left(\sigma_{1}\right) \cap C_{H_{0}}\left(\alpha_{2}\right) \\
& =\left\langle Q_{2}, \sigma_{1}, \sigma_{2}\right\rangle \cap\left\langle\alpha_{2}\right\rangle \cdot S_{1}=\left\langle\alpha_{2}, \sigma_{1}\right\rangle=C_{H_{0}}\left(\sigma_{1}^{-1} \cdot \alpha_{2}\right) .
\end{aligned}
$$

We have determined all conjugate classes of H_{0} contained in K. It remains to determine the conjugate classes in $H_{0} \backslash K$. We have $C_{H_{0}}(\beta)=\left\langle\beta, t_{0}\right\rangle \times L$ and $C_{H_{0}}\left(t_{0} \beta\right)=\left\langle\beta, t_{0}\right\rangle \times L$. We compute that the 12 conjugates of β in H_{0} are $\beta, t_{0} \tau_{1} \beta, t_{0} \tau_{2} \beta, t_{0} \tau_{1} \tau_{2} \beta, \sigma_{1} \rho \beta, \sigma_{1}^{-1} \rho^{-1} \beta, \alpha_{1} \sigma_{1} \tau_{1} \rho \beta, \alpha_{1}^{-1} \sigma_{1}^{-1} \tau_{1} \rho^{-1} \beta$, $\beta_{1} \sigma_{1} \tau_{2} \rho \beta, t_{0} \beta_{1} \sigma_{1}^{-1} \tau_{2} \rho^{-1} \beta, \alpha_{1} \beta_{1} \sigma_{1} \tau_{1} \tau_{2} \rho \beta$, and $\alpha_{1}{ }^{-1} \beta_{1} \sigma_{1}{ }^{-1} \tau_{1} \tau_{2} \rho^{-1} \beta$. This is obtained by conjugating β with $1, \alpha_{1}, \beta_{1}, \beta_{1} \alpha_{1}, \sigma_{1}, \sigma_{1}{ }^{-1}, \alpha_{1} \sigma_{1}, \alpha_{1} \sigma_{1}{ }^{-1}, \beta_{1} \sigma_{1}$, $\beta_{1} \sigma_{1}^{-1}, \beta_{1} \alpha_{1} \sigma_{1}$, and $\beta_{1} \alpha_{1} \sigma_{1}{ }^{-1}$, respectively. It follows in particular that β and $t_{0} \beta$ are not conjugate in H_{0}. Since ρ and ρ^{-1} are not conjugate in H_{0}, it follows that $\rho \beta$ and $\rho^{-1} \beta$ are not conjugate in H_{0}. We have

$$
C_{H_{0}}(\rho \beta)=C_{H_{0}}\left(\rho^{-1} \beta\right)=C_{H_{0}}(\beta) \cap C_{H_{0}}(\rho)=\left\langle t_{0}, \beta\right\rangle \times\langle\rho\rangle .
$$

We have another two non-conjugate elements of order 6 contained in $H_{0} \backslash K$: $t_{0} \rho \beta$ and $t_{0} \rho^{-1} \beta$ with the same centralizers. Finally $\alpha_{1} \beta$ is an element of order 4 contained in $H_{0} \backslash K .\left(\alpha_{1} \beta\right)^{2}=\tau_{1}=\alpha_{1} \alpha_{2}$ and so

$$
C_{H_{0}}\left(\alpha_{1} \beta\right) \subseteq C_{H_{0}}\left(\alpha_{1} \alpha_{2}\right)=\widetilde{Q} .
$$

We have to determine $X=C_{\tilde{Q}}\left(\alpha_{1} \beta\right)$. Obviously $X \supseteq\left\langle t_{0}, \alpha_{1} \alpha_{2}\right\rangle=Z(\widetilde{Q})=(\widetilde{Q})^{\prime}$ and $X \supseteq\left\langle\alpha_{1} \cdot \beta\right\rangle$. Hence

$$
X \supseteq\left\langle t_{0}, \alpha_{1} \alpha_{2}, \alpha_{1} \cdot \beta\right\rangle=\left\langle t_{0}\right\rangle \times\left\langle\alpha_{1} \beta\right\rangle,
$$

which is an abelian normal subgroup (of order 8) of \widetilde{Q}. We have four different conjugates of $\alpha_{1} \cdot \beta$ in \widetilde{Q} :
$\alpha_{1} \beta, \quad \beta \cdot \alpha_{1} \beta \cdot \beta=\alpha_{2} \beta, \quad \beta_{1} \beta_{2} \cdot \alpha_{1} \beta \cdot \beta_{1} \beta_{2}=\alpha_{1}^{-1} \beta, \quad \beta \cdot \beta_{1} \beta_{2} \cdot \alpha_{1} \beta \beta \beta_{1} \beta_{2}=\alpha_{2}^{-1} \beta$ and so $X=\left\langle t_{0}\right\rangle \times\left\langle\alpha_{1} \beta\right\rangle$.

We have proved that $C_{H_{0}}\left(\alpha_{1} \beta\right)=\left\langle t_{0}\right\rangle \times\left\langle\alpha_{1} \beta\right\rangle$. Summing up the orders of all conjugate classes of H_{0} found so far, we get 576 . Hence we have determined all conjugate classes of H_{0}.
3. The conjugacy classes of involutions and the structures of their centralizers. Let G be a finite group of even order with the properties (a) and
(b) of the theorem. Since $H=C_{G}(t)$ is isomorphic to H_{0}, we shall identify H and H_{0}. We have then $t=t_{0}$.

Lemma 1. The Sylow 2-subgroup $\langle Q, \beta\rangle$ of H is a Sylow 2-subgroup of G.
Proof. This is obvious since the centre $Z(\langle Q, \beta\rangle)=\langle t\rangle$ is cyclic.
Lemma 2. The group G has precisely two conjugate classes of involutions Ω_{1} and Ω_{2} with the representatives t and t β, respectively: $\Omega_{1} \cap H$ is the union of two conjugate classes of H with the representatives t and $\beta . \Omega_{2} \cap H$ is the union of two conjugate classes of H with the representatives $t \beta$ and $\alpha_{1} \alpha_{2}$. Let $S=\left\langle t, \beta, \alpha_{1} \alpha_{2}, \beta_{1} \beta_{2}\right\rangle$. Then $C_{G}(S)=S$ and $N_{G}(S) / S \cong A_{5}$.

Proof. By way of contradiction, suppose that t is conjugate in G to $\alpha_{1} \cdot \alpha_{2}$. The group $S=\left\langle t, \beta, \tau_{1}, \tau_{2}\right\rangle$ is elementary abelian of order 16 , where $\tau_{1}=\alpha_{1} \alpha_{2}$, $\tau_{2}=\beta_{1} \beta_{2} . S \subseteq C(t)=H$ and S contains the commutator group

$$
\langle Q, \beta\rangle^{\prime}=\left\langle t, \tau_{1}, \tau_{2}\right\rangle
$$

of $\langle Q, \beta\rangle$ and so $S \triangleleft\langle Q, \beta\rangle$. Also S is normalized by $\rho=\sigma_{1} \cdot \sigma_{2}$ and so $S \triangleleft\langle Q, \beta, \rho\rangle=\tilde{H}$. We have $N_{G}(S) \cap C(t)=\tilde{\tilde{H}}$, since σ_{1} does not normalize S . ρ normalizes $\langle Q, \beta\rangle$ and $C(\rho) \cap\langle Q, \beta\rangle=\langle t, \beta\rangle$. Hence ρ does not fix any non-trivial element of $\langle Q, \beta\rangle / S$ and so $\tilde{H} / S \cong A_{4}$. Now, since $\tau_{1}=\alpha_{1} \alpha_{2}$ is conjugate in G to t, it follows that $C_{G}\left(\tau_{1}\right) \cong H$. We know that $C\left(\tau_{1}\right) \cap H=\widetilde{Q}$ is a non-abelian group of order 32 and the centre $Z(\widetilde{Q})=\left\langle t, \tau_{1}\right\rangle$ has order 4 . Let T be a Sylow 2 -subgroup of $C\left(\tau_{1}\right)$ containing \widetilde{Q}. Then $[T: \widetilde{Q}]=2$. Suppose that S is not normal in T. Then there exists an element $x \in T \backslash \widetilde{Q}$ such that $x^{-1} S x \subseteq \widetilde{Q}$ and $x^{-1} S x \neq S$. It follows that $\widetilde{Q}=S \cdot x^{-1} S x$ and $D=S \cap x^{-1} S x$ must have order 8 since $|\widetilde{Q}|=32$. But then (since S and $x^{-1} S x$ are abelian) $C_{G}(D) \supseteq\left\langle S, x^{-1} S x\right\rangle=\widetilde{Q}$, which is a contradiction, since $|Z(\widetilde{Q})|=4$.

It follows that S is normal in T and so $N_{G}(S) \nsubseteq H$. On the other hand

$$
C_{G}(S) \subseteq C_{G}(t) \cap C_{G}\left(\tau_{1}\right)=\widetilde{Q}
$$

and so $C_{G}(S)=S$ since \widetilde{Q} is non-abelian. We have proved that $\widetilde{S}=N_{G}(S) / S$ is isomorphic to a subgroup of $\operatorname{GL}(4,2) \cong A_{8}$. Obviously $\mathfrak{B}=\langle Q, \beta\rangle / S$ is a Sylow 2-subgroup (elementary abelian of order 4) of \mathfrak{C} and $\mathfrak{U}=\dot{\tilde{H}} / S$ is a subgroup of \mathfrak{S} isomorphic to A_{4}. Hence, in particular, all involutions of \mathfrak{S} are conjugate in \mathfrak{S}. However, $\mathfrak{B}_{1}=T / S$ and $\mathfrak{B}=\langle Q, \beta\rangle / S$ are two different Sylow 2-subgroups of \mathfrak{S} with the intersection $\mathfrak{D}=\mathfrak{B} \cap \mathfrak{B}_{1}=\widetilde{Q} / S$ of order 2 . This means that Sylow 2 -subgroups of \mathbb{S} are not independent.

Now the order of A_{8} is $2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ and the centralizer of any involution in A_{8} has order $2^{6} \cdot 3$ or $2^{5} \cdot 3$. Since $C_{\Im}(\mathfrak{D}) \supseteq\left\langle\mathfrak{B}, \mathfrak{B}_{1}\right\rangle$, we get $C_{\Im}(\mathfrak{D}) \supset \mathfrak{B}$. By the above remark about $A_{8}, C_{\Im}(\mathfrak{D})=\mathfrak{B} \cdot \mathfrak{U}$, where $|\mathfrak{U}|=3$ and $\mathfrak{U} \triangleleft \mathfrak{U} \cdot \mathfrak{B}$. Since \mathfrak{B} and \mathfrak{B}_{1} are contained in $C_{\subseteq}(\mathfrak{D})$, it follows that $\mathfrak{U} \cdot \mathfrak{B}$ is not a direct product of \mathfrak{U} and \mathfrak{B}.

Suppose at first that $\mathfrak{M}=O(\mathfrak{S}) \neq\langle 1\rangle$. Here $O(\mathbb{S})$ denotes the maximal normal odd-order subgroup of \mathfrak{S}. Considering the action of the four-group \mathfrak{B} on \mathfrak{M} we see that the order of \mathfrak{M} is either 3^{3} or 3 . However, the first case cannot
occur since 3^{3} does not divide $\left|A_{8}\right|$. It follows that $|\mathfrak{M}|=3$, \mathfrak{B} centralizes \mathfrak{M}, $\mathfrak{B} \cdot \mathfrak{M}=\mathfrak{B} \times \mathfrak{M}=\mathfrak{B} \times \mathfrak{U}$, a contradiction. Hence $O(\mathbb{S})=\langle 1\rangle$. Using a result of Gorenstein and Walter (3) we see that \subseteq is isomorphic to A_{7} or to some $\mathrm{LF}(2, q)$ with $q \equiv \pm 3(\bmod 8)$. However, the first case cannot occur since a Sylow 2 -subgroup of A_{7} has order 8 . From the order of A_{8} follows that $q=3$ or 5 . But both $\operatorname{LF}(2,3) \cong A_{4}$ and $\operatorname{LF}(2,5) \cong A_{5}$ have independent Sylow 2-subgroups, a contradiction.

We have proved that t cannot be conjugate to $\alpha_{1} \cdot \alpha_{2}$ in G. Suppose now that G is 2 -normal. Since $\langle t\rangle$ is the centre of the Sylow 2 -subgroup $\langle Q, \beta\rangle$ of G, it follows by the Hall-Grün theorem (4) that the greatest factor group of G which is a 2 -group is isomorphic to that of $C_{G}(t)=H$, i.e. is isomorphic to H / K, which is of order 2 . But this contradicts our condition (a).

It follows that G is not 2 -normal. This means that there exists an element z in G such that $t \in\langle Q, \beta\rangle \cap z^{-1} \cdot\langle Q, \beta\rangle z$ but $\langle t\rangle$ is not the centre of $z^{-1}\langle Q, \beta\rangle z$. The centre of $z^{-1}\langle Q, \beta\rangle z$ is $\left\langle z^{-1} t z\right\rangle$ and so $t \neq z^{-1} t z$. On the other hand, because $z^{-1} t z$ is contained in the centre of $z^{-1}\langle Q, \beta\rangle z$ and also $t \in z^{-1} \cdot\langle Q, \beta\rangle \cdot z$, it follows that t and $z^{-1} t z$ commute. Hence $\tau=z^{-1} t z \in C_{G}(t)=H$. In other words t is conjugate in G to an involution τ in H and $t \neq \tau$. Since t cannot be conjugate in G to $\alpha_{1} \cdot \alpha_{2}$, it follows that t must be conjugate in G to β or $t \beta$. Interchanging β and $t \beta$, if necessary, we may assume that t is conjugate in G to β.

We are now planning to determine the structure of $N_{G}(S)$, where $S=\left\langle t, \beta, \tau_{1}, \tau_{2}\right\rangle, \quad \tau_{1}=\alpha_{1} \alpha_{2}$, and $\tau_{2}=\beta_{1} \beta_{2}$. Again $S \triangleleft\langle Q, \beta, \rho\rangle$, where $\rho=\sigma_{1} \sigma_{2}$ and $\rho^{-1} \tau_{1} \rho=\tau_{2}, \rho^{-1} \tau_{2} \rho=\tau_{1} \tau_{2}, \rho t=t \rho, \rho \beta=\beta \rho$. Also

$$
N_{G}(S) \cap C_{G}(t)=\langle Q, \beta, \rho\rangle=\tilde{\tilde{H}}
$$

and $\tilde{\tilde{H}} / S \cong A_{4}$. Now, since β is conjugate in G to t, we have $C_{G}(\beta) \cong H=C_{G}(t)$. We know that $C(\beta) \cap C(t)=S \cdot\langle\rho\rangle=D$. Let T be a Sylow 2-subgroup of $C(\beta)$ containing S. Since D is 2-closed, $T \cap C(t)=S$ and $[T: S]=4$. In particular $N_{G}(S) \nsubseteq H$ and $\subseteq=N(S) / S$ is not 2-closed since $(N(S) \cap T) / S$ is a non-trivial 2 -subgroup of \mathfrak{S} which is not contained in $\mathfrak{B}=\langle Q, \beta\rangle / S$. Here \mathfrak{B} is a Sylow 2 -subgroup of \mathfrak{S} and \mathfrak{B} is elementary abelian of order 4 . All involutions are conjugate in \mathfrak{S} since \tilde{H} / S is a subgroup of \mathfrak{S}. Obviously $C_{G}(S)=S$ and so \subseteq is isomorphic to a subgroup of $\operatorname{GL}(4,2) \cong A_{8}$. We want to determine $N_{\subseteq}(\mathfrak{B})$. We have $N_{G}(\langle Q, \beta\rangle) \subseteq C_{G}(t)=H$ and so

$$
N_{G}(\langle Q, \beta\rangle)=\tilde{\tilde{H}}
$$

It follows that $N_{\Phi}(\mathfrak{B})=\tilde{\tilde{H}} / S \cong A_{4}$.
Suppose at first that $O(\subseteq)=\mathfrak{M} \neq\langle 1\rangle$. Then considering the action of \mathfrak{B} on \mathfrak{M} and using the fact that all involutions are conjugate in \mathfrak{S} and also the fact that the centralizer of any involution in A_{8} has order $3 \cdot 32$ or $3 \cdot 64$, it follows that either $|\mathfrak{M}|=27$ or $|\mathfrak{M}|=3$ and $\mathfrak{B} \cdot \mathfrak{M}=\mathfrak{B} \times \mathfrak{M}$. However, the first case is not possible because 27 does not divide the order of A_{8}. The second case is also not possible because $N_{\subseteq}(\mathfrak{B}) \cong A_{4}$. We have proved that $O(\Im)=\langle 1\rangle$ and \mathfrak{C} has no subgroups of index 2 . If d is an involution in \mathfrak{B}, then again by
the structure of A_{8} we have either $C \Subset(d)=\mathfrak{U} \cdot \mathfrak{B}$ with $\mathfrak{U} \triangleleft \mathfrak{U} \cdot \mathfrak{B}$ and $|\mathfrak{U}|=3$ or $C_{⿷}(d)=\mathfrak{B}$. In the first case by a result of Gorenstein and Walter (3) we have $\subseteq \cong \operatorname{LF}(2, q)$ with $q \pm 1=12=3 \cdot 4=\left|C_{\Im}(d)\right|$. Hence $q=11$ or $q=13$, which contradicts the order of A_{8}. Hence the second case must be involved and so $\subseteq \cong A_{5}$. Let μ be an element of order 5 contained in $N_{G}(S)$. Since $C_{G}(S)=S$, it follows that μ acts fixed-point-free on S. Now we take a closer look at the elements of S. Let Ω_{1} be the conjugate class in G with the representative t. Then

$$
\Omega_{1} \cap S \supseteq\left\{t, \beta, t \tau_{1} \beta, t \tau_{2} \beta, t \tau_{1} \tau_{2} \beta\right\}
$$

The six involutions $\tau_{1}, \tau_{2}, \tau_{1} \tau_{2}, t \tau_{1}, t \tau_{2}, t \tau_{1} \tau_{2}$ are conjugate in G to τ_{1} and the four involutions $t \beta, \tau_{1} \beta, \tau_{2} \beta, \tau_{1} \tau_{2} \beta$ are conjugate in G to $t \beta$. Since t is not conjugate in G to τ_{1}, it follows that τ_{1} must be conjugate (in $N(S)$) to $t \beta$ and t is not conjugate in G to $t \beta$. Lemma 2 is completely proved.

Lemma 3. The group G is not an N-group in the sense of J. G. Thompson (7).
Lemma 4. We have the following two possibilities for the structure of $C_{G}(t \beta)$:
(i) $C_{G}(t \beta)$ is isomorphic to the centralizer of an involution in A_{8} which does not lie in the centre of any Sylow 2-subgroup of A_{8}.
(ii) $C_{G}(t \beta)$ is the non-splitting central extension of $\langle t \beta\rangle$ by S_{6}.

Proof. Again put $S=\left\langle t, \beta, \tau_{1}, \tau_{2}\right\rangle$, where $\tau_{1}=\alpha_{1} \alpha_{2}, \tau_{2}=\beta_{1} \beta_{2}$. Obviously $\widetilde{Q}=C\left(\tau_{1}\right) \cap C(t)$ is contained in $N(S)$ and \widetilde{Q} is a Sylow 2-subgroup of $C\left(\tau_{1}\right)$. Namely, τ_{1} is not conjugate to t in G and so τ_{1} does not lie in the centre of any Sylow 2 -subgroup of G. We have $\rho^{-1} \tau_{1} \rho=\tau_{2}, \rho^{-1} \tau_{2} \rho=\tau_{1} \tau_{2}$, where $\rho=\sigma_{1} \sigma_{2} \in N(S)$ and so $|C(x) \cap N(S)|$ is divisible by 32 for any $x \in\left\{\tau_{1}, \tau_{2}\right.$, $\left.\tau_{1} \cdot \tau_{2}, t \tau_{1}, t \tau_{2}, t \tau_{1} \tau_{2}\right\}$. Also we know that $\langle Q, \beta\rangle \subseteq N(S)$ (since S contains the commutator group of $\langle Q, \beta\rangle$) and $t \beta, \tau_{1} \beta, \tau_{2} \beta, \tau_{1} \tau_{2} \beta$ are all conjugate in $\langle Q, \beta\rangle \subseteq N(S)$. It follows that $t \beta$ is conjugate in $N(S)$ to an element of $\left\{\tau_{1}, \tau_{2}, \tau_{1} \tau_{2}, t \tau_{1}, t \tau_{2}, t \tau_{1} \tau_{2}\right\}$ and so $Y=C(t \beta) \cap N(S)=\tilde{\tilde{Q}} \cdot\langle\rho\rangle$, where $[\tilde{\tilde{Q}}: S]=2, \tilde{\tilde{Q}} \cong \widetilde{Q}$, and $C_{G}(t \beta) \cap C_{G}(t)=S \cdot\langle\rho\rangle$. By the structure of $A_{5} \cong N(S) / S, Y$ is not 2-closed. Y is also not 3 -closed since ρ does not act trivially on S.

$$
N(\langle\rho\rangle) \cap\langle\rho\rangle \cdot S=\langle\rho\rangle \times C_{S}(\rho)=\langle\rho\rangle \times\langle t, \beta\rangle .
$$

Since Y / S is non-abelian of order $6, N_{Y}(\langle\rho\rangle) \neq C_{Y}(\rho)$. Hence

$$
Y=N_{Y}(\langle\rho\rangle) \cdot S, \quad N_{Y}(\langle\rho\rangle) \cap S=\langle t, \beta\rangle
$$

ρ is real in Y, and $\langle t, \beta\rangle$ is normal in Y. However, $C_{G}(\langle t, \beta\rangle=S \cdot\langle\rho\rangle$ and so $N_{G}(\langle t, \beta\rangle)=Y$ because t and $t \beta$ are not conjugate in $G . S \cdot\langle\rho\rangle$ is a normal subgroup of index 2 in Y. Let B be a Sylow 2 -subgroup of $N_{Y}(\langle\rho\rangle)$. Then there exists an element z of 2 -power order in B such that $z^{-1} t z=\beta$. Hence B is the dihedral group of order 8 and so we may choose z to be an involution. The group $\langle\rho\rangle \cdot\left\langle\tau_{1}, \tau_{2}\right\rangle$ is isomorphic to A_{4}. On the other hand $S \cdot\langle\rho\rangle$ has the normal subgroup $\langle\rho\rangle \cdot\left\langle\tau_{1}, \tau_{2}\right\rangle$ of index 4 which is the smallest normal subgroup
of $S \cdot\langle\rho\rangle$ with 2 -factor group. Hence $\langle\rho\rangle \cdot\left\langle\tau_{1}, \tau_{2}\right\rangle$ is characteristic in $S \cdot\langle\rho\rangle$ and so $\langle\rho\rangle \cdot\left\langle\tau_{1}, \tau_{2}\right\rangle$ is normal in Y. But $\left\langle\tau_{1}, \tau_{2}\right\rangle$ is characteristic in $\langle\rho\rangle \cdot\left\langle\tau_{1}, \tau_{2}\right\rangle$ and so $\left\langle\tau_{1}, \tau_{2}\right\rangle$ is normal in Y. Also the involution z normalizes $\langle\rho\rangle$ and because $C_{Y}(\rho)=\langle\rho\rangle \times\langle t, \beta\rangle$ and $z \notin\langle t, \beta\rangle(\langle z, t, \beta\rangle$ being dihedral of order $\delta)$, we have $z \rho z=\rho^{-1}$. We also have $\langle z, S\rangle=\tilde{\tilde{Q}}$ and this is isomorphic to \widetilde{Q}. It follows that the centre of $\tilde{\tilde{Q}}$ has order 4 and so $\left|C_{S}(z)\right|=4$. On the other hand, $C_{S}(z) \supseteq\langle t \beta\rangle$ and so $\left|C(z) \cap\left\langle\tau_{1}, \tau_{2}\right\rangle\right|=2$ (using the fact that $\left\langle\tau_{1}, \tau_{2}\right\rangle \triangleleft Y$). We may put $z^{-1} \cdot \tau_{1} \tau_{2} \cdot z=\tau_{1} \tau_{2}$ and $z^{-1} \tau_{1} z=\tau_{2} .\left\langle z, \tau_{1}, \tau_{2}\right\rangle$ is the dihedral group of order 8 . The structure of Y is completely determined.

We see that $Y /\langle t \beta\rangle$ is the direct product of $\langle t, \beta\rangle /\langle t \cdot \beta\rangle$ and $\left\langle z, \rho, \tau_{1}\right.$, $\left.\tau_{2}\right\rangle \cdot\langle t \beta\rangle /\langle t \beta\rangle$, which is isomorphic to $\left\langle z, \rho, \tau_{1}, \tau_{2}\right\rangle$ and this is isomorphic to S_{4}. Also $N(\langle t, \beta\rangle) \cap C_{G}(t \beta)=Y$ and so $C_{G}(t \beta) /\langle t \beta\rangle$ satisfies the condition (1) of Proposition 1, because Y contains a Sylow 2 -subgroup of $C_{G}(t \beta)$. Now, $\mathscr{Q} /\left\langle\tau_{1}\right\rangle$ is a Sylow 2 -subgroup of $C_{G}\left(\tau_{1}\right) /\left\langle\tau_{1}\right\rangle$ and $\left\langle t, \tau_{1}\right\rangle /\left\langle\tau_{1}\right\rangle$ is the commutator group of $\widetilde{Q} /\left\langle\tau_{1}\right\rangle$. On the other hand, $N_{G}\left(\left\langle t, \tau_{1}\right\rangle\right)$ is contained in $C_{G}(t)=H$ because t is not conjugate in G to either $\tau_{1}=\alpha_{1} \alpha_{2}$ or $t \tau_{1}=\alpha_{1}^{-1} \alpha_{2}$. It follows that

$$
N_{G}\left(\left\langle t, \tau_{1}\right\rangle\right) \cap C_{G}\left(\tau_{1}\right) \subseteq C_{G}(t) \cap C_{G}\left(\tau_{1}\right)=\tilde{Q}
$$

Since τ_{1} is conjugate in G to $t \beta$, it follows that the centralizer in $C_{G}(t \beta) /\langle t \cdot \beta\rangle$ of the commutator group of $\tilde{\tilde{Q}} /\langle t \beta\rangle$ is equal to $\tilde{\tilde{Q}} /\langle t \cdot \beta\rangle$. This shows that the condition (2) of Proposition 1 is also satisfied.

Applying the Proposition 1 on the group $C_{G}(t \beta) /\langle t \beta\rangle$ (and using the fact that since τ_{1} is a square of $\alpha_{1} \beta$ we have that $\left\langle\tau_{1}\right\rangle$ does not split in \widetilde{Q} and consequently $\langle t \beta\rangle$ does not split in $\tilde{\tilde{Q}})$ we get that either

$$
C_{G}(t \beta)=Y=C_{G}(t \beta) \cap N_{G}(S) \quad \text { or } \quad C_{G}(t \beta)
$$

is the non-splitting central extension of $\langle t \beta\rangle$ by S_{6} (symmetric group in six letters).

It remains to show that Y is isomorphic to the centralizer of an involution in A_{8} which does not lie in the centre of any Sylow 2 -subgroup of A_{8}. We establish the isomorphism from Y onto $C(\mu)$ in the notation of Wong (9), by mapping the generators $\rho, \tau_{1}, \tau_{2}, t, \beta, z$ of Y onto the generators $\nu,{ }^{-1} \tau \lambda, \pi \mu \cdot \tau \lambda$, $\lambda, \lambda \mu, \mu^{\prime}$ (in this order) of $C(\mu)$ and then verifying that the same relations are satisfied by both systems of generators. The lemma is proved.

Lemma 5. The case (ii) of Lemma 4 cannot happen.

Proof. Suppose that we have case (ii) of Lemma 4. There are precisely three conjugate classes of involutions in S_{6}. Note that the centre Z of a Sylow 2 -subgroup of S_{6} is elementary of order 4 , and that the three involutions in Z are not conjugate in S_{6}. Hence $C_{G}(t \beta)$ has precisely three conjugate classes of subgroups of order 4 containing $\langle t \beta\rangle$. Since $t \beta$ is conjugate in G to $\alpha_{1} \alpha_{2}=\tau_{1}$, we may consider $C_{G}\left(\tau_{1}\right)$. We want to find explicitly the three subgroups non-conjugate in $C_{G}\left(\tau_{1}\right)$ which are of order 4 and contain $\left\langle\tau_{1}\right\rangle$. They are $\left\langle t, \tau_{1}\right\rangle$, $\left\langle\alpha_{1} \beta\right\rangle$, and $\left\langle\beta \tau_{2}, \tau_{1}\right\rangle$, where $\tau_{2}=\beta_{1} \beta_{2}$. Clearly $\left\langle\alpha_{1} \beta\right\rangle$, being cyclic of order 4 ,
cannot be conjugate to any of the four-groups $\left\langle t, \tau_{1}\right\rangle$ and $\left\langle\beta \tau_{2}, \tau_{1}\right\rangle$. On the other hand $\left\langle t, \tau_{1}\right\rangle /\left\langle\tau_{1}\right\rangle$ is the commutator group of $\widetilde{Q} /\left\langle\tau_{1}\right\rangle$ and $\left\langle\beta \tau_{2}, \tau_{1}\right\rangle /\left\langle\tau_{1}\right\rangle$ is the subgroup of order 2 contained in the centre of $\widetilde{Q} /\left\langle\tau_{1}\right\rangle$ and is different from $\left\langle t, \tau_{1}\right\rangle /\left\langle\tau_{1}\right\rangle$. Hence the four-groups $\left\langle t, \tau_{1}\right\rangle$ and $\left\langle\beta \tau_{2}, \tau_{1}\right\rangle$ cannot be conjugate in $C_{G}\left(\tau_{1}\right)$. The four-group $\left\langle\beta \tau_{2}, \tau_{1}\right\rangle$ is normal in \widetilde{Q} but is not contained in the centre of \widetilde{Q} and so $\beta \tau_{2}$ and $\beta \tau_{1} \tau_{2}$ are conjugate in $C_{G}\left(\tau_{1}\right)$. Since

$$
N\left(\left\langle t, \tau_{1}\right\rangle\right) \cap C\left(\tau_{1}\right)=\widetilde{Q}
$$

it follows that

$$
C(t) \cap C\left(\tau_{1}\right)=C\left(t \tau_{1}\right) \cap C\left(\tau_{1}\right)=\widetilde{Q}
$$

Using the structure of S_{6}, it follows that $N\left(\left\langle\beta \tau_{2}, \tau_{1}\right\rangle\right) \cap C\left(\tau_{1}\right)=\widetilde{Q} \cdot X$, where $X \subseteq C\left(\tau_{1}\right)$ is a subgroup of order 3 and so

$$
C\left(\beta \tau_{2}\right) \cap C\left(\tau_{1}\right)=X \cdot\left\langle t, \tau_{1}, \tau_{2}, \beta\right\rangle
$$

Let Ω_{1} and Ω_{2} have the same meaning as in Lemma 2. Then $t \in \Omega_{1}, t \tau_{1} \in \Omega_{2}$, $\beta \tau_{2} \in \Omega_{2}$, and $\beta \tau_{1} \tau_{2} \in \Omega_{2}$.

Now let x be an involution in $C\left(\tau_{1}\right)$. Suppose $x \neq \tau_{1}$ and consider the four-group $\left\langle x, \tau_{1}\right\rangle$. Because S_{6} has precisely three conjugate classes of involutions, it follows that every group of order 4 in $C\left(\tau_{1}\right)$ which contains τ_{1} must be conjugate in $C\left(\tau_{1}\right)$ to one of the following groups (of order 4): $\left\langle t, \tau_{1}\right\rangle,\left\langle\alpha_{1} \beta\right\rangle$, and $\left\langle\beta \tau_{2}, \tau_{1}\right\rangle$. Since $\left\langle x, \tau_{1}\right\rangle$ is a four-group, $\left\langle x, \tau_{1}\right\rangle$ is conjugate in $C\left(\tau_{1}\right)$ to (only one of) $\left\langle t, \tau_{1}\right\rangle$ or $\left\langle\beta \tau_{2}, \tau_{1}\right\rangle$. The involutions t and $t \tau_{1}$ cannot be conjugate in $C\left(\tau_{1}\right)$ because $t \in \Omega_{1}$ and $t \tau_{1} \in \Omega_{2}$. However, $\beta \tau_{2}$ and $\beta \tau_{1} \tau_{2}$ are elements of Ω_{2} and are conjugate in $C\left(\tau_{1}\right)$. It follows that x must be conjugate in $C\left(\tau_{1}\right)$ to one of the involutions $t, t \tau_{1}$, and $\beta \tau_{2}$. In particular, we have proved that $C\left(\tau_{1}\right)$ has precisely four conjugate classes of involutions and only one of them (with the representative t) lies in Ω_{1} and $C(t) \cap C\left(\tau_{1}\right)$ is a 2 -group.

Consider now $C_{G}(t \beta)$. We have $\beta \in C_{G}(t \beta), \beta \in \Omega_{1}$, and $C(\beta) \cap C(t \beta)$ contains $\langle t, \beta\rangle \times\left\langle\tau_{1}, \tau_{2}, \rho\right\rangle$, where $\rho=\sigma_{1} \sigma_{2}$ and so $C(\beta) \cap C(t \beta)$ is not a 2 -group. This is a contradiction. The lemma is proved.

Let us find some conjugate classes in $C_{G}(t \beta)$. First of all we have one conjugate class of involutions consisting of one single involution $t \beta \in \Omega_{2}$. $\left(\Omega_{1}, \Omega_{2}\right.$ have the same meaning as in Lemma 2). The conjugate class of $t \in \Omega_{1}$ consists of two elements and

$$
C(t) \cap C(t \beta)=\langle t, \beta\rangle \times\langle\rho\rangle \cdot\left\langle\tau_{1}, \tau_{2}\right\rangle .
$$

The conjugate class of $\tau_{1} \in \Omega_{2}$ consists of three elements and

$$
C\left(\tau_{1} \tau_{2}\right) \cap C(t \beta)=\left(\langle t, \beta\rangle \times\left\langle\tau_{1}, \tau_{2}\right\rangle\right) \cdot\langle z\rangle
$$

where $\tau_{1} \tau_{2}$ is conjugate to τ_{1} in $C(t \beta)$. The conjugate class of $t \beta \tau_{1} \in \Omega_{1}$ consists of three involutions. The conjugate class of $t \tau_{1} \in \Omega_{2}$ obviously consists of six elements and

$$
C\left(t \tau_{1}\right) \cap C(t \beta)=\langle t, \beta\rangle \times\left\langle\tau_{1}, \tau_{2}\right\rangle
$$

Finally the conjugate class of the involution z consists of 12 involutions, namely,

$$
C(\rho) \cap C(t \beta)=\langle\rho\rangle \times\langle t, \beta\rangle .
$$

On the other hand \boldsymbol{z} inverts ρ and so $C(t \beta)$ has precisely one conjugate class of elements of order 3 consisting of eight elements. We have

$$
C(z) \cap C(t \beta)=\langle z\rangle \times\left(C(z) \cap\left(\langle t, \beta\rangle \times\left\langle\tau_{1}, \tau_{2}\right\rangle\right)\langle\rho\rangle\right) .
$$

Suppose that z fixes an element x in

$$
W=\left(\langle t, \beta\rangle \times\left\langle\tau_{1}, \tau_{2}\right\rangle\right)\langle\rho\rangle
$$

which is not a 2 -element. Then x fixes an element of order 3 lying in W and so a conjugate of z under an element of W fixes ρ, a contradiction. Hence

$$
C_{W}(z)=C(z) \cap\left(\langle t, \beta\rangle \times\left\langle\tau_{1}, \tau_{2}\right\rangle\right)=\left\langle t \beta, \tau_{1} \tau_{2}\right\rangle
$$

because a Sylow 2-subgroup of $C(t \beta)$ is isomorphic to \widetilde{Q} and $|Z(\widetilde{Q})|=4$. It follows that

$$
C(z) \cap C(t \beta)=\langle z\rangle \times\left\langle t \beta, \tau_{1} \tau_{2}\right\rangle .
$$

There are three conjugacy classes of elements of order 6 (with the representatives $\rho t \beta$, ρt, and $\rho \beta$) with eight elements in each class and

$$
C(\rho t \beta) \cap C(t \beta)=C(\rho t) \cap C(t \beta)=C(\rho \beta) \cap C(t \beta)=\langle\rho\rangle \times\langle t, \beta\rangle .
$$

We are able to show that we have found all conjugate classes of involutions in $C_{G}(t \beta)$. Namely, any involution of $C_{G}(t \beta)$ is conjugate to z or to an involution in $\langle t, \beta\rangle \times\left\langle\tau_{1}, \tau_{2}\right\rangle$ or to $z \cdot x$, where

$$
x \in C(z) \cap\left(\langle t, \beta\rangle \times\left\langle\tau_{1}, \tau_{2}\right\rangle\right)=\left\langle t \beta, \tau_{1} \tau_{2}\right\rangle \quad(x \neq 1)
$$

But $\langle z, t, \beta\rangle$ is dihedral with the centre $\langle t \beta\rangle$ and so in this group z is conjugate to $z \cdot t \beta$. Similarly, working in the dihedral group $\left\langle z, \tau_{1}, \tau_{2}\right\rangle$, we see that z is conjugate to $z \cdot \tau_{1} \tau_{2}$. Hence z is also conjugate to $z \cdot t \beta \cdot \tau_{1} \tau_{2}$.

Since $S=\left\langle t, \beta, \tau_{1}, \tau_{2}\right\rangle$ contains the commutator group of $\langle Q, \beta\rangle$, it follows that \widetilde{Q} is contained in $N(S)$. But also $\left\langle z, t, \beta, \tau_{1}, \tau_{2}\right\rangle$ is contained in $N(S)$. We now use the fact that $N(S) / S \cong A_{5}$ and that all involutions in A_{5} are conjugate. Hence there exists an element $y \in N(S)$ such that $z^{\prime}=y^{-1} z y \in \widetilde{Q} \backslash S$. The involution $\alpha_{1} \beta_{1} \beta_{2}$ is contained in $\widetilde{Q} \backslash S$ and $C\left(\alpha_{1} \beta_{1} \beta_{2}\right) \cap S=Z(\widetilde{Q})$ has order 4 . Hence the conjugate class of $\alpha_{1} \beta_{1} \beta_{2}$ in \widetilde{Q} has order 4 . On the other hand, we have either $z^{\prime}=\alpha_{1} \beta_{1} \beta_{2}$ or $z^{\prime}=\alpha_{1} \beta_{1} \beta_{2} x$, where $x \neq 1$ and $x \in S \cap C\left(\alpha_{1} \beta_{1} \beta_{2}\right)=Z(\widetilde{Q})$. Hence there are only four involutions in $\widetilde{Q} \backslash S$ and so z^{\prime} is conjugate to $\alpha_{1} \beta_{1} \beta_{2}$. This gives $z \in \Omega_{2}$.
4. The simplicity of G. We are now in the position to prove

Lemma 6. G is a simple group.

Proof. Suppose at first that $O(G) \neq 1$. Act on $O(G)$ by the four-group $\langle t, \beta\rangle$. We know that $C_{G}(x)$ does not have a non-trivial normal odd-order subgroup for any involution $x \in\langle t, \beta\rangle$. Hence $\langle t, \beta\rangle$ acts fixed-point-free on $O(G)$, a contradiction. We have proved that G has no non-trivial odd-order normal subgroups.

Suppose now that G has a proper normal subgroup N with odd-order factorgroup G / N. Then $\langle Q, \beta\rangle$ (being a Sylow 2-subgroup of G) is contained in N. The Frattini argument gives $G=N \cdot N(\langle Q, \beta\rangle)$ and the fact that $\langle t\rangle$ is the centre of $\langle Q, \beta\rangle$ gives

$$
N_{G}(\langle Q, \beta\rangle) \subseteq C_{G}(t)=H
$$

Hence

$$
N_{G}(\langle Q, \beta\rangle)=\langle Q, \beta\rangle \cdot\langle\rho\rangle,
$$

where $\rho=\sigma_{1} \sigma_{2}$ and

$$
N_{G}(\langle Q, \beta\rangle) \cap N=\langle Q, \beta\rangle .
$$

On the other hand, ρ is contained in $C_{G}(t \beta)$ and $t \beta \in N$. This is a contradiction because $C_{G}(t \beta)$ does not have proper normal subgroups with an odd-order factor-group. Hence G has no proper normal subgroups with odd-order factorgroup.

Suppose now that G has a proper non-trivial normal subgroup M. Then both numbers $|M|$ and $[G: M]$ are even. Denote by Ω_{1} and Ω_{2} the conjugate classes of involutions in G with the representatives t and $t \beta$, respectively. Suppose that $\Omega_{1} \cap M \neq \emptyset$. Then $\Omega_{1} \subseteq M$. In particular, t and β are contained in M. Hence $t \beta \in M$ and so $\Omega_{2} \cap M \neq \emptyset, \Omega_{2} \subseteq M$. All involutions of G are contained in M. It follows that $\langle Q, \beta\rangle \subseteq M$ (because $\langle Q, \beta\rangle$ is generated by its involutions), a contradiction. This gives $\Omega_{1} \cap M=\emptyset$. It follows that $\Omega_{2} \subseteq M$. This gives $Q \subseteq M, t \in M$, a contradiction. The proof of Lemma 6 is complete.
5. The 3-structure of G. We want to determine the structure of a Sylow 3 -normalizer in G. Put $T=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \subseteq C_{G}(t)=H$. We know that

$$
C_{H}(T)=\langle t\rangle \times T
$$

and $N_{H}(T)=\langle t, \beta\rangle \cdot T$. Consider now $N_{G}(T)$. We have $C_{G}(T) \triangleleft N_{G}(T)$ and $\langle t\rangle$ is a Sylow 2 -subgroup of $C_{G}(T)$. It follows that $C_{G}(T)$ has the normal 2-complement $M \supseteq T$. Since M char $C_{G}(T)$, it follows $M \triangleleft N_{G}(T)$. By a Frattini argument $N(T)=\langle t, \beta\rangle M$. We know that $C_{M}(t)=T,\langle t, \beta\rangle$ centralizes $\left\langle\sigma_{1} \sigma_{2}\right\rangle$ and $C_{M}(\langle t, \beta\rangle)=\langle\rho\rangle$. Also by the structure of $C_{G}(t \beta)$ we have $C_{M}(t \beta)=\langle\rho\rangle$. By way of contradiction, suppose that $C_{M}(\beta)=\langle\rho\rangle$. Then $|M|=|T|$ and so $M=T, N_{G}(T)=T \cdot\langle t, \beta\rangle, T$ is an elementary abelian Sylow 3 -subgroup of G and $\langle\rho\rangle$ is contained in the centre of $N_{G}(T)$. This contradicts the simplicity of G. Hence $C_{M}(\beta)=T_{1}$ is an elementary abelian group of order 9 and $T \cap T_{1}=\langle\rho\rangle$. We get $|M|=27, M=T \cdot T_{1}, M$ is abelian, and so M is elementary of order 27 . We have $T=\langle\rho, \zeta\rangle, \zeta=\sigma_{1} \sigma_{2}{ }^{-1}$, $T_{1}=\left\langle\rho, \zeta_{1}\right\rangle, \zeta$ is inverted by β and $t \beta$, and ζ_{1} is inverted by t and $t \beta$. The structure of $N_{G}(T)$ is determined.

By way of contradiction, suppose that $N_{G}(M)=N_{G}(T)$. Then $N_{G}(T)$ is a Sylow 3-normalizer and (by a theorem of Burnside) T and T_{1}, being conjugate in G, must be conjugate in $N_{G}(T)$, a contradiction. Hence $N_{G}(M) \supset N_{G}(T)$. Obviously $O\left(N_{G}(M)\right)=M$. Also all involutions in $N_{G}(M)$ are not conjugate in $N_{G}(M)$ and so $\langle t, \beta\rangle$ is not a Sylow 2-subgroup of $N_{G}(M)$.

Let us determine the structure of a Sylow 2-subgroup $U(\supset\langle t, \beta\rangle)$ of $N_{G}(M)$. We have

$$
C(t) \cap U=C(\beta) \cap U=\langle t, \beta\rangle .
$$

In particular U is non-abelian and $Z(U)=\langle t \beta\rangle$. Also considering

$$
C(t \beta) \cap N_{G}(M)
$$

we see that $\langle\rho\rangle$ is normalized by U and $U \cdot\langle\rho\rangle \subseteq C_{G}(t \beta)$. By the structure of $C_{G}(t \beta)$, we know that U is a dihedral group of order 8 , the involution $z \in U \backslash\langle t, \beta\rangle$ inverts $\rho,\langle t, \beta\rangle$ centralizes ρ, and z is conjugate to $t \beta$ in G.

Suppose that $N_{G}(M)$ has a normal 2 -complement. It follows that $N(M)=M \cdot U$ and so M is a Sylow 3 -subgroup of G. Since T and T_{1} are conjugate in G, they must be conjugate in $N_{G}(M)$. It follows that $z^{-1} T z=T_{1}$ and so since z inverts ρ we may choose $\zeta_{1}=z^{-1} \zeta z$. We know that z is conjugate in G to $t \beta$ and so $C_{M}(t \beta)=\langle\rho\rangle$ should be conjugate in $N(M)$ to $C_{M}(z)=\left\langle\zeta \zeta_{1}\right\rangle$, which is a contradiction.

Suppose now that $N_{G}(M)$ does not have a normal 2-complement. We see that $N(M)$ has a normal subgroup L of index 2 which does not have a normal subgroup of index 2 and a Sylow 2 -subgroup of L is a four-group. We have $M \subseteq L, M=O(L),[U:(U \cap L)]=2$, and $U \cap L$ is a four-group. Because $Z(U)=\langle t \beta\rangle, t \beta \in U \cap L$. All involutions in L must be conjugate in L. It follows that $U \cap L=\langle z, t \beta\rangle$ and $t \in U \backslash L$. We want to determine $C_{L}(t \beta)$. We get $C_{M}(t \beta)=\langle\rho\rangle$ and so $\langle\rho\rangle$ is normalized by $C_{L}(t \beta)$. By the structure of $C_{G}(t \beta)$ we have $C_{L}(t \beta)=\langle z, t \beta\rangle\langle\rho\rangle$. In particular, $C_{L}(t \beta)$ has an abelian 2 -complement $\langle\rho\rangle$ of order 3 and so by a result of Gorenstein and Walter (3) we get $L / M \cong \operatorname{PSL}(2, q), q$ odd.

On the other hand $C_{G}(M)=M$ and so L / M is isomorphic to a subgroup of $\mathrm{GL}(3,3)$. It follows that $q=3$ and so $L / M \cong \operatorname{PSL}(2,3) \cong A_{4}$. Since $C_{M}(t \beta)=\langle\rho\rangle$ and ρ is inverted by z, we get $C_{M}(\langle t \beta, z\rangle)=\langle 1\rangle$. By the structure of A_{4}, we have $\langle t \beta, z\rangle \cdot M \triangleleft L$. There is an element $\mu \in L \backslash\langle t \beta, z\rangle \cdot M$ such that $\langle t \beta, z\rangle \cdot\langle\mu\rangle \cong A_{4}$ and so we may put $\mu^{-1} \cdot t \beta \cdot \mu=z, \mu^{-1} z \mu=t \beta z$. Replacing μ by $\mu \cdot x$ with $x \in\langle t \beta, z\rangle$, if necessary, we have that t normalizes $\langle\mu\rangle$. By the structure of $C_{G}(t)$ and the fact that $\left|C_{M}(t)\right|=9$, it follows that $t \mu t=\mu^{-1}$. Hence $\langle t, \mu, t \beta, z\rangle \cong S_{4}$ and so $N_{G}(M)$ is a splitting extension of M by S_{4}. Since $t \beta$ centralizes ρ and z inverts ρ, it follows that $C_{M}(\langle t \beta, z\rangle)=\langle 1\rangle$. Acting by μ on $\langle t \beta, z\rangle$ and M we see that $M=\langle\rho\rangle \times\left\langle\rho^{\mu}\right\rangle \times\left\langle\rho^{\mu 2}\right\rangle$ and $C_{M}(t \beta)=\langle\rho\rangle$, $C_{M}(z)=\left\langle\rho^{\mu}\right\rangle, C_{M}(t \beta z)=\left\langle\rho^{\mu^{2}}\right\rangle$. The action of $\langle t \beta, z, \mu\rangle$ on M is determined. It remains to determine the action of t on M. Representing $\langle t \beta, z, \mu, t\rangle$ on the
"vector space" M over GF (3), we get in terms of the "basis" $\rho, \rho^{\mu}, \rho^{\mu^{2}}$:

$$
\begin{gathered}
\mu \rightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad z \rightarrow\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right], \\
t \beta z \rightarrow\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

The matrix representing t will be determined by the conditions $t^{2}=1$, $t \mu t=\mu^{-1}, t z t=t \beta z, t \rho t=\rho$. We get

$$
t \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

and so $t \rho t=\rho, t \rho^{\mu} t=\rho^{\mu^{2}}, t \rho^{\mu^{2}} t=\rho^{\mu}$. The structure of $N_{G}(M)$ is determined. Put $\mathfrak{M}=\langle\mu\rangle \cdot M$. Then \mathfrak{M} is a Sylow 3 -subgroup of $N_{G}(M)$. The centre $Z(\mathfrak{M})$ of \mathfrak{M} is obviously contained in M and so $Z(\mathfrak{M})=C_{M}(\mu)$. We find that $Z(\mathfrak{M})=\left\langle\rho \cdot \rho^{\mu} \cdot \rho^{\mu^{2}}\right\rangle$.

We are going to show that $N_{G}(\mathfrak{M}) \subseteq N_{G}(M)$. Let $x \in N_{G}(\mathfrak{M})$ but $x \notin N_{G}(M)$. Then $M^{x}=x^{-1} M x \subseteq \mathfrak{M}$ and $M^{x} \neq M$. Because $M \cdot M^{x}=\mathfrak{M}$ and $[\mathfrak{M}: M]=3$, we get $\left|M \cap M^{x}\right|=9$. On the other hand,

$$
C_{\mathfrak{M}}\left(M \cap M^{x}\right) \supseteq\left\langle M, M^{r}\right\rangle=\mathfrak{M},
$$

which contradicts the fact that $|Z(\mathfrak{M})|=3$.
We have proved that $N_{G}(\mathfrak{M}) \subseteq N_{G}(M)$ and so \mathfrak{M} is a Sylow 3 -subgroup of G. We are now able to determine the structure of $N_{G}(\mathfrak{M})$. Certainly t normalizes \mathfrak{M} because t inverts μ and normalizes M. We have

$$
N_{G}(M)=(\mathfrak{M}\langle t\rangle) \cdot\langle t \beta, z\rangle
$$

and so if $N_{G}(\mathfrak{M}) \supset \mathfrak{M}\langle t\rangle$ we would get that $t \beta$ normalizes \mathfrak{M}, which is not the case. We have proved that $\mathfrak{M} \cdot\langle t\rangle$ is a Sylow 3 -normalizer in G. We have proved the following result:

Lemma 7. A Sylow 3-normalizer in G has order $2 \cdot 3^{4}$ and is given by

$$
\begin{aligned}
\left\langle\rho, \rho^{\mu}, \rho^{\mu^{2}}, \mu, t\right| \rho^{3}=\mu^{3}=t^{2}=1,\left[\rho, \rho^{\mu}\right] & =\left[\rho, \rho^{\mu^{2}}\right]=\left[\rho^{\mu}, \rho^{\mu^{2}}\right]=1, \\
t \rho t & \left.=\rho, t \rho^{\mu} t=\rho^{\mu^{2}}, t \rho^{\mu^{2}} t=\rho^{\mu}, t \mu t=\mu^{-1}\right\rangle .
\end{aligned}
$$

We shall now study various 3 -subgroups of G and their normalizers. The commutator group \mathfrak{M}^{\prime} of \mathfrak{M} is the set of all $\rho^{i}\left(\rho^{\mu}\right)^{j}\left(\rho^{\mu}\right)^{-i-j}$. It follows that $\mathfrak{M}^{\prime}=\left\langle\rho \cdot \rho^{\mu} \cdot \rho^{\mu^{2}}, \rho\left(\rho^{\mu}\right)^{-1}\right\rangle$ is elementary of order 9 containing the centre $Z(\mathfrak{M})=\left\langle\rho \cdot \rho^{\mu} \cdot \rho^{\mu^{2}}\right\rangle$. Hence $\left[\mathfrak{M}, \mathfrak{M}^{\prime}\right]=Z(\mathfrak{M})$ and so \mathfrak{M} is a 3 -group of class 3 . We also have that \mathfrak{M}^{3} (the group generated by all third powers of elements
of \mathfrak{M}) is equal to $Z(\mathfrak{M})$ and so the Frattini subgroup $\phi(\mathfrak{M})=\mathfrak{M}^{\prime}$. Hence \mathfrak{M} has precisely four maximal subgroups: M (which is characteristic in \mathfrak{M} and is the unique maximal normal abelian subgroup of \mathfrak{M} of an order $\geqslant 27$), $\left\langle\mathfrak{M}^{\prime}, \mu\right\rangle$ (which is characteristic in \mathfrak{M} and is the unique non-abelian maximal subgroup of exponent 3), and M_{1} and M_{2}, which are both non-abelian of exponent 9 . We have $M_{1}{ }^{t}=M_{2}$.

Put as before $T=C_{M}(t), T_{1}=C_{M}(\beta)$. Then

$$
\begin{gathered}
T \cap T_{1}=\langle\rho\rangle=C_{M}(t \beta), \quad\left\langle\rho^{\mu}\right\rangle=C_{M}(z), \\
\left\langle\rho^{\mu^{2}}\right\rangle=C_{M}(t \beta z), \quad T=\left\langle\rho, \rho^{\mu} \rho^{\mu^{2}}\right\rangle,
\end{gathered}
$$

where

$$
\left\langle\rho^{\mu} \rho^{\mu^{2}}\right\rangle=\left\langle\sigma_{1} \sigma_{2}^{-1}\right\rangle, \quad T=\left\langle\sigma_{1}, \sigma_{2}\right\rangle
$$

and

$$
T_{1}=\left\langle\rho, \rho^{\mu}\left(\rho^{\mu^{2}}\right)^{-1}\right\rangle
$$

We want to determine at first the structure of $N_{G}(\langle\rho\rangle)$. Since z inverts ρ, we shall determine at first $C_{G}(\rho)$. We know that

$$
C_{G}(\rho) \cap N(M)=M \cdot\langle t, \beta\rangle .
$$

Let U be a Sylow 2 -subgroup of $C_{G}(\rho)$ containing $\langle t, \beta\rangle$. If $U \supset\langle t, \beta\rangle$, then there is an involution x in $\langle t, \beta\rangle$ such that a Sylow 2-subgroup of $C_{G}(x) \cap C_{G}(\rho)$ has order $\geqslant 8$, which contradicts the structure of $C_{G}(t)$ and $C_{G}(t \beta)$. It follows that $\langle t, \beta\rangle$ is a Sylow 2 -subgroup of $C_{G}(\rho)$. All involutions are not conjugate in $C_{G}(\rho)$. It follows that $C_{G}(\rho)$ has a normal 2 -complement X containing M. The order of X cannot be greater than 3^{3} and so $X=M$. We have proved that $N_{G}(\langle\rho\rangle) \subseteq N_{G}(M)$ and so $N_{G}(\langle\rho\rangle)=M \cdot\langle t, \beta, z\rangle$ is a splitting extension of the elementary group M of order 27 by the dihedral group $\langle t, \beta, z\rangle$ of order 8 . The element ρ is real.

We are now going to determine the structure of $N_{G}\left(\left\langle\rho^{\mu} \cdot \rho^{\mu^{2}}\right\rangle\right)$. Put $\zeta=\rho^{\mu} \rho^{\mu^{2}}$. We know that

$$
N_{G}(\langle\zeta\rangle) \cap N_{G}(M)=M \cdot\langle t, \beta\rangle,
$$

where t centralizes ζ and β inverts ζ. Since $\langle\zeta\rangle=\left\langle\sigma_{1} \sigma_{2}{ }^{-1}\right\rangle$, it follows by the structure of $C(t)$ that $\langle t\rangle$ is a Sylow 2 -subgroup of $C_{G}(\zeta)$ and so $N_{G}(\langle\zeta\rangle)$ has a normal 2 -complement $X_{1}(\supseteq M)$ acted upon by the four-group $\langle t, \beta\rangle$ and so $X_{1}=M$. We have proved that $N_{G}(\langle\zeta\rangle) \subseteq N_{G}(M)$ and so

$$
N_{G}\left(\left\langle\rho^{\mu} \cdot \rho^{\mu^{2}}\right\rangle\right)=M \cdot\langle t, \beta\rangle
$$

is a splitting extension of the elementary group M of order 27 by the fourgroup $\langle t, \beta\rangle$. The element $\rho^{\mu} \cdot \rho^{\mu^{2}}$ is real and $C_{G}\left(\sigma_{1} \sigma_{2}{ }^{-1}\right)=M \cdot\langle t\rangle$. In particular, $\sigma_{1} \sigma_{2}^{-1}$ is not conjugate in G to $\sigma_{1} \sigma_{2}$.

We are going to show that μ is conjugate in G to $\sigma_{1} \sigma_{2}{ }^{-1}$. For this purpose we shall determine the structure of $N_{G}(\langle t \beta, z\rangle)$. By the structure of $C_{G}(t \beta)$ we have that $C_{G}(\langle t \beta, z\rangle)=\left\langle t \beta, z, \tau_{1} \tau_{2}\right\rangle$ is elementary of order 8 . On the other hand, the non-abelian group $\langle t, \mu\rangle$ of order 6 acts faithfully on $\langle t \beta, z\rangle$ and so
$N_{G}(\langle t \beta, z\rangle)$ is a splitting extension of $\left\langle t \beta, z, \tau_{1} \tau_{2}\right\rangle$ by $\langle t, \mu\rangle$. Let Ω_{1} and Ω_{2} have the same meaning as in Lemma 2. Then $t \beta, z, t \beta z, \tau_{1} \tau_{2}, z \tau_{1} \tau_{2}$, and $t \beta z \tau_{1} \tau_{2}$ are in Ω_{2} and only $t \beta \tau_{1} \tau_{2}$ is in Ω_{1}. It follows that $\langle t, \mu\rangle$ centralizes $t \beta \tau_{1} \tau_{2}$. Hence μ is real in $C_{G}\left(t \beta \tau_{1} \tau_{2}\right)$ and so by the structure of $H=C_{G}(t)$ we have that μ is conjugate in G to $\sigma_{1} \sigma_{2}{ }^{-1}$.

We shall put $\rho \cdot \rho^{\mu} \cdot \rho^{\mu^{2}}=\lambda$ and we shall determine the structure of $N_{G}(\langle\lambda\rangle)$. We note that $\langle\lambda\rangle=Z(\mathfrak{M})$ and $\lambda=\sigma_{1}^{-1}$ or σ_{2}^{-1}. It follows that λ is not real in G (because t centralizes λ and $\langle t\rangle \mathfrak{M}$ is a Sylow 3 -normalizer in G) and by the structure of $C_{G}(t)$ we have that $C_{G}(\lambda) \subseteq\langle\lambda\rangle \times S_{i}$, where

$$
S_{i}=Q_{i}\left\langle\sigma_{i}\right\rangle \cong \operatorname{SL}(2,3)
$$

and $i=1$ or 2 . Here Q_{i} is a quaternion group containing t. Also

$$
C_{G}(\lambda) \cap C_{G}(t)=\langle\lambda\rangle \times S_{i} .
$$

Let U be a Sylow 2-subgroup of $C(\lambda)$ containing Q_{i}. If $U \supset Q_{i}$, then $C(t) \cap U \supset Q_{i}$, which contradicts $C(\lambda) \cap C(t)=\langle\lambda\rangle \times S_{i}$. Hence the quaternion group Q_{i} is a Sylow 2-subgroup of $C(\lambda)$. Put $V=O\left(C_{G}(\lambda)\right)$. Then $V \supseteq\langle\lambda\rangle$ and by a result of Brauer and Suzuki (2) $C(\lambda) / V$ has only one involution $t \cdot V$. Hence $\langle t\rangle V$ is normal in $C(\lambda)$ and $C_{V}(t)=\langle\lambda\rangle$ because otherwise $\langle\lambda\rangle \times S_{i}$ would be 3 -closed, which is not the case. We get

$$
\begin{gathered}
C_{G}(\lambda)=(C(t) \cap C(\lambda)) \cdot V=S_{i}\langle\lambda\rangle V=S_{i} \cdot V, \\
S_{i} \cap V=\langle 1\rangle .
\end{gathered}
$$

On the other hand, we know that $\mathfrak{M} \subseteq C_{G}(\lambda)$ and so $\mathfrak{M}_{1}=\mathfrak{M} \cap V$ is a maximal subgroup of \mathfrak{M}. Since $\sigma_{i} \in T \subseteq M$ and $\sigma_{i} \in S_{i}\left(\sigma_{i} \notin V\right)$, it follows that $\mathfrak{M}_{1} \neq M$. Because t acts fixed-point-free on $V /\langle\lambda\rangle$, it follows that $V /\langle\lambda\rangle$ is abelian and so V is nilpotent (of class 2). Hence t normalizes \mathfrak{M}_{1} and so $\mathfrak{M}_{1}=\left\langle\mathfrak{M}^{\prime}, \mu\right\rangle$. The fact that μ is conjugate in G to $\sigma_{1} \sigma_{2}{ }^{-1}$ and the structure of $C_{G}\left(\sigma_{1} \sigma_{2}{ }^{-1}\right)$ imply that a Sylow 3 -complement of V is $\langle 1\rangle$ and so $V=\left\langle\mathfrak{M}^{\prime}, \mu\right\rangle$. It follows that $C_{G}(\lambda)$ is a splitting extension of the non-abelian group $\left\langle\mathfrak{M}^{\prime}, \mu\right\rangle$ of order 27 and exponent 3 by S_{i} which is isomorphic to $\operatorname{SL}(2,3)$. The element λ is not real.

The centralizer of the element $\mu \cdot \rho$ of order 9 must be contained in $C(\lambda)$, because $(\mu \rho)^{3}=\lambda$. We get $C_{G}(\mu \rho)=\langle\mu \rho\rangle$. Also the generalized centralizer of $\mu \rho$ must be contained in $C(\lambda)$ because λ is not real. The fact that $C(\lambda) / V$ $\cong \mathrm{SL}(2,3)$ does not contain a non-abelian subgroup of order 6 gives the result that this generalized centralizer is equal to $\langle\mu \rho\rangle$. It follows that $\mu \rho$ is not real and

$$
C_{G}(\mu \rho)=C_{G}\left((\mu \rho)^{-1}\right)=\langle\mu \rho\rangle
$$

We are going to show that we have found all conjugate classes of 3 -elements of G. We have to show that every non-trivial 3 -element in \mathfrak{M} is conjugate in G to one of

$$
\rho, \quad \rho^{\mu} \rho^{\mu^{2}}, \quad \rho \rho^{\mu} \rho^{\mu^{2}}, \quad \rho^{-1}\left(\rho^{\mu}\right)^{-1}\left(\rho^{\mu^{2}}\right)^{-1}, \quad \mu \rho, \quad \rho^{-1} \mu^{-1}
$$

Because $C_{G}(\rho)=M \cdot\langle t, \beta\rangle, \rho$ has (under the conjugation by the elements of $\left.N_{G}(M)\right) 6$ conjugates in M. Because $C_{G}\left(\rho^{\mu} \rho^{\mu^{2}}\right)=M \cdot\langle t\rangle, \rho^{\mu} \cdot \rho^{\mu^{2}}$ has (under the conjugation by the elements of $N(M)) 12$ conjugates in M. Because

$$
C_{N(M)}\left(\rho \rho^{\mu} \rho^{\mu^{2}}\right)=C_{N(M)}\left(\rho^{-1}\left(\rho^{\mu}\right)^{-1}\left(\rho^{\mu}\right)^{-1}\right)=\mathfrak{M} \cdot\langle t\rangle,
$$

$\rho \rho^{\mu} \rho^{\mu^{2}}$ has 4 conjugates and $\rho^{-1}\left(\rho^{\mu}\right)^{-1}\left(\rho^{\mu^{2}}\right)^{-1}$ has also 4 conjugates in M. Now μ has 18 conjugates in $\left\langle\mathfrak{M}^{\prime}, \mu\right\rangle \backslash \mathfrak{M}^{\prime}$ under the conjugation by the elements of $\mathfrak{M} \cdot\langle t\rangle$ since $\left|C_{\mathfrak{M} \cdot\langle\iota\rangle}(\mu)\right|=9$. But μ is conjugate in G to $\rho^{\mu} \rho^{\mu^{2}}$ and so we have found all conjugate classes of elements of order 3 in G. It remains to determine the conjugate classes in G consisting of elements of order 9 . The element $\mu \rho$ (of order 9) has 18 conjugates in \mathfrak{M} under the conjugation by the elements of $\mathfrak{M} \cdot\langle t\rangle$ since $C_{G}(\mu \rho)=\langle\mu \rho\rangle$ and also $\rho^{-1} \mu^{-1}=(\mu \rho)^{-1}$ has 18 conjugates in \mathfrak{M} and $\mu \rho$ and $(\mu \rho)^{-1}$ are not conjugate in G. We have proved the following result:

Lemma 8. The group G has precisely 4 conjugate classes of elements of order 3 with the representatives σ_{1} (non-real), $\sigma_{1}{ }^{-1}$ (non-real), $\rho=\sigma_{1} \cdot \sigma_{2}$ (real), and $\sigma_{1} \cdot \sigma_{2}^{-1}$ (real). Also G has precisely 2 conjugate classes of elements of order 9 with the representatives $\mu \rho$ (non-real) and ($\mu \rho)^{-1}$ (non-real). We have

$$
\begin{gathered}
\left|C_{G}\left(\sigma_{1}\right)\right|=\left|C_{G}\left(\sigma_{1}^{-1}\right)\right|=81 \cdot 8, \quad\left|C_{G}\left(\sigma_{1} \sigma_{2}\right)\right|=27 \cdot 4, \\
\mid C_{G}\left(\sigma_{1} \sigma_{2}^{-1}\right)=27 \cdot 2, \quad \text { and }\left|C_{G}(\mu \rho)\right|=\left|C_{G}(\mu \rho)^{-1}\right|=9 .
\end{gathered}
$$

6. The identification of \mathbf{G} with $\mathbf{P S p}_{4}$ (3). We are now in a position to apply the following result of J. G. Thompson (7).

Theorem $\mathrm{A} . \mathrm{PSp}_{4}(3)$ is the only finite simple group G with the following properties:
(i) G contains an elementary subgroup of order 27 .
(ii) If P is an S_{3}-subgroup of G and $A \in \subseteq \mathfrak{S M}_{3}(P)$, then $И(A)$ is trivial.
(iii) The centre of an S_{3}-subgroup of G is cyclic.
(iv) The normalizer of every non-identity 3-subgroup of G is soluble.
(v) S_{2}-subgroups of G contain normal elementary subgroups of order 8.
(vi) If T is a S_{2}-subgroup of G, then $Z(T)$ is cyclic and if $B \in \subseteq \subseteq \mathfrak{S}_{3}(T)$, then $И(B)$ is trivial.
(vii) The centralizer of every involution of G is soluble.
(viii) G contains a soluble subgroup S with the following two properties: $(\alpha) S$ contains an elementary subgroup D of order 9 such that, for each $x \in D, C_{G}(x)$ contains an elementary subgroup E_{x} of order 9 with $\left[G: N_{G}\left(E_{x}\right)\right]$ prime to 3. $(\beta) S$ contains an elementary subgroup L of order 8 such that for each $y \in L, C_{G}(y)$ contains an elementary subgroup E_{y} of order 4 with $\left[G: N_{G}\left(E_{y}\right)\right]$ prime to 2.

Here $\subseteq \mathfrak{C}_{3}(X)$ denotes the set of self-centralizing normal subgroups (of a group X) which cannot be generated by less than 3 generators and $И_{X}(V)=И(V)$ is the set of subgroups of X which V normalizes and which intersect V in the identity only. Finally an S_{p}-subgroup of a group X is a Sylow p-subgroup of X.

We are now able to complete the proof of our theorem by showing that our group G satisfies the conditions (i) to (viii) of Theorem A. First of all, by Lemma 6 the group G is simple. Now using Lemma 7, we see that G satisfies the conditions (i) and (iii). Also using Lemma 1 and the assumption (b) of the theorem, we see that the condition (v) is satisfied and that a Sylow 2-subgroup of G has cyclic centre. By Lemmas 2, 4, and 5 we see that the condition (vii) is satisfied. It is not difficult to see that the condition (viii) is satisfied if we take for S the soluble subgroup $H=C_{G}(t)$, for D the Sylow 3-subgroup $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ of H, and for L the commutator subgroup of the Sylow 2-subgroup $\langle Q, \beta\rangle$ of H. We know that $\left\langle\sigma_{1}, \sigma_{2}\right\rangle \subset M, M$ is elementary abelian of order 27 containing the commutator group \mathfrak{M}^{\prime} (which is elementary of order 9) of the Sylow 3-subgroup \mathfrak{M} of G, and so we may put for any $x \in D=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$, $E_{x}=\mathfrak{M}^{\prime}$. Let Ω_{1} and Ω_{2} have the same meaning as in Lemma 2. If $y \in L$ lies also in Ω_{1}, then we can take for E_{y} any normal four-subgroup of a Sylow 2 -subgroup of $C_{G}(y)$. Such four-subgroups exist because the commutator group of a Sylow 2 -subgroup of $C(y)$ is elementary of order 8 . If $y \in L$ lies in Ω_{2}, then we may suppose (by conjugating) that $y=\tau_{1}=\alpha_{1} \alpha_{2}$. In this case we take $E_{y}=Z(\widetilde{Q})$, which is elementary of order 4 and E_{y} is normal in $\langle Q, \beta\rangle$ because \tilde{Q} is normal in $\langle Q, \beta\rangle$.
We shall now show that the group G satisfies the condition (ii). Take the Sylow 3 -subgroup \mathfrak{M} of G and note that the only element of $\subseteq \mathscr{C}_{\mathfrak{C}}^{3}(\mathfrak{M})$ is the subgroup M. Let $V \neq 1$ be an element of $И(M)$. Since a Sylow 3-subgroup of G is not abelian, the order $|V|$ is prime to 3 . By Lemma $8, V$ is a 2 -group. If M acts faithfully on $V / \phi(V)$, then $|V / \phi(V)|=2^{6}$, which is not possible. Hence $M_{1}=C_{M}(V) \neq\langle 1\rangle$. Using Lemma 8 again, we see that $|V| \leqslant 8$. It is clear that V cannot possess a characteristic subgroup of order 2 because the order of the centralizer of an involution is not divisible by 27. It follows that V must be elementary of order 4 . But then $\left|M_{1}\right|=9$ and $M_{1} V=M_{1} \times V$, which contradicts the structure of $C(t)=H$. We have proved that the group G satisfies the condition (ii).

We shall now prove that G satisfies the condition (iv). By Lemma 8 , the centralizer of any non-trivial 3 -subgroup of G is soluble. Also a Sylow 3normalizer is soluble. It follows that it is enough to show that $N_{G}(X)$ is soluble, where X is any subgroup of order 27 which does not possess a characteristic subgroup of order 3 . This means that it has to be shown only that $N_{G}(M)$ is soluble. This has been done before.

It remains to be shown that $И(B)$ is trivial, where B is an element of SC $\mathfrak{R}_{3}(\langle Q, \beta\rangle)$. By way of contradiction, suppose that $W \neq\langle 1\rangle$ and $W \in И(B)$. Lemma 3.10 of (6) shows that $|W|$ is odd. By the structure of centralizers of involutions, W is a 3 -group. Obviously, W cannot be a Sylow 3 -subgroup of G and also W cannot have a characteristic subgroup of order 3 (Lemma 8). Using the structure of $N_{G}(M)$, we see that W must be elementary of order 9 . A Sylow 2-subgroup of $\operatorname{GL}(2,3)$ is semi-dihedral of order 16 and so B does not act faithfully on W. There is an involution τ contained in $B \cap \Omega_{1}$ which
centralizes W. This contradicts the structure of $C(t)=H$. The proof of our theorem is completed.

References

1. E. Artin, Geometric algebra.
2. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1757-1759.
3. D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math., 6 (1962), 553-593.
4. M. Hall, Jr., The theory of groups (New York, 1959).
5. D. G. Higman, Focal series in finite groups, Can. J. Math., 5 (1953), 477-497.
6. M. Suzuki, On characterizations of linear groups, I, Trans. Amer. Math. Soc., 92 (1959), 191-204.
7. J. G. Thompson, Non solvable finite groups whose non identity solvable subgroups have solvable normalizers (to appear).
8. J. G. Thompson and W. Feit, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
9. W. J. Wong, A characterization of the alternating group of degree 8, Proc. London Math. Soc., 13 (1963), 359-383.

Monash University, Melbourne, Australia

