
A CHARACTERIZATION OF THE FINITE SIMPLE GROUP 
PSp4(3) 

ZVONIMIR JANKO 

The aim of this paper is to characterize the finite simple group PSp4(3) by 
the structure of the centralizer of an involution contained in the centre of its 
Sylow 2-subgroup. More precisely, we shall prove the following result. 

THEOREM. Let t0 be an involution contained in the centre of a Sylow 2-subgroup 
of PSp4(3). Denote by H0 the centralizer of t0 in PSp4(3). 

Let G be a finite group of even order with the following two properties: 
(a) G has no subgroup of index 2, and 
(b) G has an involution t such that the centralizer CG(t) of t in G is isomorphic 

to H0. 
Then G is isomorphic to PSp4(3). 

Remark. PSp4(3) is the subgroup of index 2 of the group of the equation 
for the 27 lines on a general cubic surface. 

The main difficulty in proving our theorem is to show that a group G with 
properties (a) and (b) possesses two conjugate classes of involutions and to 
determine the structure of the centralizer of an involution of G which is not 
conjugate to an involution in the centre of a Sylow 2-subgroup of G. From the 
knowledge of the structure of such a centralizer the 3-structure of G can be 
deduced. The identification of G with PSp4(3) is then accomplished by using 
a theorem of J. G. Thompson (7). 

1. A preparatory lemma. For the determination of the centralizers of 
involutions in a group with properties (a) and (b) the following proposition 
will be used: 

PROPOSITION. Let G be a finite group of even order with the following two 
properties: 

(1) The centralizer CG(t) of an involution t contained in the centre of a Sylow 
2-subgroup of G is equal to (t) X F, where F is isomorphic to 54 (the symmetric 
group in four letters). 

(2) / / 5 is a Sylow 2-subgroup of G, then CG(S') = S, where S' denotes the 
commutator group of S. 
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Then if G is soluble, G = CG(t). If, however, G is not soluble, then G is iso
morphic to S6 {the symmetric group in six letters). 

Proof. Let G be a finite group of even order satisfying the conditions (1) 
and (2). Put F = F-(p)-(r), where V = (TU r2) is a four-group, F-(p) ^ Aiy 

T inverts p and centralizes n , p~1ri p = T2, p~1r2 p = r\ r2, and rr2 r = n r2. 
Obviously 5 = (V-(T)) X (t) is a Sylow 2-subgroup of C(t) and V*(T) is a 
dihedral group of order 8 with the element a = rr2 of order 4. Also we have 
(ri) = S' and so CG(TI) = S. The four-group (/, n ) is equal to the centre 
Z(S) of 5. 

The involutions t, n , and tn lie in three different conjugate classes of G. In fact, 
suppose that any two of these three involutions are conjugate in G. Then by 
a theorem of Burnside, they are conjugate in NG(S) and hence in NG(Z(S)). 
But CG(Z(S)) = S and so NG(Z(S)) Z) S. It follows that all three involutions 
t, n , and tn would lie in the same conjugate class in G. This is impossible since 
|C<y(n)| = 16 and \CG(t)\ = 16-3. The intersections of the conjugate classes 
of C(t) with 5 are {1}, {n, r2, T\ r2}, {tn, tr2, tn r2), {r, r n } , {tr, trri], {a, a - 1 } , 
{ta, tar1}, {t}. 

The group G has precisely two conjugate classes of elements of order 4. Suppose 
that a and ta are conjugate in G. Then there is an element x G G such that 
x~lax = ta. Since a2 = (ta)2 = n , we get x~ln x = n and so x G S. This is a 
contradiction since a and ta lie in two different conjugate classes of S. 

The focal group 5* of S in G contains V. This is obvious, since p~lri p = r2 

and p~lr2 p = n r2. (For the concept of a focal group see D. G. Higman (5).) 
If 5* = V, then G = CG(t) = (t) X F. We have in this case a normal 

subgroup M of G such that ikT H S = V and [G : M] = 4. Because p Ç M and 
F(p) ~ 4̂4, all involutions are conjugate in M and a Sylow 2-subgroup of M 
is a four-group. Also we have CM(TI) = ^- By a result of Suzuki (8) we have 
either V<G M (and then M = V(p), G = S-M, G = CG(t) = (t) X F) or 
M = A 5. We shall show that the second case is impossible. Because the auto
morphism group of A5 is 5*5, it follows that CG(M) ^ (1) and 

C0(M) C\M = (1). 

The condition CG(n) = S gives CG(M) C 5. Since C5(F) = (/) X V, it 
follows that CG(ikf) Ç (/) X F and so CG(M) = (z), where s is an involution 
contained in ((t) X V)\V. It follows that £ = z-v, where v G V. Both £ and s 
centralize p. Hence i; commutes with p. By the structure of A4, v = 1. We get 
CG(M) = (/), which contradicts our assumption (1). 

The case 5* = S is not possible. Hence G must have a normal subgroup N of 
index 2, and t cannot be an element of S*. By way of contradiction, suppose that 
t Ç 5*. Then at least one of the involutions r or tr must be conjugate in G to 
an involution in Z(S). Replacing r by tr, if necessary, we may suppose that r 
is conjugate in G to an involution in Z(S). Put U = (Z(S), r). Then 

C(r) C\ Cit) = U 

https://doi.org/10.4153/CJM-1967-082-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-082-9


874 ZVONIMIR JANKO 

and a Sylow 2-subgroup of CG(r) has order 16. It follows that 

N0(U)nC(t) = S 
and NG{U) £ C(t). Also CG(U) = U and so NG{U)/U is isomorphic to a 
subgroup of GL(3, 2). Obviously 7 cannot divide \NG(U)\ (because all involu
tions in U do not lie in the same conjugate class in G) and so 3 must divide 
\NG(U)\. Let f be an element of order 3 contained in N(U). We want to 
determine the orbits of f in U\(l). Since t, n , and / n lie in three different 
conjugate classes in G, it follows that t, ri, and £n must lie in three different 
orbits under the action of f. In particular, f must fix one of these three involu
tions and since f g C(0 and C^(ri) = 5, it follows that f_1-/ri-f = tn. The 
other two orbits are either {t, r, m } , {n, rt, m t] or \t, rt, m t\, {n, r, m } . 
In the first case we get 5* = (V, tr) and in the second case 5* = (V, r). 
Hence in any case t (? 5*. It follows that G has a normal subgroup iVsuch that 
G = (t)-N and replacing r by tr, if necessary, we may suppose that T £ N 
and s o F C i V , ^ n C(t) = tt 

If G has no normal subgroup of index 4, then G ~ S&. In this case we have 
G = <*>•#, iV<ï G, Nr\C(t) = F, and 5* = (F, r). iV has no normal sub
group of index 2, CN(t) = F, and CN(n) = (V, r). A Sylow 2-subgroup of N 
is dihedral of order 8 and since N has no normal subgroup of index 2, all 
involutions in N are conjugate in N. Considering the action of V on O(N) 
(and using the fact that the centralizer of any involution in N has order 8), 
it follows that 0(N) = (1). N has no non-trivial normal subgroup of odd 
order. Using a result of Gorenstein and Walter (3), it follows that 
N = PSL(2, q), q odd, or N ~ Ai. However, the second case cannot happen 
since the order of the centralizer of an involution in ^47 is divisible by 3. Since 
the order of the centralizer of an involution in PSL(2, g), q odd, is q + e 
(e = ± 1 ) , it follows that i V ^ P S L ( 2 , 7) or N ^ PSL(2, 9) ^ A*. I t 
is easy to see that the first case cannot happen. Suppose that N = PSL(2, 7). 
The case CG(N) = (1) gives G ^ Aut(PSL(2, 7)) = PGL(2, 7). We know 
that a Sylow 2-subgroup of PGL(2, 7) is dihedral of order 16. This is a contra
diction, since G has no elements of order 8. Hence CG(N) 9e (1) and so 
G = N X CG(N), CG(N) = (z), where z is an involution contained in 
« 0 X V)\V. It follows that t = zv with v G V. Both / and z centralize F and 
so v centralizes F = SA. However, 5 4 has no non-trivial centre and so v = 1. 
I t follows that t centralizes N, a contradiction. 

We have proved that N ~ PSL(2, 9) ~ AQ. The automorphism group 21 of 
A 6 has the property that §1/̂ 4 6 is elementary abelian of order 4. Certainly 
CG(N) = (1) and so G is a subgroup of 31 containing N ~ A<$. Also G is not 
isomorphic to PGL(2, 9) because a Sylow 2-subgroup of PGL(2, 9) is dihedral 
of order 16. 

Now, 21 is the extension of PGL(2, 9) by the field automorphism / of order 2. 
PGL(2, 9) is the group of all 2 X 2 matrices 

#11 #12 

#21 #22j 
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where atj £ GF(9) considered modulo the group of all scalar matrices 

k 6 GF(9), 
k 0 
0 k 

and we have 

J L^2i 
an #12 

0-22 
•f 

Van3 aï2
3l 

[_a2i* a22
3J 

f 0 0 1 1 0] 
o r1. 0 = _-l °_ 5 = _o r_ 

PSL(2, 9) is the subgroup of PGL(2, 9) consisting of all matrices whose 
determinant is square in GF(9). Let f be a generator of the multiplicative 
group of GF(9). Then f4 = - 1 . Put 

• / 

and verify that a4 = 1, /32 = 1, pap = a"1, Ô^aô = a"1, ô"1/^ = of1/?, <52 = a2. 
Since (a, /3) is the dihedral Sylow 2-subgroup of PSL(2, 9), it follow that 
(a, j8, d) is a Sylow 2-subgroup of (PSL(2, 9), Ô). Note that 

[ 1 Ol 

Lo rj 
is an element of PGL(2, 9)\PSL(2, 9). However, 

(Ô/3)2 = Ô25"W = a2-a~1p-p = a 

and so dp is an element of order 8. Hence G cannot be isomorphic to 
<PSL(2,9),Ô). It follows that G is isomorphic to (PSL(2, 9) , / ) . Because 
PSL(2, 9) has a subgroup isomorphic to A 5, we have PSL(2, 9) = AQ. Hence 
S& is a subgroup of Aut(PSL(2, 9)) containing AQ. Since 56 has no elements of 
order 8, it follows that 56 = (PSL(2, 9) , / ) and so G = S&. The proposition 
is completely proved. 

2. Properties of H0. We shall now study the structure of H0 where Ho 
denotes the centralizer in PSp4(3) of an involution contained in the centre 
of a Sylow 2-subgroup of PSp4(3). Let F% be the finite field of three elements. 
Let F be a four-dimensional vector space over F3 equipped with a non-singular 
skew-symmetric bilinear form x-y 6 ^3 (#, y G F). Then V has a "symplectic 
basis," i.e. a basis ni, mi, n2, m2such thatni-w2 = rarm2 = wrW2 = mi-n2 = 0 
and ni'mi = n2'in2 = 1. The group of all linear transformations a of V such 
that a(x)-a(y) = x-y for all x, y in F is called the symplectic group Sp4(3). 
This group has the centre of order 2 and the corresponding factor-group is 
PSp4(3). See Artin (1). 

Obviously a linear transformation a- of F belongs to Sp4(3) if and only if 

(r(ni)'a(n2) = <r(mi) -o-(ra2) = a (ni) • a (nt2) = c(rai)-o-(?z2) = 0, 

<r (ni) - a (mi) = cr(w2)* o- (ra2) = 1. 

https://doi.org/10.4153/CJM-1967-082-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-082-9


876 ZVONIMIR JANKO 

I t follows t h a t a linear transformation a given by the matr ix (atj) 

(i,j= 1, . . . , 4) in terms of the basis Wi, mi, n2, w2 , where 

<r(tii) = « n n\ + «12 M\ + «13 n2 + a\\ m2, 

etc., belongs to Sp4(3) if and only if 

«11 «32 — «12 «31 + «13 «34 — «14 «33 = 0, 

«21 «42 — «22 «41 + «23 «44 ~ «24 «43 = 0, 

«11 «42 — «12 «41 + «13 «44 ~ «14 «43 = 0, 

«21 «32 — «22 «31 + «23 «34 ~ «24 «33 = 0, 

«11 «22 — «12 «21 + «13 «24 ~ «14 «23 = 1, 

«31 «42 — «32 «41 + «33 «44 _ «34 «43 = 1. 

Take 

t'o = 

- 1 

which is an involution in Sp 4 (3) . (We identify the linear t ransformations in 
Sp4(3) with the corresponding matrices in terms of the basis n\, mi, n^ m2.) 
T h e centre of Sp4(3) is generated by the following matr ix: 

- 1 
1 

Then a matr ix (atj) from Sp4(3) satisfies 

(aij)'t'0 = t\'(ai3)'C
r 

if and only if 

(r = 0, 1) 

(«*;) = 

«11 «12 

«21 «22 
«33 «34 

«43 «44 

w i t h a n a22 — «12 «21 = 1 

a n d ÛÎ33 «44 — «34 «43 = 1, 

(«o) = 
«31 «32 

.«41 «42 

«13 «14 
«23 «24 with an «24 

and an a42 

«14 «23 = 1 

«32 «41 = I-

Denote by H'0 the group of all elements (atj) of Sp4(3) which "commute 
protectively" with £'0, i.e. which satisfy (ai:})'t'o = t'o- ( « i ; ) - c r (r = 0, 1) and 
denote by Kf the centralizer C(t'o) of t'o in Sp 4 (3) . 
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The matrix 

& 

i 
0 

1 0 
0 1 

belongs to H'o and satisfies /3'2 = 1 and 

« 1 1 « 1 2 

« 2 1 « 2 2 

« 3 3 « 3 4 

« 4 3 « 4 4 

«33 «34 

«43 «44 

«11 «12 

«21 «22 

We have [H'0 : K'] = 2 and H\ = K'-{ff). Let S\ be the subgroup of Kf 

consisting of all matrices of the form 

1 0 
0 1 

«33 «34 

«43 «44. 

with «33«44 «34« 43 = 1 . 

Then we have K' = S\ X S'2> t'0 £ S'i, S\ ^ S'2 ^ SL(2, 3) with 

Also /3; commutes projectively with a matrix (a^) in K! if and only if 

0" 
±A 

where A is any 2 X 2 matrix (over Fz) with determinant 1. Now put 
Ho = H'o/(c) and in the natural homomorphism from H'o onto H0 let the 
images of £'o, /3', K', S\, S'2 be tQ, /3, X, Si, S2 respectively. Then obviously Ho 
is the centralizer C(to) of the involution t0 in PSp4(3) = Sp4(3)/(c). We have 
5 1 ^ 5 2 ^ 5 ,

1 ^ 5 /
2 ^ S L ( 2 , 3), Ho = X-</3>,/32 = 1, K = S1-S2, [Su S2] = 1 

(which means that Si and S2 commute elementwise), Si Pi S2 = (to), and 
P'Si-p = S2. These relations completely determine the structure of H0. But 
of course we have to show that to is in fact an involution contained in the 
centre of a Sylow 2-subgroup of PSp4(3). 

Let Q be a Sylow 2-subgroup of K. Then Q = QvQ2l Qxr\Q2 = (t),. 
[Qij Qz] = 1» PQi P = Qz> Qi = Q% 1S the quaternion group (of order 8), where 
Qi — Q P Si (i — 1, 2). Note that K is 2-closed because Si and S2 are 2-closed. 
It follows that (0, Q) is a Sylow 2-subgroup of H0 and obviously the centre of 
(13y Q) is contained in Q. But the centre Z(Q) of Q is equal to (to). It follows 
that Z(iJ0) = Z(0, Q)) = Z(Q) = (t0) and so </3, Ç) has cyclic centre </0>. 
Let 5 be a Sylow 2-subgroup of PSp4(3) containing (0, Q). Since 

c(*0) n s = <& Q) 
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it follows Z{S) ç </3, Q) and so Z{S) = (t0). B u t this gives S = (0, Q). Hence 
we have shown t h a t (/3, Ç) is a Sylow 2-subgroup of PSp4(3) and since Z((fi, <2)) 
has only one non-trivial element it follows t h a t the s t ructure of H0 = C(t0) is 
uniquely determined. Also we know t h a t PSp 4 (3) is a simple group and this 
shows t ha t PSp 4(3) is a finite group of even order satisfying conditions (a) 
and (b). 

A previous remark shows t ha t C(/3) P HQ = (t0, (3) X L, where (/0, 0) is a 
four-group and L ^ Aé ^ L F ( 2 , 3) . 

We have 5 i = (ah ft, ai\ai2 = ft2 = t0, t0
2 = ci3 = 1, ^rlax ft = a f 1 , 

arlai (7i = ft, (7i-1ft o-i = ai-jSi) because Si = SL(2 , 3) and SL(2 , 3) is an 
extension of the quaternion group by an automorphism of order 3. P u t 
a2 = ftarft ft = ftft-ft cr2 = ftovft Then S2 = (a2, ft, o-2). We m a y also 
pu t L = (o-i-0-2, « i -a 2 ) because if we pu t p = ai o-2, n = «i a2, p~1n p = T2, 
then ( n , r2) is a four-group normalized by p, (p, n ) C C(/3) P K, and 
(p, n ) Pi (/o, i#) = 1. Every element of H0 can be wri t ten uniquely in the form 
ai%j<rikTilT2mpnPp, where i = 0, 1,2, 3; j = 0, 1; & = 0, 1, 2; Z = 0, 1; m = 0, 1; 
n = 0, 1, 2;p = 0, 1. 

W e shall now take a closer look a t H0. In part icular we w a n t to determine 
the conjugate classes of elements of H0. Obviously (ah a2) is a Sylow 3-subgroup 
of H0. This is an elementary abelian group of order 9 and so two non-trivial 
elements of (o-i, a2) are conjugate in H0 if and only if they are conjugate in 
NHo((ai, cr2}). W e w a n t to determine this normal izes Suppose t h a t 

Xi-x2e NHo((au a2)) 

where xt G St (i = 1, 2) . Then 

X2~
X ' Xi~l ' di'Xi X2 = Xi_1(7l Xi G Si P ((7i, (72) = ((7i). 

B u t NSl((ai)) = (to)-(ax) and so xi G (/o, o"i). Considering X2_1-Xi_1'C72-Xi x2 

we see t h a t x2 G (£o» 0-2)- This gives 

NK((<Ti, (72)) = C^(((7i, (72)) = (t0) X ((71, (72). 

Since /3 normalizes b u t does not centralize (ai, a2) it follows t h a t 

CWo((°"i> °"2)) = (to) X (o-i, o-2) 

and NHQ((au a2)) = (to, P)'(ai, <r2). 
Hence the representatives of conjugate classes of elements of order 3 in H 0 

are o-i, a i - 1 , 0-1-o-2, (7i_1-(72
_1, and (7i_1-(72. In part icular , i7 0 has only one real 

class consisting of elements of order 3. W e shall determine the centralizers in 
Ho of these representatives. Suppose t h a t x G H0\K and x G CHo(ai). Then 
x = fi-x' with x! G K and so x_1(7i x = xf~1^~l(ri ^xr = x'_1(72 x ' G £2 since 
5 2 O K. B u t 5 i P 5 2 = (to) and so x ' - 1 ^ xf ^ ci, a contradiction. Hence 
Cff0((7i) Ç X . W e have CK(ai) 2 ^ and so 

CK(<TI) ~ S2-Csi(cri) = S2'(crii to) = ((7i, <r2)'Q2, 
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Similarly CH{>((Ti~l) = (ai, ar2)-Q2. We see tha t a Sylow 2-subgroup of CHQ(ŒI) 
and Cno^f1) is a quaternion group of order 8. Since {$ centralizes ov(72, it 
follows tha t Ci70(o-i o-2) = (fi)'CK((Ti-(T2)* Suppose tha t Xi-x2 G C(0V(r2), 
where xt G St (i = 1, 2) . Then 

0 - i _ 1 - X i ~ V i Xi = a-2-X2_1cr2~1X2 ^ 1 ^ 4 = (^o). 

The case <7i-1-#i-1-a-i-ffi = t0 cannot occur because ov£0 is of order 6 and 
Xi_1-(7i-Xi is of order 3. Hence x f V i x± = ci, Xi € C5l(cri) = (ci, / 0) . Similarly 
we get x2 G C52((72) = (o-2, to) and so C^OVO-JO = (ai, a2) X (/o). We see t ha t 
a Sylow 2-subgroup of CHO((TI'(T2) and C#0(Vi - 1 • o-2

_1) is elementary abelian 
of order 4. 

We shall now determine the "generalized centralizer" of <7i-1-cr2 in H0 

(i.e. the set of all x in H0 such t h a t x - 1 • di~1(T2 • x = (ori~1a2)
±1). T h e generalized 

centralizer Ci3-0*(o'i-1-(72) contains /5 since 0 inverts <JI-1O-2. Hence 

G r o ' W - ^ ) = 0yCK*(ar^a2). 

Let xi-x 2 G C,K*((71~
1-cr2), where xt G S* (i = 1, 2) . Then 

c r i -x rVf^Xi = (T2-x2-
l(i2~

lx2 G (/o> 

or o- i^ -xr 'Vf^Xi = (72"1,x2~V2"1X2 G (£o). However, the second case cannot 
happen because 

CsSbt) = CSi(<Ti) (i= 1,2). 

T h e first case gives xt G (Jot <rt) (i = 1,2), CHo * O r 1 * ^2) = (0, *o) • (<ri, <r2). 
We have proved tha t a Sylow 2-subgroup of the centralizer in HQ of a real 
element of order 3 in H0 has order 2. 

Now Q:I-Û!2 is an element of order 2 and we show easily t ha t 

Q = Ci70(a:i-a2) = ( « I , a2, 0i«/32, 0), 

which is a non-abelian group of order 32. We want to s tudy the s t ructure of Q. 
Since 

fi~lai fia-T1 = a\~la2 = t0ai-a2 

and 

it follows tha t the four-group (to, a i a2) is contained in the centre and in the 
commuta tor group of Q. Since Q/(to, ai-a2) is abelian, it follows tha t the 
commuta tor group (Q)f of Q is equal to (t0, ai-a2). Q is of class 2. T h e centre 
Z(Q) is obviously contained in (au a2, jffi-/32) and Z((ai, a2, fivfiz)) is contained 
in («i, a2) . However, «1 g Z(<5) and so Z(Q) = (t0, a\a2). We wan t to s tudy 
the Sylow 2-subgroup (Q, 13) of H0. Since 

it follows t ha t the commuta tor group (Q, (3)' of (Q, /3) is the elementary 
abelian group (£0, «i-o:2, /Si-/32) of order 8. 
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The non-central involutions of K are conjugate in K to ai-a2. All elements 
of order 4 of K are conjugate to a\ in H0 and CHo(ai) = (ai)-S2. It is now 
easy to determine the centralizers in H0 of elements ov/0 (order 6), o-i_1-/0 

(order 6), o-i-a2 (order 12), ai~1-a2 (order 12), ai-a2't0 (order 6), ar1 • a2~
l• tQ 

(order 6) and ai~1-a2-t0 (order 6). The fact that all these elements are non-
conjugate in Ho follows easily from the fact that ci, o-i-1, <TI C2, O-I~V2~1, and 
ai~1a2 are non-conjugate in H0. If, for instance, there exists z £ H0 such that 
z~l-(iito'Z = o-i_1-/o, then z~lcnz = ai~l, a contradiction. Finally 

CJY0((7I-/O) = Cjyo(°"i)> CHO (O"I_1/O) = C^o^i-1)» 
etc., and 

CffoCo-i'û^) = C^0(o-i) P i CHo(a2) 

= (Q2, o-i, o-2) n (0:2) -5i = <a2, o-i) = c^oCo-r1-^). 

We have determined all conjugate classes of H0 contained in K. It remains 
to determine the conjugate classes in H0\K. We have CHo(P) = (0, 0̂) X L 
and CHo(toP) = (0, *o) X £. We compute that the 12 conjugates of 0 in H0 

are 0, £0 ri 0, J0 r2 0, /o ri r2 0, o"i p0, ( rrV 1^» «1 0"i n p0, a f V f V i p_1/5, 
0i ci T2 p0, /o 0i o"i_1T2 P_10, «1 0! o-i n r2 p0, and a:i_10i cr^Vi r2 p

_10. This is 
obtained by conjugating 0 with 1, ai, 0i, 0i au cri, cri-1, ai ci, «i (jf1, 0i 0-1, 
0i cri-1, jSi «i cri, and ]8i ai ci - 1 , respectively. It follows in particular that 0 and 
to 0 are not conjugate in H0. Since p and p - 1 are not conjugate in H0, it follows 
that p0 and p -10 are not conjugate in H0. We have 

c*o(P0) = cHo(P-ip) = CHM n CZTO(P) = (^0,0) x (P). 

We have another two non-conjugate elements of order 6 contained in H0\K: 
to p0 and to p_10 with the same centralizers. Finally «i 0 is an element of 
order 4 contained in H0\K. («i 0)2 = n = a i a 2 and so 

C^o(«i0) C Cff0(aia2) = Q. 

We have to determine X = CqipuP). Obviously X Z> ( ^ « I ^ ) = ^((5) - ((?)' 
and X ^ («1-0). Hence 

X 3 (/o, ai «2, ai-0) = (/o) X (ai 0), 

which is an abelian normal subgroup (of order 8) of Q. We have four different 
conjugates of «i-0 in Q: 

«10, 0-a i0-0 = a 2 0, 0 i^ 2 -« i0 -0 i f t = ai"1^, 0-0i 02'<*i 000i 02 = o^1/? 

and s o I = (/0) X («i 0). 
We have proved that C#o(ai0) = (t0) X («1 0). Summing up the orders 

of all conjugate classes of H0 found so far, we get 576. Hence we have deter
mined all conjugate classes of H0. 

3. The conjugacy classes of involutions and the structures of their 
centralizers. Let G be a finite group of even order with the properties (a) and 
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(b) of the theorem. Since H = CG(t) is isomorphic to H0l we shall identify H 
and H0. We have then t = tQ. 

LEMMA 1. The Sylow 2-subgroup (Q, 0) of H is a Sylow 2-subgroup of G. 

Proof. This is obvious since the centre Z((Q, 0)) = (t) is cyclic. 

LEMMA 2. The group G has precisely two conjugate classes of involutions Si 
and $2 with the representatives t and tf3, respectively: Si P H is the union of 
two conjugate classes of H with the representatives t and 0. S2 P H is the union 
of two conjugate classes of H with the representatives t/3 and a\ a2. Let 
S = (t, 0, ai a2, ft 02). Then CG(S) = S and NQ(S)/S ^A5. 

Proof. By way of contradiction, suppose that t is conjugate in G to a±-a2. 
The group £ = (t, 0, n , r2) is elementary abelian of order 16, where n = a± a2, 
T2 — 0i 02- S Ç! C{t) = H and 5 contains the commutator group 

<<2, PY = (t, ri, r2) 
of (Q, 13) and so 5 < (Q, 0). Also 5 is normalized by p = ai-a2 and so 
5 <3 (Q, 0, p) = H. We have NG(S) P C(t) = H, since ax does not normalize S. 
p normalizes (Q, 0) and C(p) P (<2, 0) = (t, 0). Hence p does not fix any 

non-trivial element of (Q, P)/S and so H/S = A^ Now, since n = « ia 2 is 
conjugate in G to /, it follows that CG(ri) == £T. We know that C{n) P H = Q 
is a non-abelian group of order 32 and the centre Z(Q) = (t, n ) has order 4. 
Let Tbe a Sylow 2-subgroup of C(ri) containing (5. Then [T : (5] = 2. Suppose 
that 5 is not normal in T. Then there exists an element x G T\Q such that 
x -15x C Ç and x -15x ^ S. It follows that Ç = 5-x_15x and D = 5 Pi x-1,Sx 
must have order 8 since |(5| = 32. But then (since 5 and x~lSx are abelian) 
CG(D) 2 (<S, x_15x) = (5, which is a contradiction, since |Z((5)| = 4. 

It follows that 5 is normal in T and so NG(S) $£ H. On the other hand 

cG(S) ç co(0 P cG(n) = e 
and so CG(S) = S since Q is non-abelian. We have proved that © = NG(S)/S 
is isomorphic to a subgroup of GL(4, 2) = ^48. Obviously 93 = (Q, 0 ) /5 is a 
Sylow 2-subgroup (elementary abelian of order 4) of © and 21 = i J / S is a 
subgroup of © isomorphic to A4. Hence, in particular, all involutions of © are 
conjugate in ©. However, 93i = T/S and 93 = (Q, p)/S are two different 
Sylow 2-subgroups of © with the intersection T) = 33 P 231 = Q/S of order 2. 
This means that Sylow 2-subgroups of © are not independent. 

Now the order of A8 is 26-32-5-7 and the centralizer of any involution in A8 

has order 26-3 or 25-3. Since C@CB) 3 (S3, 93i>, we get C©(35) D 23. By the 
above remark about A8, C@(£)) = 23-U, where |U| = 3 and U <3 U-93. 
Since 93 and 93i are contained in C@(35), it follows that U-93 is not a direct 
product of U and 33. 

Suppose at first that 9ft = 0(©) ^ (1). Here 0(©) denotes the maximal 
normal odd-order subgroup of ©. Considering the action of the four-group 93 
on ffl we see that the order of $)? is either 33 or 3. However, the first case cannot 
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occur since 33 does not divide \A8\. I t follows that |SDÎ| = 3, 33 centralizes 95?, 
58-2K = 23 X 3W = 35 X U, a contradiction. Hence 0(©) = (1). Using a 
result of Gorenstein and Walter (3) we see that © is isomorphic to 4̂ 7 or to 
some LF(2, q) with g = ± 3 (mod 8). However, the first case cannot occur 
since a Sylow 2-subgroup oi A^ has order 8. From the order of A8 follows that 
q = 3 or 5. But both LF(2, 3) ^ ^ 4 and LF(2, 5) ^ Ab have independent 
Sylow 2-subgroups, a contradiction. 

We have proved that t cannot be conjugate to ai-a2 in G. Suppose now that 
G is 2-normal. Since (t) is the centre of the Sylow 2-subgroup (Q, ft) of G, it 
follows by the Hall-Grim theorem (4) that the greatest factor group of G 
which is a 2-group is isomorphic to that of CG{t) = H, i.e. is isomorphic to 
H/K, which is of order 2. But this contradicts our condition (a). 

It follows that G is not 2-normal. This means that there exists an element 
z in G such that t G ((?, 0} C\ sr1- (Q, /3)z but (t) is not the centre of z~l(Q, p)z. 
The centre of z~l(Q, fi)z is (z~ltz) and so t ^ z~Hz. On the other hand, because 
z~~Hz is contained in the centre of z~1(Q, fi)z and also t G z~l- (Q, f3)-z, it follows 
that t and z~Hz commute. Hence r = z~ltz G C<y(£) = if. In other words t is 
conjugate in G to an involution r in H and £ ̂  r. Since £ cannot be conjugate 
in G to Q!i*a2, it follows that t must be conjugate in G to /3 or #3. Interchanging 
j8 and t/3, if necessary, we may assume that t is conjugate in G to /3. 

We are now planning to determine the structure of NG(S), where 
5 = (t, /3, n , r2), n = «i a2, and r2 = /?i /32. Again 5<d (Ç, 0, p), where 
p = ai (72 and p_1ri p = T2, p_1T2 p = ri r2, p£ = /p, p/3 = /3p. Also 

NG(s)ncG(t) = (Q,p,P) = â 
and 5 / 5 ^ ^ 4 . Now, since /3 is conjugate in G to *, we have CG(fi) ~H = CG(t). 
We know that C(/3) H C(t) = S-(p) = D. Let T be a Sylow 2-subgroup of 
C(/S) containing S. Since £> is 2-closed, T C\ C(t) = S and [T : 5] = 4. In 
particular NG(S) £ H and © = N(S)/S is not 2-closed since (iV(5) H r ) / 5 
is a non-trivial 2-subgroup of © which is not contained in S3 = (Q, ($)/S. Here 
33 is a Sylow 2-subgroup of © and 33 is elementary abelian of order 4. All 
involutions are conjugate in © since H/S is a subgroup of ©. Obviously 
CG{S) = S and so © is isomorphic to a subgroup of GL(4, 2) ~ A8. We want 
to determine iV©(33). We have NG((Q, 0 » C Ĉ OO = i7 and so 

N0((Q,ft) =É. 
It follows that iV@(35) = i ï / S £ M 4 . 

Suppose at first that 0(©) = W ^ (1). Then considering the action of 33 
on 9JÎ and using the fact that all involutions are conjugate in © and also the 
fact that the centralizer of any involution in A s has order 3-32 or 3-64, it 
follows that either |2K| = 27 or |2tt| = 3 and 33-2ft = 33 X 2». However, the 
first case is not possible because 27 does not divide the order of A8. The second 
case is also not possible because ^©(33) == A 4. We have proved that 0(@) = (1) 
and © has no subgroups of index 2. If d is an involution in 33, then again by 
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the structure of A8 we have either C@(d) = U-33 with U <3 U-25 and |U| = 3 
or C®(d) = S3. In the first case by a result of Gorenstein and Walter (3) we 
have © ÊË LF(2, q) with g ± 1 = 12 = 3-4 = \C®(d)\. Hence g = 11 or 
q = 13, which contradicts the order of A8. Hence the second case must be 
involved and so © = A5. Let p. be an element of order 5 contained in NG(S). 
Since CG(S) = S, it follows that p acts fixed-point-free on S. Now we take a 
closer look at the elements of S. Let $ i be the conjugate class in G with the 
representative L Then 

« 1 H 5 D {1,13,17x13, fr2(3, tn 72 P}. 

The six involutions n , r2, ri r2, /ri, £r2, £ri r2 are conjugate in G to n and the 
four involutions tp, n /3, r2 /3, n r2 P are conjugate in G to #3. Since £ is not 
conjugate in G to n , it follows that n must be conjugate (in N(S)) to tp and / 
is not conjugate in G to tp. Lemma 2 is completely proved. 

LEMMA 3. The group G is not an N-group in the sense of J. G. Thompson (7). 

LEMMA 4. We have the following two possibilities for the structure of CG(tp): 
(i) CG(tj3) is isomorphic to the centralizer of an involution in A8 which does not 

lie in the centre of any Sylow 2-subgroup of A8. 
(ii) CG{tp) is the non-splitting central extension of (tp) by SQ. 

Proof, Again put S = (t, P, n , r2), where n = «i a2, r2 = Pi p2. Obviously 
Q = C(TI) H C(0 is contained in N(S) and Q is a Sylow 2-subgroup of C(ri). 
Namely, n is not conjugate to t in G and so n does not lie in the centre of 
any Sylow 2-subgroup of G. We have p_1ri p = r2, p_1r2 p = ri r2, where 
p = (7i (j2 f Af(S) and so \C(x) Pi iV(5)| is divisible by 32 for any x £ {n, r2, 
Ti-T2, /ri, £r2, /ri r2}. Also we know that (Q, /3) Ç N(S) (since 5 contains the 
commutator group of (Q, P)) and £/3, n /3, r2 /3, n r2 /3 are all conjugate in 
(Q, 13) Q N(S). It follows that t/3 is conjugate in N(S) to an element of 
{ri, r2, ri T2, /ri, /r2, tn r2} and so F = C(tp) H\ N(S) = Q'(p), where 
[Q : 5] = 2, Ô = 0» and CG(^) C\ CG(t) = 5-<p). By the structure of 
A 5 = N(S)/S, Y is not 2-closed. F is also not 3-closed since p does not act 
trivially on S. 

N((p)) n<j>)-S= (P) X Cs(p) = <p) X <*, 0). 

Since Y/S is non-abelian of order 6, NY((p)) 9e CF(p). Hence 

F = ivF«P»-5, i\rr«p» ns= (t,p), 
p is real in F, and (£, 0) is normal in F. However, CG((t, P) = S*(p) and so 
NG((t, P)) — Y because t and tp are not conjugate in G. 5«(p) is a normal 
subgroup of index 2 in F. Let B be a Sylow 2-subgroup of NY((p)). Then 
there exists an element s of 2-power order in B such that z~Hz = p. Hence B 
is the dihedral group of order 8 and so we may choose z to be an involution. 
The group (p)-(ri, r2) is isomorphic to A±. On the other hand S-(p) has the 
normal subgroup (p)-(ri, r2) of index 4 which is the smallest normal subgroup 
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of S-(p) with 2-factor group. Hence (p)-(r i , r2) is characteristic in S-(p) and 
so (p)-(r i , r2) is normal in F. B u t ( n , r2) is characteristic in (p)-(r i , r2) and 
so ( n , r2) is normal in F. Also the involution z normalizes (p) and because 
CV(p) = (p) X (t,P) and z g (t, P) « s , *, /3) being dihedral of order 8) , we 
have sps = p _ 1 . We also have (z, S) = Q and this is isomorphic to Q. I t follows 
t h a t the centre of Q has order 4 and so \Cs(z)\ = 4. On the other hand, 
Cs(z) 2 (tp) and so |C(s) H ( n , r 2 ) | = 2 (using the fact t ha t ( n , r2) <3 F ) . 
W e may pu t s - 1 - r i r2*s ; = n r2 and s - 1 n s = r2- (0, n , r2) is the dihedral 
group of order 8. T h e s t ructure of F is completely determined. 

W e see t ha t Y/(tp) is the direct product of (/, p)/(t-p) and (z, p, n , 
T2)'{tfi)/{tfi), which is isomorphic to (z, p, n , r 2) and this is isomorphic to S4. 
Also N((t, P)) H CG{tp) = Y and so CG(tp)/(tp) satisfies the condition (1) of 
Proposition 1, because F contains a Sylow 2-subgroup of CG{tp). Now, Q/(T\) 

is a Sylow 2-subgroup of CG(T\)/(T\) and (/, r i ) / ( n ) is the commuta to r group 
of Q/(TI). On the other hand, NG((t, n ) ) is contained in C G (0 = ^ b e c a u s e / is 
not conjugate in G to either n = « i a 2 or tn = ar1a2. I t follows t ha t 

NG((t, ri» n cG(n) ç c6(0 n cG(n) = Q. 
Since n is conjugate in G to //5, it follows t h a t the centralizer in CG(tfi)/(t-fi) 

of the commuta to r group of Q/{tp) is equal to Q/(t-P). This shows t ha t the 

condition (2) of Proposition 1 is also satisfied. 

Applying the Proposition 1 on the group CG(tp)/{tp) (and using the fact 

t ha t since n is a square of a\ P we have t h a t ( n ) does not split in Q and con

sequently (tp) does not split in Q) we get t ha t either 

C0{fP) = Y = CG(tp) H 7VG(5) or CG{tp) 

is the non-splitt ing central extension of (tp) by 56 (symmetric group in six 
let ters) . 

I t remains to show t h a t F is isomorphic to the centralizer of an involution 
in A 8 which does not lie in the centre of any Sylow 2-subgroup of A8. We 
establish the isomorphism from F onto C(n) in the notat ion of Wong (9), by 
mapping the generators p, r i , r2, t, P, z of F onto the generators v~l r\, TJJL-TX, 
X, \/JL, \J! (in this order) of C(/x) and then verifying t h a t the same relations are 
satisfied by both systems of generators. T h e lemma is proved. 

L E M M A 5. The case (ii) of Lemma 4 cannot happen. 

Proof. Suppose t h a t we have case (ii) of Lemma 4. There are precisely 
three conjugate classes of involutions in .SV Note t h a t the centre Z of a Sylow 
2-subgroup of Se is e lementary of order 4, and t h a t the three involutions in Z 
are not conjugate in 5 6 . Hence CG{tp) has precisely three conjugate classes of 
subgroups of order 4 containing (tp). Since tp is conjugate in G to ai a2 = TI, 
we may consider CG(n). We wan t to find explicitly the three subgroups 
non-conjugate in CG(TI) which are of order 4 and contain ( n ) . T h e y are (t, n ) , 
(ai P), and (PT2, TI ) , where r2 = Pi /32. Clearly (ai p), being cyclic of order 4, 
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cannot be conjugate to any of the four-groups (t, n) and (/3r2, n ) . On the other 
hand (/, r i ) / (n ) is the commutator group of Q/(ri) and (fir2l r i ) / (n ) is the 
subgroup of order 2 contained in the centre of Q/{T\) and is different from 
(t, r1)/(ri). Hence the four-groups (t, n) and (/3r2, ri) cannot be conjugate in 
CG(TI). The four-group (18x2, ri) is normal in Q but is not contained in the 
centre of Q and so fir2 and fin r2 are conjugate in CG(ji). Since 

#«*, ri» n c(n) = Q, 
it follows that 

C{t) C\ C(n) = C(tn) r\ C(n) = (5. 

Using the structure of 56, it follows that N((fir2l n ) ) Pi C(TI) = Q-X, where 
X £ C(ri) is a subgroup of order 3 and so 

C(fir2)r\C(n) =X-(t,Tl9 r2ffi). 

Let lîi and $ 2 have the same meaning as in Lemma 2. Then t G $1, tn G $2, 
0r2 G $2, and £ n r2 G $2. 

Now let x be an involution in C(ri). Suppose x ^ ri and consider the 
four-group (x, n ) . Because S& has precisely three conjugate classes of involu
tions, it follows that every group of order 4 in C(ri) which contains n must 
be conjugate in C(n) to one of the following groups (of order 4): (t, n ) , (ai fi), 
and (/3T2, TI). Since (x, n ) is a four-group, (x, n ) is conjugate in C(n) to 
(only one of) (t, n) or {fir2, ri). The involutions / and Jn cannot be conjugate 
in C(ri) because J G $1 and £n G $2. However, /3r2 and fin T2 are elements of 
$2 and are conjugate in C(n). It follows that x must be conjugate in C(ri) to 
one of the involutions t, tri, and /3r2. In particular, we have proved that C(n) 
has precisely four conjugate classes of involutions and only one of them (with 
the representative /) lies in $1 and C{i) C\ C(j\) is a 2-group. 

Consider now CG{tfi). We have fi G CG(tfi), fi G $1, and C(fi) H C(tfi) 
contains (/, fi) X (ri, r2, p), where p = a±a2 and so C(/3) Pi C($) is not a 
2-group. This is a contradiction. The lemma is proved. 

Let us find some conjugate classes in CG(tfi). First of all we have one con
jugate class of involutions consisting of one single involution tfi G Ë2. ($1, $2 
have the same meaning as in Lemma 2). The conjugate class of t G $1 consists 
of two elements and 

cit)r\c{tfi) = (t1fi)x (p)-(ri,r2). 
The conjugate class of n G $2 consists of three elements and 

C(n r2) H C{tfi) = ((/, 0> X (n, r 2 » • <s>, 

where n r2 is conjugate to n in C(tfi). The conjugate class of ^ n G $1 consists 
of three involutions. The conjugate class of tn G $2 obviously consists of six 
elements and 

C(tn) r\ Citfi) = (t, fi) X <n, Ti). 
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Finally the conjugate class of the involution z consists of 12 involutions, 
namely, 

c(p) r\ cm = (p) x <*, p). 
On the other hand z inverts p and so C(tp) has precisely one conjugate class 
of elements of order 3 consisting of eight elements. We have 

C(z) r\ C(0) = (z) X (C(s) n «*, P) X (rh r2))(p)). 

Suppose t h a t z fixes an element x in 

W= ((t^)X(rur2))(p) 

which is not a 2-element. Then x fixes an element of order 3 lying in W and so 
a conjugate of z under an element of W fixes p, a contradiction. Hence 

Cw{z) = C(z) H «/ , £> X <n, T2» = (tp, n r2) 

because a Sylow 2-subgroup of C(tp) is isomorphic to Q and |Z(())j = 4. I t 
follows tha t 

C(z) H C(//3) = (0) X («3, n r 2) . 

There are three conjugacy classes of elements of order 6 (with the repre
sentat ives ptp, pt, and pfi) with eight elements in each class and 

c(ptp) n cm = c(pt) n cm = c(P/s) n c(#) = <P> x <*, 0). 
We are able to show t h a t we have found all conjugate classes of involutions 
in CG(tp). Namely, any involution of CG(tp) is conjugate to z or to an involution 
in (t, P) X (ri , r2) or to z-x, where 

x e C{z) C\ «*, P) X (rlt T 2 » = (tP, n r2) (x ^ 1). 

B u t (z, t, P) is dihedral with the centre (tp) and so in this group z is conjugate 
to z-tp. Similarly, working in the dihedral group (z, n , r 2 ) , we see t h a t z is 
conjugate to z-n T2. Hence s is also conjugate to z-tp-ri r2. 

Since 5 = (t, /3, n , r2) contains the commuta to r group of (Q, /3), it follows 
t ha t Q is contained in N(S). Bu t also (z, t, p, n , r 2 ) is contained in N(S). 
We now use the fact t h a t N(S)/S = A& and t h a t all involutions in A-0 are 
conjugate. Hence there exists an element y £ N(S) such t h a t 2/ = y~~lzy Ç <2\-S. 
T h e involution ai Pi p2 is contained in Q\S and C(«i Pi p2) O 5 = Z(<2) has 
order 4. Hence the conjugate class of ai Pi p2 in (5 has order 4. On the other 
hand, we have either z' — a± Pi p2 or z' = «i /3i /32 x, where x ^ 1 and 
x G 5 H C(aiPiP2) = Z(Q). Hence there are only four involutions in Q\S 
and so z' is conjugate to ai Pi p2. This gives s £ $2. 

4. T h e s i m p l i c i t y of G. We are now in the position to prove 

L E M M A 6. G is a simple group. 
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Proof. Suppose at first that 0(G) 9e 1. Act on 0(G) by the four-group 
(t, j3). We know that CG(x) does not have a non-trivial normal odd-order 
subgroup for any involution x Ç (t, (3). Hence (/, /3) acts fixed-point-free on 
0(G), a contradiction. We have proved that G has no non-trivial odd-order 
normal subgroups. 

Suppose now that G has a proper normal subgroup N with odd-order factor-
group G/N. Then (Q, ($) (being a Sylow 2-subgroup of G) is contained in N. 
The Frattini argument gives G = N-N((Q, (3)) and the fact that (/) is the 
centre of (Q, /3) gives 

NG((Q,p))QCG(t) =H. 
Hence 

NG((Q,P)) = <0,/3>-<p>, 
where p = ai a2 and 

N0((Q,p))nN= (Q,p). 

On the other hand, p is contained in CG(t/3) and tfi £ iV. This is a contradiction 
because CG(t/3) does not have proper normal subgroups with an odd-order 
factor-group. Hence G has no proper normal subgroups with odd-order factor-
group. 

Suppose now that G has a proper non-trivial normal subgroup if. Then both 
numbers \M\ and [G : i f ] are even. Denote by $ i and $ 2 the conjugate classes 
of involutions in G with the representatives t and t/3, respectively. Suppose 
that $ i H i f 9e 0. Then $ i C if. In particular, J and 0 are contained in if. 
Hence t/3 £ M and so $ 2 H M ^ 0, $ 2 Ç if. All involutions of G are con
tained in if. It follows that (Q, /3) Ç i f (because (<2, /3) is generated by its 
involutions), a contradiction. This gives $ i H i f = 0. It follows that $ 2 £ i f 
This gives Q Ç if, / £ M, a contradiction. The proof of Lemma 6 is complete. 

5. The 3-structure of G. We want to determine the structure of a Sylow 
3-normalizer in G. Put T = (cri, C2) Ç CG(£) = H. We know that 

cH(r) = (t) x r 
and ^ ( r ) = <*, /3).r. Consider now NG(T). We have CG(r) <3 NG(T) and 
(/) is a Sylow 2-subgroup of CG(T). It follows that CG(T) has the normal 
2-complement M 3 T. Since M char CG ( r ) , it follows M<dNG(T). By a 
Frattini argument N(T) = <*, /3)ikT. We know that CV(0 = T, (t, 13) cen
tralizes (ci cr2) and CM({t, fi)) = (p). Also by the structure of CG(t/3) we have 
CM(t/3) = (p). By way of contradiction, suppose that CM(P) = (P)- Then 
|if| = \T\ and so M = T, NG(T) = T-(t,(3), T is an elementary abelian 
Sylow 3-subgroup of G and (p) is contained in the centre of NG(T). This 
contradicts the simplicity of G. Hence CM(f3) = T\ is an elementary abelian 
group of order 9 and T Pi J \ = (p). We get |if| = 27, i f = r - T i , i f is 
abelian, and so M is elementary of order 27. We have T = (p, f ), f = o-i o-2

_1, 
^ i = (p* fi)> f is inverted by £ and #3, and f i is inverted by t and #?. The 
structure of NG(T) is determined. 
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By way of contradiction, suppose that NG{M) = NG(T). Then NG(T) is a 
Sylow 3-normalizer and (by a theorem of Burnside) T and T±, being conjugate 
in G, must be conjugate in NG(T), a contradiction. Hence NG(M) D NG(T). 
Obviously 0(NG(M)) = M. Also all involutions in NG(M) are not conjugate 
in NG(M) and so (/, /3) is not a Sylow 2-subgroup of NG{M). 

Let us determine the structure of a Sylow 2-subgroup U CD(t, (3)) of NG{M). 
We have 

c(t) r\u = c{fi) nu= (t, p). 

In particular U is non-abelian and Z(U) = (t/3). Also considering 

cmr\NG(M) 

we see that (p) is normalized by U and £/• (p) Ç CG(t/3). By the structure of 
CG(t(3), we know that [/ is a dihedral group of order 8, the involution 
^ G C/\(£, 0) inverts p, (t, /3) centralizes p, and z is conjugate to #3 in G. 

Suppose that NG(M) has a normal 2-complement. It follows that 
N(M) = M- U and so M is a Sylow 3-subgroup of G. Since T and 7\ are 
conjugate in G, they must be conjugate in NG{M). It follows that z~lTz = 7\ 
and so since z inverts p we m a y choose f i = z~lÇz. W e know t h a t s is conjugate 
in G to //3 and so CM(fP) = (p) should be conjugate in N(M) to CV(s) = (ff i), 
which is a contradiction. 

Suppose now that NG(M) does not have a normal 2-complement. We see 
that N(M) has a normal subgroup L of index 2 which does not have a normal 
subgroup of index 2 and a Sylow 2-subgroup of L is a four-group. We have 
M Q L, M = 0(L), [U : (C/H L)] = 2, and £7 H L is a four-group. Because 
Z(Z7) = (t(3), t/3 € C7 Pi L. All involutions in L must be conjugate in L. It 
follows that U C\L = (z, t/3) and t G U\L. We want to determine CL(t(3). 
We get CM(t&) = (p) a n d so (p) is normalized by CL(tf3). By the structure of 
CG(t/3) we have CL(t(3) = (s, t(3)(p). In particular, CL(tf3) has an abelian 
2-complement (p) of order 3 and so by a result of Gorenstein and Walter (3) 
we get L/M ^ PSL(2, q), q odd. 

On the other hand CG(M) = M and so L/M is isomorphic to a subgroup of 
GL(3, 3). I t follows that q = 3 and so L/M ^ PSL(2, 3) ^ AA. Since 
CM(tfi) = (P) a n d p is inverted by z, we get CM{{t(3, z)) = (1). By the structure 
of A 4, we have ($ , s)-M"<3 L. There is an element p £ L\(t/3, z)-M such that 
(#?, z)-(p) = A± and so we may put p~l'tf3'p = 2, prlzp = t/3z. Replacing p 
by p-x with x 6 (t/3, z), if necessary, we have that t normalizes (p). By the 
structure of CG(t) and the fact that \CM(t)\ = 9, it follows that tpX = p~l. 
Hence (/, p., tf3, z) ~ 5 4 and so NG(M) is a splitting extension of M by 54. 
Since t/3 centralizes p and z inverts p, it follows that CM((tl3, z)) = (1). Acting 
by p on (t&, z) and ikT we see that M = (p) X (pM) X (p"2) and CM(tfi) = <p), 
Ciif(z) = (PM), CMWZ) = (p"2). The action of (t/3, z, p) on ilf is determined. 
It remains to determine the action of t on M. Representing (t/3, z, p,, t) on the 
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'Vector space" M over GF(3), we get in terms of the "basis" p, pM, p"2: 

0 1 0~ " - 1 0 0 
0 0 1 z- 0 1 0 

L.1 0 0_ 0 0 - 1 

" - 1 0 0" 
tfiz-> 0 -- 1 0 

0 0 1 

The matrix representing / will be determined by the conditions t2 

tjit = M-1, tzt = tfiz, tpt = p. We get 
1, 

1 0 0 
0 0 1 
0 1 0 

and so tpt = p, tpH = p^2, tp^t = pM. The structure of NG(M) is determined. 
Put 9ft = </i)-M. Then 9ft is a Sylow 3-subgroup of NG{M). The centre 
Z(9ft) of 9ft is obviously contained in M and so Z(9ft) = CM{p). We find 
that Z(9ft) = (P'P»-P^). 

We are going to show that NG{m) Q NG(M). Let x 6 NG{W) but 
x £ NG(M). Then Mx = x~1Mx Q 9ft and Mx ^ M. Because M• Mx = 9ft 
and [9ft : M] = 3, we get \M H Mx\ = 9. On the other hand, 

Cm(M n Mx) 3 <M, MT) = 9ft, 

which contradicts the fact that |Z(9ft)| = 3. 
We have proved that iV^(9ft) ÇI NG(M) and so 9ft is a Sylow 3-subgroup 

of G. We are now able to determine the structure of NG($R). Certainly t 
normalizes 9ft because t inverts p and normalizes M. We have 

NG{M) = W(t))'(tP,z) 

and so if NG($Jl) D 9ft(t) we would get that t/3 normalizes 9ft, which is not 
the case. We have proved that 9ft • (t) is a Sylow 3-normalizer in G. We have 
proved the following result: 

LEMMA 7. A Sylow 3-normalizer in G has order 2 • 34 and is given by 

(p , pM, p* 2 , M, *|p» = M
3 = /2 = 1 , [p, pM] = [p, PM2] = [pMf pM2] = l f 

tpt = p, Jp"J = p"2 , £p"2/ = p", tp,t = p " 1 ) . 

We shall now study various 3-subgroups of G and their normalizers. The 
commutator group 9ft' of 9ft is the set of all P'CP'O'CP"2)"*-'. It follows that 
9ft' = (p'p^-p1*2, pip^)"1) is elementary of order 9 containing the centre 
Z(9ft) = (p-po-p»2). Hence [9ft, 9ft'] = Z(9ft) and so 9ft is a 3-group of class 3. 
We also have that 9ft3 (the group generated by all third powers of elements 
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of SDt) is equal to Z(W) and so the Frattini subgroup <j>($R) = W. Hence 5DÎ 
has precisely four maximal subgroups: M (which is characteristic in 93? and 
is the unique maximal normal abelian subgroup of Wl of an order >27) , 
(9K', M) (which is characteristic in 2JÎ and is the unique non-abelian maximal 
subgroup of exponent 3), and Mi and M2j which are both non-abelian of 
exponent 9. We have M\ = M2. 

Put as before T = CM(t), 7\ = CM(P). Then 

r n Ti = <P> = cMm, (PM) = cM(z), 
<P*2)= CM(tpz), T= <p,pV2}, 

where 
( p ^ 2 ) = (criera-1), T = (en, er2>, 

and 
r i = (P, P ^ P " 2 ) - 1 ) -

We want to determine at first the structure of NG((p)). Since z inverts p, 
we shall determine at first CG(p). We know that 

CG{p)C\N(M) = M .(1,0). 

Let U be a Sylow 2-subgroup of C<?(p) containing (2, (3). If [/ D (2, /3), then 
there is an involution x in (£, /3) such that a Sylow 2-subgroup of CG(x) O CG(p) 
has order > 8 , which contradicts the structure of CG(t) and CG{tf$). I t follows 
that (/, /3) is a Sylow 2-subgroup of CG(p). All involutions are not conjugate 
in CG(p). It follows that CG(p) has a normal 2-complement X containing M. 
The order of X cannot be greater than 33 and so X = M. We have proved 
that NG((p)) C NG(M) and so NG((p)) = M-(t, p, z) is a splitting extension 
of the elementary group M of order 27 by the dihedral group (t, /3, 2) of order 8. 
The element p is real. 

We are now going to determine the structure of iyG((p"-p^2)). Put f = p^p"2. 
We know that 

NG({Ç))r\NG{M) = M-</,/3>, 

where £ centralizes f and /3 inverts f. Since (f ) = (en <x2
_1), it follows by the 

structure of C(2) that (t) is a Sylow 2-subgroup of CG(£) and so NG((£)) has a 
normal 2-complement X\ CQ.M) acted upon by the four-group (/, /3) and so 
Xi = ilf. We have proved that NG((Ç)) Ç NG(M) and so 

NQ((f-f*)) = M-(t,p) 

is a splitting extension of the elementary group M" of order 27 by the four-
group (t, j3). The element p^-p^ is real and CG(<ri a2~

1) = M-(t). In particular, 
cri cr2

_1 is not conjugate in G to ci cr2. 
We are going to show that p is conjugate in G to cri (72

_1. For this purpose 
we shall determine the structure of NG((t(3,z)). By the structure of CG(t$) 
we have that CG((tf3, z)) = (t/3, z, T\ r2) is elementary of order 8. On the other 
hand, the non-abelian group (t, p) of order 6 acts faithfully on (t/3, z) and so 
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NG((t/3,z)) is a splitting extension of (t/3, z, n r2) by (t, /*). Let $1 and $ 2 

have the same meaning as in Lemma 2. Then t/3, z, t/3z, n r2, zn r2, and #ten r2 

are in $ 2 and only //3n r2 is in $1. It follows that (J, /*) centralizes #?n r2. 
Hence /i is real in CG(tf$Ti r2) and so by the structure of H = CG(t) we have 
that JJL is conjugate in G to a± (T2~

1. 

We shall put p-p^-p»2 = X and we shall determine the structure of NG((\)). 
We note that (X) = Z(9ft) and X = o-i"1 or o-2

_1. It follows that X is not real 
in G (because t centralizes X and (t)$Jl is a Sylow 3-normalizer in G) and by 
the structure of CQ(t) we have that CG(\) C (X) X 5*, where 

5 , = Ç, ( ( 7 , )^SL(2 , 3) 

and i = 1 or 2. Here Qt is a quaternion group containing 2. Also 

C*(X) H Co(0 = (X) X 5,. 

Let [/ be a Sylow 2-subgroup of C(X) containing (^. If U D (?*, then 
C(0 r\ UD Qu which contradicts C(X) C\ C(t) = (A) X S{. Hence the 
quaternion group Qt is a Sylow 2-subgroup of C(X). Put F = 0(CG(\)). Then 
F 2 (X) and by a result of Brauer and Suzuki (2) C(\)/V has only one involu
tion t-V. Hence (t)V is normal in C(X) and CV(0 = (X) because otherwise 
(X) X St would be 3-closed, which is not the case. We get 

CG(X) = (C(t) r\ C(X)) • V = S,(X)F = St- V, 

St n v = <i). 

On the other hand, we know that 9ft £ CG(X) and so SOîi = 9ft H F is a 
maximal subgroup of 9ft. Since ^ 6 TQM and <r* £ S* (o-* g F), it follows 
that 50?i F^ M. Because t acts fixed-point-free on F/(X), it follows that V/(\) 
is abelian and so V is nilpotent (of class 2). Hence J normalizes 2ft i and so 
9ft i = (9ft', M)- The fact that /x is conjugate in G to ai o-2

_1 and the structure 
of CG((Xi 0-2"1) imply that a Sylow 3-complement of Fis (1) and so F = (99?', AI). 
I t follows that CG(\) is a splitting extension of the non-abelian group (9ft', /*) 
of order 27 and exponent 3 by St which is isomorphic to SL(2, 3). The element 
X is not real. 

The centralizer of the element p.-p of order 9 must be contained in C(X), 
because (ixpY = X. We get CG(np) = (MP). Also the generalized centralizer of 
pp must be contained in C(X) because X is not real. The fact that C(\)/V 
= SL(2, 3) does not contain a non-abelian subgroup of order 6 gives the result 
that this generalized centralizer is equal to (/xp). I t follows that pp is not real 
and 

CG(MP) = CG((p,p)~l) = (pp). 

We are going to show that we have found all conjugate classes of 3-elements 
of G. We have to show that every non-trivial 3-element in 99? is conjugate in 
G to one of 

P, pv 2 , ppv\ p - H ^ - V 2 ) " 1 . MP, p-V"1. 
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Because CG{p) = M-{t, fi), p has (under the conjugation by the elements of 
NG(M)) 6 conjugates in M. Because CG{p^ipfx2) = M-(t), ff-p"2 has (under 
the conjugation by the elements of N{M)) 12 conjugates in M. Because 

CN{M){PP^) = C W P - V ) - 1 ^ * ) - 1 ) = 2K-<*>, 

pp^p»2 has 4 conjugates and P _ 1(P / X)~ 1(PM 2) _ 1 n a s a l s o 4 conjugates in AI. Now /x 
has 18 conjugates in (W', /z)\9ft' under the conjugation by the elements of 
2)t-(0 since |CW.(*)(M)| = 9- But /x is conjugate in G to p^p»2 and so we have 
found all conjugate classes of elements of order 3 in G. It remains to determine 
the conjugate classes in G consisting of elements of order 9. The element /ip 
(of order 9) has 18 conjugates in 9K under the conjugation by the elements of 
Wl-{t) since CG(np) = (MP) and also p~~V-1 = (MP) - 1 has 18 conjugates in 3)1 
and p,p and Gup)-1 are not conjugate in G. We have proved the following result: 

LEMMA 8. The group G has precisely 4 conjugate classes of elements of order 3 
with the representatives <n {non-real), a-r1 {non-real), p = ci-o-2 {real), and 
0"i*0"2-1 {real). Also G has precisely 2 conjugate classes of elements of order 9 with 
the representatives /zp {non-real) and (MP)_1 {non-real). We have 

\C0(a!)\ = \CG{ar1)\ = 81-8 , \CG{a1a2)\ = 27-4, 

|CG(d1c72-
1) - 27-2, and \CG{w)\ = \CG{np)~l\ = 9. 

6. The identification of G with PSp4(3). We are now in a position to 
apply the following result of J. G. Thompson (7). 

THEOREM A. PSp4(3) is the only finite simple group G with the following 
properties: 

(i) G contains an elementary subgroup of order 27. 
(ii) If P is an Sz-subgroup of G and A G ©ÊS^CP), then \A{A) is trivial. 
(iii) The centre of an S%-subgroup of G is cyclic. 
(iv) The normalizer of every non-identity Z-subgroup of G is soluble. 
(v) S 2-sub group s of G contain normal elementary subgroups of order 8. 
(vi) If T is a S2-subgroup of G, then Z{T) is cyclic and if B G ©69^3(7"), 

then V\{B) is trivial. 
(vii) The centralizer of every involution of G is soluble. 
(viii) G contains a soluble subgroup S with the following two properties: {a)S 

contains an elementary subgroup D of order 9 such that, for each x G D, CG{x) 
contains an elementary subgroup Ex of order 9 with [G : NG{EX)] prime to 3. 
(P)S contains an elementary subgroup L of order 8 such that for each y G L, CG{y) 
contains an elementary subgroup Ey of order 4 with [G : NG{Ey)] prime to 2. 

Here ©E 913 (AT) denotes the set of self-centralizing normal subgroups {of a 
group X) which cannot be generated by less than 3 generators and \AX{V) = V\{V) 
is the set of subgroups of X which V normalizes and which intersect V in the 
identity only. Finally an Sv-subgroup of a group X is a Sylow p-subgroup of X. 
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W e are now able to complete the proof of our theorem by showing tha t our 
group G satisfies the conditions (i) to (viii) of Theorem A. First of all, by 
Lemma 6 the group G is simple. Now using Lemma 7, we see tha t G satisfies 
the conditions (i) and (iii). Also using Lemma 1 and the assumption (b) of 
the theorem, we see t ha t the condition (v) is satisfied and tha t a Sylow 2-sub-
group of G has cyclic centre. By Lemmas 2, 4, and 5 we see tha t the condition 
(vii) is satisfied. I t is not difficult to see t ha t the condition (viii) is satisfied 
if we take for S the soluble subgroup H = CG(t), for D the Sylow 3-subgroup 
(di, cr2) of H, and for L the commuta tor subgroup of the Sylow 2-subgroup 
(<2, ft) of H. We know tha t (<ri, o-2) C M, M is elementary abelian of order 27 
containing the commuta tor group W (which is elementary of order 9) of the 
Sylow 3-subgroup Wl of G, and so we may pu t for any x £ D = (ah o-2), 
Ex = W. Let $ i and $ 2 have the same meaning as in Lemma 2. If y £ L 
lies also in $ i , then we can take for Ey any normal four-subgroup of a Sylow 
2-subgroup of CG(y). Such four-subgroups exist because the commuta tor 
group of a Sylow 2-subgroup of C(y) is elementary of order 8. If y G L lies in 
$ 2 , then we may suppose (by conjugating) tha t y = n = aia2. In this case 
we take Ey = Z(Q), which is elementary of order 4 and Ey is normal in (Q, f3) 
because Q is normal in (Q, (3). 

We shall now show tha t the group G satisfies the condition (ii). Take the 
Sylow 3-subgroup 3Jt of G and note t ha t the only element of @fè9î3($)?) is the 
subgroup M. Let F ^ 1 be an element of M(iW). Since a Sylow 3-subgroup 
of G is not abelian, the order | V\ is prime to 3. By Lemma 8, F is a 2-group. 
If M acts faithfully on 7/</>(U), then \V/<t>(V)\ = 26, which is not possible. 
Hence Mi = CM(V) 7e- (1). Using Lemma 8 again, we see tha t \V\ < 8. I t is 
clear tha t V cannot possess a characteristic subgroup of order 2 because the 
order of the centralizer of an involution is not divisible by 27. I t follows tha t 
V mus t be elementary of order 4. But then \M±\ = 9 and Mx V = Mi X V, 
which contradicts the s tructure of C(t) = H. We have proved tha t the group 
G satisfies the condition (ii). 

We shall now prove tha t G satisfies the condition (iv). By Lemma 8, the 
centralizer of any non-trivial 3-subgroup of G is soluble. Also a Sylow 3-
normalizer is soluble. I t follows tha t it is enough to show tha t NQ(X) is 
soluble, where X is any subgroup of order 27 which does not possess a charac
teristic subgroup of order 3. This means tha t it has to be shown only t ha t 
NG{M) is soluble. This has been done before. 

I t remains to be shown tha t V\(B) is trivial, where B is an element of 
©Ê$ft3«(?, £) ) . By way of contradiction, suppose tha t W ^ (1) and W G V\(B). 
Lemma 3.10 of (6) shows tha t \W\ is odd. By the s tructure of centralizers of 
involutions, IF is a 3-group. Obviously, W cannot be a Sylow 3-subgroup of 
G and also W cannot have a characteristic subgroup of order 3 (Lemma 8) . 
Using the s t ructure of NG(M), we see t ha t W mus t be elementary of order 9. 
A Sylow 2-subgroup of GL(2 , 3) is semi-dihedral of order 16 and so B does 
not act faithfully on W. There is an involution r contained in B C\ $ i which 
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centralizes W. This contradicts the structure of C{t) = H. The proof of our 
theorem is completed. 
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