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A CALCULUS APPROACH TO HYPERFUNCTIONS III

TADATO MATSUZAWA

Introduction

In the previous papers, [18] and [19], we have given some basis of
a calculus approach to hyperfunctions. We have taken hyperfunctions
with the compact support as initial values of the solutions of the heat
equation. More precisely, let .A'[iiΓ) be the space of analytic functionals
supported by a compact subset K of Rn and let E(x, t) be the ra-dimen-
sional heat kernel given by

E(x, t) = (4πtyn/2 exp [ _ = _ & ] , t>0.
L At J

Then for u e A'[iΓ], the function U(x91) defined by

U(x, t) = uy(E(x - y, * ) ) , xeR\ t>0,

satisfies the heat equation in Rn

+

+1 = {(x, t); xeRn, t > 0} and we have

u = lim U( , t),

where the limit is taken in the sense of (1.6) in Theorem 1.1. The main
purpose of this paper is to give some applications to microlocal calculus
on the basis of the results obtained so far. In Section 1, we recall some
basic facts on hyperfunctions given in [18] and [19]. Furthermore we
add to consider to characterize hyperfunctions in the whole space Rn

(= &(Rn)) in such a way that they are also initial values of the solu-
tions of the heat equation and locally equivalent to analytic functionals
with the compact support. At the end of Section 1 we shall recall the
notions of the wave front sets following the results of [18] and [19]. In
Section 2, we shall investigate the microlocal regularity of the solutions
of pseudodifferential equations in hyperfunction spaces as well as in
ultradistribution spaces. The fundamental tool is the local expression of
hyperfunctions given in (2.4) and (2.4)', the latter is a special case of
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134 TADATO MATSUZAWA

(2.4). The formula (2.4)' was given in [22] in Schwartz distribution case

and in [19], (3.10) in hyperfunction case. We generalize this in the form

(2.4) by means of the results prepared in Section 1 and we shall see it

plays an important role in the mocrolocal calculus. The author would

like to thank Y. Morimoto for the stimulating discussion with him.

§ 1. Preliminaries

We use general notations such as \a\ = aγ + + an for a multi-

index a = (aί9 - -,an) and Da = Dΐ1 Da

n\ Dό = — id/dXj, j = 1, , n,

etc.. Let if be a compact subset of Rn whose points are denoted by x =

(xu ''',xn). As in [19], let A[K] denote the space of all real analytic

functions in some neighborhood of K. A'[K] is the strong dual space of

A[K] and call its elements analytic functionals carried by K. Let u e

A'[K] then for every complex neighborhood ω of K we have

(1.1) \u(ψ)\< C β s u p | p | , φeA,

where A is the space of entire functions in ©. We refer to [19] the no-

tion of Gevrey spaces i{s) and $[sγ', 1 < s < oo, etc. The ^-dimensional

heat kernel is given by

(1.2) E(x, t) = (4πt)~n/2 exp [- \x\2/4t], (x, t) e Rn

+

+\

Let u e A'[K] the function

(1.3) U(x, t) = uv(E(x91))

is well defined in R\+ι and we shall call it the defining function of u.

THEOREM 1.1 ([19], Theorem 2.1). (i) Let ueA'[K] then U(x,t)e

C°°(Rn

+

+1) and U satisfies the following conditions:

(1.4) (3/3* - Δ)U(x, ί) = 0 in Rn

+

+1

For every ε > 0 we have

(1.5) I U(x, t)\<Cε exp [(e/t) - dis (x, K)2l4t] in Rn

+

+1

U(',t)~*u as t-^0+ in the following sense:

(1.6) u(ψ) = lim ί U(x, t)φ(x)dx , φ e A ,
t-0 J Ω

where Ω is an arbitrary bounded neighborhood of K in Rn and A is the

space of entire functions in ©n.
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APPROACH TO HYPERFUNCTIONS 135

Conversely, every C^-function defined in Rn

+

+1 satisfying the conditions

(1.4) and (1.5) can be expressed in the form (1.3) with unique element u e

A'[K\.

(ii) In case ueSψ, 1 < s < oo, the condition (1.5) of the above as-

sertion is replaced by the following:

For any ε, δ > 0 we have

(1.5){s} I U(x91)\ < Cε,δ exp [(e/ί)1'*-" - dis (x, Kδγ/8t] in Rn

+

+ι,

where Kδ = {x; dis (x, if) < δ}.

(iii) In, case ue£'κ, the condition (1.5) is replaced by the following:

There exists a non negative integer N = N(u) such that

(1.5)* I U(x, t)\ < Cδt'
N exp [- dis (*, Kδfβt\ in Rn

+

+1.

We add the following characterization of the tempered distributions

which is also useful.

THEOREM 1.2. Let u e 9"{Rn) then U(x, t) = uy(E(x - y, t)) e C~(Rn

+

+1)

and satisfies the following conditions:

(1.7) (dldt - Δ)U(x, 0 = 0 in Rn

+

+1

There are positive constants C, M, and N such that

(1.8) I U(x, t)\ < Ct~M(l + \x\Y in Rn

+

+1

U(x, t)->u in y"{Rn) as t -> 0+, i.e.

(1.9) lim f U(x, t)φ(x)dx = u(φ), 9 e <f(Rn).

Conversely, every C^-functίon defined in Rn

+

+1 satisfying the conditions

(1.7) cmd (1.8) can be expressed in the form (1.3) with unique element u e

The proof of this theorem is obtained by the similar way as in

Theorem 1.1 given in [18] and [19].

We can consider A'[KX] C A'[K2] if Kx C K2 c Rn and we set

A' = AXRn) = U A7[lf] .
K

We recall that the support of we A'(Rn) is the smallest compact set

K C Rn such that w 6 A'[K\. Now let β be a bounded open set in Rn.

The space of hyperfunctions 3$(Ω) is defined by
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136 TADATO MATSUZAWA

(1.10) a(Ω) = A'[fl]/A'[9fl].

We want to define hyperfunctions in Rn. Let fly, j = 1, 2, , be bounded

open subsets of Rn such that Rn = UΓ=i fly Ή UJ e A'[Ωj] and for all jf,

£ we have Wy = wfc in fly Π β* (that is, supply — wfc) Π fly Π flfc = 0 )

then for any bounded open set Ω d Rn there is a unique u € J*(fl) with
u = Uj in Ω 0 Ωjy j = 1, 2, , by virtue of a localization theorem, [19],

Theorem 2.4, ([7], Theorem 9.2.2) which implies the sheaf property of

J*(β). We can therefore define a hyperfunction u e &(Rn) as a collec-

tion of Uj eA'[Ώj] such that Uj = wfc in β 7 Π flfc, 1 < ; , /? < oo. The defi-

nition of we &(Rn) is independent of such bounded open Ωj sets with

Rn= U β r

DEFINITION 1.1. We call U(x, t) e C°°(jRt+1) an infra-exponential solu-

tion of the heat equation if it satisfies the heat equation in Rn

+

+1 and for

any compact subset K of Rn and e > 0 we have

(1.11) I U(x, t)\ < Cε,*eε/ί t > 0, x e K.

THEOREM 1.3. Let u e &(Rn), that is, let u = {ι̂ }£=i SMCΛ that us e

A'[Ώj], Uj = wfc m fly Π flfc, 1 < j , /̂  < oo, where Ωj are bounded open sets

with Rn = U fly. ΓΛβΛ ίΛere ejc/sίs ατι infra-exponential solution U(x, t)

such that

(1.12) E7(x, ί) - C7y(Λ;, ί) = ± 0 as ί > 0+ m β ; , i = 1, 2, ,

where Uj(x, t) is the defining function of each us and z± means the weak

uniform convergence in Ωr

Conversely, let U(x, t) be an infra-exponential solution, then there ex-

ists a unique ue&(Rn) satisfying U( , t) —> u as t—>0+ in the sense of

(1.12), that is, for any bounded open sets Ωj with Rn = IJJ^Ωj, there exist

Uj e A'[Ώj] whose defining functions Ufa, t) satisfy (1.12).

Proof. Necessity. For simplicity we shall prove the one dimensional

case of n = 1. Take fl, = {xe JS1; \x\ < ry = Σί-i (1/0}, J = 1, 2, , then

obviously we have i?1 = U fly. Assume that there are given ŵ  e A'fβ^]

such that Uj =• uk in fly = fly Π flfc, 1 < j < /s < oo. Let i/y(x, ί) be the

defining function of Uji

Ufa, t) - ujy(E(x - y, t)) in Λ»+1, 7 = 1, 2, • .

We shall construct infra-exponential functions Vfa, t) such that
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(1.13) (3/3* - Δ)Vj(x, ί) = 0 in Rn

+

+1

(1.14) Vj z=± 0 as t > 0+ in J?n\3β,, = 1, 2,

(1.15) I t/,+1 - £7, + V, - Vj+1\ < C2-J exp [e,/ί], t > 0 ,

where C is a positive constant independent of j and εy —>0 as j —> oo.

Furthermore for any M > 0 there exists a number j ^ and a constant CM

such that

(1.16) j >jMr=^\ Uj+ί - t/y + V, - Vy+1| < CM2-J exp [- 1/C ί̂] ,

* > 0 , | x | < M .

Then it follows from (1.16) and (1.13) that the limit

E7= lim(C7, - V3) = U, - V, + Σ (Uk+ι - Uk + Vk - Vk+ι)

exists and satisfies the heat equation in Rn

+

+1. U(x, t) is an infra-expo-

nential solution by (1.16) and U(x, t) — Uj(x, t)z±0 in β y. It remains to

construct such Vj(x, t). We take Vt(x91) = 0. Assuming that we have

Vj(x, t) we construct VJ+ι. Let VjβA'[dΩj] be the initial value of Vs(x, t)

and put

uJ+1 - w, + vj = ^ e A ' [^ + 1 1.

Then we have

supp [gj] C [- rJ+1, - rj] U [r7 , r i+1]

and

(1.17) UJ+1(x, t) - Ufa t) - Vj(x, t) - J E(x - y, t)gj{y)dy ,

where we have used the integral in the distribution sense. For the sake

of the simplicity we assume supp [gj] C [rjΊ rj+ι]. By using the Taylor ex-

pansion of E(x — y,f) at y = rJ+1 the right hand side of (1.17) is written

by

Σ J _ i c i ( x - rj+u t) f (ry+J - ^
«>0 α! J

Taking N a large number determined later, we set

Σ
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138 TADATO MATSUZAWA

If we apply the estimates of the derivatives of E(x, t) given in [19], Prop-

osition 1.1 and the inequality (1.1) for gj9 we have

| C 7 , + 1 - Uj+ Vj- VJ+1\

^EM(x - r,+1, t) J (r,+1 - yYgj(y)dy

c..ί-(i+«)/»α|-i/ϊ e x p [_ (j,. _ r.+1f/8t](2ljY

It] exp [— (x — ri+1)
2/8ί] 2 (2C//V~s")a > ε > 0 .

Taking ε = ε̂  = (4C//)2, this is majorated by the quantity of the form

C,*-1" exp [ey/ί] exp [- (* - r,+1)
2/8ί]^Σ+ ̂ 1/2)-.

If we take JV sufficiently large for each j > 1, we obtain the estimate

(1.15). The other estimates are obtained similarly.

Sufficiency. We take a function ψ,(x, t) e C°°(Rn

+

+1) (Ί L°°(Rn

+

+1) such

that

ψj(x, 0 = 1 for {x2 + 4? < f, t > 0}, j = 1, 2, .

(cf. [7]), Corollary 1.4.11.)

Then by [14], Theorem 2.27 there exist ultradistributions ψ/Ue

such that ψ/U = ψyC7 for t > 0 and ψ̂ E7 = 0 for t < 0. We define ultra-

distributions Fje£{2]'(Rn+1) and V, e^{2}/(i?w+1) by

Fj(x, t) = (3/3ί - Δ)^U(x, t), V7.(x, ί) = £ * F , ,

where we consider £ * as a pseudodifferential operator from ^{2}'(i?n+1) to

Rn+1\ (cf. [17]). If we set

C7,(x, t) = ψ^C7(x, ί) - V,(x, ί), t > 0 ,

then taking notice of the support of F5 we see Uj(x, t) is an infra-expo-

nential solution of the heat equation and

Uj(x9t)z=±0 as t >0+ in Rn\Ώj.

Thus by Theorem 1.1, there is a unique element w, e A'[Ωj] such that

Uj(-,t)-+Uj as *->0+ in the sense of (1.6). We have E7( , ί ) - E7/ ,ί)=£0

as ίί->0+ in β^ since Vj( ,t)z±0 as ί-^0+ in Ωj9 which is verified by
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APPROACH TO HYPERPUNCTIONS 139

using the pseudolocal property of the operator E*, (cf. [17]). This com-

pletes the proof of Theorem 1.3.

Let u 6 A', then the defining function U(x, t) — uy(E(x — y9 t)) is ex-

tensible as an entire analytic function in S71 for each fixed t > 0. We

will consider the asymptotic property of U(z, t) as t -> 0 for z = x +

ίξ eKπ.

THEOREM 1.4. (i) Let u e A'[K] then we have the estimate of the form

(1.18) I U(x + iξ, t)\ < Cε exp [(f2 + ε(l + |f|) - dis (x, KY)/At] ,

x + iξ e &n , ί > 0 , ε > 0 .

(ii) Let ueS[s]\ 1 < s < oo, £/*OT we

(1.19) I U(x + if, 01 < Cε,δ exp [f2/4ί +

- dis (*, κδyim, x + ί? € ©», ί > o.

(iii) Lei w 6 ^(Rn) then there are positive constants C, M and N such

that

(1.20) I U(x + ίξ, t)\ < Ct~M(l + \x\ + |f | r exp [f2/4£] ,

x + ίξ e ©n , ί > 0 .

Now remember the definitions of the wave front sets.

DEFINITION 1.2 ([19], Definition 5.1). Let ueA'(Rn). We denote by

WFJu), WF{s](u), 1 < s < oo, and WF(w) respectively the complement in

T*(Rn)\0 of the set of (xOi ξ0) such that there is a neighborhood V of

#0 — ifo in S71 and there are positive constants C and c satisfying

(1.21) I U(z, t)\ < C exp [fo

2/4ί - c/t], ί > O , 0 = % + i f e y ,

(1.21){s} I C/(z, ί) I < C exp [f 2/4ί - (c/t)^], ί > 0 ^ e V ,

and there are positive constants CN, N = 0, 1, , such that

(1.21)* I C7(*, t)\ < CNtN exp [f2/4ί], t > 0 , z e V,

respectively.

By this definition we have obviously the following inclusions:

(1.22) WF(u) c WF{s](u) c W ^ ( a ) , u e A ' , l<s< oo .

Let β be a bounded open set of Rn. Let Γ be an open cone in

Rn\{0} and set for γ > 0

W = {z e (P; ^ 0 e β, / ^ e Γ, [,/m l̂ < r}.
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140 TADATO MATSUZAWA

Let / = f(z) be holomorphic in W, then it is well known that there is

unique boundary value bΓ(f) e &(Ω) of f(z) from Γ. We have shown this

fact via heat kernel in [19], Theorem 5.2 and Theorem 5.3.

THEOREM 1.5 ([19], Theorem 5.4). Let ueA' and (*0, ξ0) e T*(Rn)\0.

Then

(i) (x0, ?o) g WFΛ(u) if and only if there are open convex cones Γu ,

ΓNd{ξeRn; <?, fo> < 0}, bounded open neighborhood Z of x0 in βw, u0

holomorphic in Z, fj(z) holomorphic in Z Π {Rn + iΓj}, j = 1, , N, so

that

(1.23) u = u0 + f] brjifj) in ZPi Rn .

(ii) (x0, f0) g WF{s}(ύ), 1 < s < oo, if and only if u0 e £{S)(Z (Ί Rn) in

the above expression (1.23).

(iii) (x0, ξo) £ WF(u) i/ and on/y ί/ w0 € S(Z Π i?n) m the above expres-

sion (1.23).

Conversely, Theorem 1.5 gives Definition 1.2, in other words, the

following description of the wave front sets.

THEOREM 1.6. Let ueA' and (*0, ξ0) e T*(Rn)\0. Then

(i) (x0, £0) £ WF (̂w) i/ and on/y i/ ί/iβre βxisί positive constants C, c

and ε such that

(1.24) I U(x -iω,t)\<C exp [(1 - c)/4t] , t > 0 , ω 6 S*"1,

|ω — ωo| + |x — xo| < fi, ω0 = A 6 S71"1 .

(ii) (Λ:0, fo)g WF{s](u), 1 < s < oo, i/ and on/y if there exist positive

constants C, c and ε such that

(1.25) I U(x - iω, t)\ < C exp [1/4* - (dt)1/s] , t > 0 , ω 6 S""1,

\ω — ωQ\ + \x + XQ\ < ε , ω0 = -^- e S " " 1 .

(iii) (jc0, £o) ̂  WF(w) // and on/ y i/ */ιβrβ ex/s* positive constants ε and

CNy N = 0, 1, 2, , sizcΛ ίΛaί

(1.26) I U(x - iω, t)\ < CNtN exp [l/4ί], t > 0 , N = 0,1, 2, . . . ,

-, A_ a .Q^-1

ωo ω0 =
Ifol

https://doi.org/10.1017/S0027763000003032 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003032


APPROACH TO HYPERFUNCTIONS 141

As was pointed out by J. M. Bony [2], we can easily verify that these

definitions of the wave front sets are equivalent to those of L. Hδrmander

in case u is a Schwartz distribution.

§2. Pseudodifferential equations

First we remember a class of pseudodifferential operators treated in

[5] [16] and [17].

DEFINITION 2.1. Let Ω be an open subset of Rn and let — oo < m

< o o ; O < δ < / 0 < l ; σ > l . Sv

p\δ%a(Ω X Rn) denotes the set of all a(x, ξ) e

C°°(Ω X Rn) such that for every compact subset K of Ω there are positive

constants Co, CΊ and B such that

(2.1) sup \a%](x, ξ)\ < C0Ci" + "rt!/9! | ί r - "- 1 , |£| > B\n\ ,
x e A

w h e r e a[β

β](x, ξ) = da

ξDξ;a{x, ξ), θ = m a x (1/p, σ/(l - δ)).

We associate with such a symbol a(x, ξ) a pseudodifferential operator

a(x, D) as follows:

a(x, D)u(x) = (2τr) ~n ί f e^-^^α^, ξ)u(y)dydξ ,

It is well known that α(#, D) is extended to a continuous mapping from

<f\Ω) into ^ ( β ) , (cf. [6]). We call a(x, D) an analytic pseudodifferential

operator if a(x, ξ) e Sf;0)1(fi X it"), i.e. in case p = 1, ^ = 0 and σ = 1 in

(2.1). Let α(x, Z)) be an analytic pseudodifferential operator and let

u 6 A'[Kl K c β. Then α(x, D)u(x) e ^(fl) is well defined as follows:

Take a function X e C^(Ω) such that X = 1 in a neighborhood of i£.

Let [/(#, r) be the defining function of u. Then for every φ e A, we have

ί Xa(x, D)(XU)(x, t)ψ{x)dx = ί X(x)U(x, tYa(x, D)(Xω)(x)dx , ί > 0 .

By virtue of the analytic pseudolocal property of ιa(x9 D) proved in [5]

or [16], we have La(x, D)(Xφ)(x) 6 A[K] and the right hand side of the

above equation tends to (u, ^(x, D)(Xφ)(x)) as t -> 0, (cf. (1.6)). We define

Xa(x, D)u by the formula

(Xa(x, D)u, φ) = (u, La(x, D)Xφ) , φeA.

Then we have Xa(x, D)u β A;[supp X]. On the other hand we have

(1 - X)φ, D)u(x) = I (1 - y.(x))K(x, y)u(y)dy e C"(β),

https://doi.org/10.1017/S0027763000003032 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003032


142 TADATO MATSUZAWA

where K(x, y) is the kernel of a(x, D) which is real analytic in Ω X Ω\Δ,

Δ = {(*,*); xeΩ}, (cf. [5], [16]). We define

(2.2) a(x, D)u = Xa(x, D)u + (1 - X)αO, D)w e Άφ).

We can easily see that this definition is independent of such a function

1 and agrees with the usual definition of a(x, D)u e &φ) when u e £\Ω).

We can see also a(x, D) u is analytic in Ω\K. By this process we can

say that we have in the oscillatory sense

(2.3) a(x, D)u(x) = ( 2 * ) - J β«*'*>α(*,

no

J

An important tool in microlocal analysis is the following local expression

of a(x, D)u.

THEOREM 2.1. (i) Let a(x, ξ) e S?tOtlφ X Rn) and u e A'[K], K c Ω.

Then for any xQeΩ and ε > 0, 0 < ε < 1, &>

(2.4) a(x, D)u = (2π)~n uy(exp [i(x — y, ξ) — (β —
J J \β-XQ\£2e

X a(x, ξ)(\ξ\/2π)nβdβdξ + wε(x),

where wε(x)e&φ) and wε(x) is analytic in \x — xQ\ < e. As a special case

with a = 1 we have

(2ΛY u(x) = (2π)"Λ if uv(exp [ί{x - y, ξ) - (β - yf\ξ\/2])
J J \β-Xθ\<2ε

X Qξ\l2π)nβdβdξ + ws(x),

where wε(x) e &φ) and wε(x) is analytic in \x — xo\ < e.

(ii) Let a{x, ξ) e S™δ>σ(Ω X Rn) and uei{δγ(Ω), where we assume the

number θ = max (1/p, σ + δ/p) > 1. Then we have a(x9 D)u 6 2&{*yφ) and

the same formula as in (2.4) holds with wε(x) e @{§yφ) and wε(x) is in

(in) Let α(x, ξ) e S™δ(Ω x Rn) a usual C°°-symbol of the type (p, δ) and

u e i\Ω). Then we have α(x, D)u e &(Ω) and the formula (2.4) is valid

with wε(x) e@'(Ω) and wε(x) is in &(\x — xo| < ε).
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Proof of (i). Let u e A'[K], K CL Ω. Since

(|f W 2 f exp [- (β - yY\ξ\/2]dβ = 1

we have in the oscillatory sense as in (2.3)

α(*, D)u(x) = (2ττ)-w if ^(exp [i<* - y, f > - (β - yf |f|/2])α(x, f)

X (If |/2τr)^d]8de + !*,(*(*, y)),

where

g(x, y) = (2τr)-n if e«*-^>a(x, f)df .

The function g(x,y) is analytic in Ω X i?\ Furthermore for any fixed

xoe Ω and ε > 0 sufficiently small so that {\y — xQ\ K ε} d Ω the function

F(x, y) = f f exp [ί(x - y, f > - (^ - y)2 |f |/2](|f |/2π)w/2α(x, f)dfdj3
1^1 J5

is analytic in the region D = {(JC, y)eRn X Rn; |x — * 0 | < e, yeRn}. In

fact it is clear for \x — xo\ < ε and |y — xo\ < 2ε since \β — y\ > 0. In case

where \x — xQ\ < e and |y — #0 | > 3ε/2 we devide the β-integral into the

regions (a) \β — y| > 3 and (b) |j3 — y\ < δ, 0 < δ < ε. In order to treat

the case (b), we make the almost analytic extension of the symbol α(x, f)

with respect to ξ as follows:

(2.5) α(x, ξ + iη)= Σ 9?α(*, f )(^)Λ/« f

Then we have the estimates of the form:

(2.6) Idζftx, ξ + iη)I < CoC^μ! \ξ\m ,

(2.7) |9*(9/9Qa(x, ξ + iv)\

where ζ = ξ + iη, \η\ < c'\ξ\, \ξ\>B, 0 < c' < 1, c = B~K By using the
Stokes formula on the (n + l)-chain denned by

ζ = ξ + i η , \ ξ \ > B , η = t ( x - y ) \ ξ \ , 0 < t < T , 0 < r « l ,

we can estimate the Z)£-derivatives of

(2.8) Fix, y) = f ί exp [i{x -y,ξy-(β-y

\β-V\<δ

X α(x, f )dξdβ
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by those of the integral defined by making the complex deformation in

(2.8):

(2 9) ί ξ ' >ζ = ξ + ir(x -

and by those of

(2.10) Ώ% Γ dt f f exp [i(x -y,ξ + it(x - y)\ξ\> - (β -
JO JJ \β-Xo\^2ε

X Σ (dldζj)a(x, ζ)(|f \l2πy\l + it(x - y, ξ/\ξ\»dβdξ ,

with the remainder of analytic function (integral on \ξ\ = B, 0 < t < ϊ).

We remark that we have \x — y\ > ε/2 (\x — xo\ < ε, |y — #0 | > 3ε/2) in this

case. Then it is clear the integral defined in (2.9) is analytic in (x, y).

As for (2.10) it turns out that we have to estimate essentially the inte-

grals of the form

Γ dt ί
JO J \\ξ\>B

where \x — y\ > ε/2 and c > 0. We devide this integral into two parts:

= Γ d t[ " dξ
JO J B<i\ς\£(m+ + \μ\+n)/c

and

II = Γ dt f dξ , (m+ = max (0, m)).
JO J \ξ\>(m+ + \μ\+n)/c

Since 0 < t < Γ < 1, we can easily verify that we have the estimates of

the form

Furthermore we have

II < Γ dt f exp [-
Jθ J | ί | ^ ( m + + |/i|+n)/c

Since we have c\ξ\ — \μ\ — m+ > n in this case, we have also the esti-

mates of the form

by making use of the transformation of the f-variable. We can also
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estimate Dμ

yFδ{x, y) similarly. In conclusion, we have obtained the formula

a(x, D)u(x) = (2π)~n if uy(exp [ί(x -y,ξ}-(β- yy\ξ\/2])
J J \β~Xθ\<2ε

X a(x, ξ)(\ξ\l2π)n/2dβdξ + w£(x),

where wε(x) e&(Ω) and we(x) is analytic in \x — xQ\ < ε.

Proof of (ii). Almost the same process as in the proof of (i) works

well. We only give the sketch of the proof. In this case, we make the

almost analytic extension of a(x, ξ) as follows:

α(x, ξ + ίη) = 2 9?α(s, ξ)(iη)ala\ .
\a\+l<\ζ\P/B

Then the estimation corresponding to (2.6) and (2.7) are given by

(2.6X \dsa(x, ξ + iη)\ < C0Cl"^!'|f r + ί "" ,

(2.7/ |as(a/9ζ)α(χ, ξ + iη)\ < c,c[*μ

where ζ = ξ + ίη, \η\ < c'\ξ\p, \ξ\ > B, 0 < cf < 1, c = B~\ We take

(n + l)-chain defined by

C = f + i ? , \ ξ \ > B , η = Hx - y)\ξ\>, 0 < t < ϊ , 0 < r « l .

The complex deformation of the f-contour corresponding to (2.9) is as

follows:

if — > C = ξ + ir(χ - y)\ξ\p, o < r « 1,

[dξ • dζ = (1 + iΐp\ξ r\x - y, ξ})dξ> Λ- Λdξn.

The integral corresponding to I and II are evaluated by the quantity of

the form

C'«l + y / , θ = max(l/p, a + δ/p).

So we can see that the integral on (2.9)' is a Gevrey function in (x, y)

of the order max (1/^, σ + δ/p).

Proof of (iii). The core of the proof also lies in the reasoning as in

(b) of the part (i). We can't shift the f-integral into the complex contour

in this case. However, for x Φ y, by making use of the formula

F(x, y) = f f (*, - y,)- (ZV<*"l"*>> e χ P [-(
\ξ\>B

Xa(x,ξ)(\Φπ)n/2dξdβ
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for any k>0 and for some j , xά — yό Φ 0, we conclude finally the func-

tion F(x,y) is in C~(D), D = {(x,y); \x - xo| < e, yeR71}.

In the following we shall give the microlocal version of the results

on pseudolocal property given in [16], [17] and [18],

THEOREM 2.2. ( i ) Let a(x, ξ) e S£ M (β x Rn) and u e A'[K], K c Ω.

Then we have

(2.11) WFA(Φ, D)u) C WFA(u).

(ii) Let a(x, ξ) e S™δ>σ(Ω X Rn) with θ = max (1/p, a + δ/p) > 1 and

let ue£{~ΘY(Ω). Then we have

(2.12) WF{9y(a9 x, D)u) C WFι§y(u).

(iii) Let a(x, ξ) e S™δ(Ω X Rn) and u e i\Ω). Then we have

(2.13) WF(a(x, D)u) c WF(u).

Proof, (i) Let ueA' and (x0, f 0) e WFA(u). From the expression

U(x - iω, ί) = (4τr*)-w/2 exp [l/4i]M¥(exp [ ( - (x - yf + 2ί(x - y, ω»/4ί])

we have the equivalent condition to (1.21):

(2.24) I κ,(exp [ ( - (x - yf + 2i(x - y, ω)>/4*])| < C exp [- c/t], ί > 0 ,

- α)o| + \x - Xol < δ , ωQ = f0/|f0| 6 S"-1.

Putting f' = α>/2ί in (2.14) and rewriting fr as ξ to get the estimate of the

form

(2.15) |M,(exp [ί(x - y, f> - (x - y)2|?|/2]) < Cexp [- c\ξ\],

where β is a small positive number and V(ξ0) denotes a cone neighbor-

hood of ξQ. For ξx e Rn\0, (ξu £0> < 0, let Γξl be a closed cone neighbor-

hood of ξι such that

<9, f i> > 0 , < ,̂ f 0> < 0 for any ηeΓξι.

Let Γfj be the dual cone of Γξv i.e.

<9, f > > 0 on Γβ l X Γ* .

We can choose ξu , ξN so that
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Now return to the local expression (2.4):

a(x, D)u(x) = (2π)~n ί ί uy(exp [i(x - y, ξ > - (β - yf
JJ \β~xo\^2ε

where wε(x) is analytic in \x — xo\ < ε. We take the following cut-off

symbols Xj such that

supp 1 j C Γ* , Σ ĵ. = 1 on fl»\ V.

Furthermore, we can assume there are positive constants Co and CΊ

satisfying

Such a method of the construction of X3 is given in [25], Chapter 5,

Lemma 1.4. Considering a(x, ξ)Xj(ξ) are analytic symbols and choosing 2ε

smaller than δ in (2.15), we have

(2.16) a(x, D)u(x) = uo(x) + Σ (2ττ)-» JJ ^ ̂  uy(exp [i(x - y, ξ}

- \ξ\(β - y)2l2](\ξ\l2π)n/2a(x, ξ)Xj(ξ)dξdβ

Ξ UO(X) + Σ US(X) .

Assumption (2.15) yields that uo(x) is analytic in \x — xn| < e. By using

Theorem 5.2 and Theorem 5.3 of [19] we can see that each uj is the

boundary value of

/z) - (2ff)- f f M , ( β x p [ί(z - y , ξ } - \ξ\(β - y)V2]

which is holomorphic in Z Π (Rn + ίΓ^) with a small complex neighbor-

hood Z of ac0. Then by Theorem 1.5, we conclude that (JC0, ξ0) € WF^
(a(x, D)u).

Proof of (ii). In case σ = 1 the proof can be obtained by the same
way as in the part (i). The estimate (2.15) is merely replaced by

-(χ- yγ\ξ\l2))\ < Cexp [-c

\x-x*\<δ,
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In case σ > 1 the symbol a(x, ξ) is not analytic in x. So we make the

device such that

a(x, ξ) = Σ aj(x, ξ), \x - *oi < δ , f e fl» .
0

Here α/x, £) is analytic in z e Z Π {i?n + &T,}, j = 0,1, , iV, where Z is

a small complex neighborhood of xQ and α/jc, ξ) satisfies the same condi-

tion as in (2.2) in ZΠ {iϋn + i/^}. This is possible by making use of

Fourier inversion formula in x.

The proof of the part (iii) is obtained also by using the formula (2.4),

though we omit the details.

THEOREM 2.3. (cf. [18], Theorem 3.2.) Let a(x, ζ) e SΓ,ι

M(β X Rn) and

(*o> ζo) ^ Γ*(β)\0. Assume that there is a cone neighborhood V of ξQ and

there are positive constants c and B and — oo < m! < oo such that

(H,) |α(x,f)|>c|fΓ, x e f l , |f|>J3.

Also assume that for any compact subset K of Ω, there are positive con-

stants Co and Cj such that

( H 2 ) | a [ ; K ^ i ) I ^ C 0 C r ^ ! i 8 ! | a ( x , f ) | | f | - ' e l , x e K , ξeV, \ ξ \ > B \ a \ .

Then if ue A'[K], K c β, a^d (ac0, f „) β WT^a^, ΰ)^), ^e have (x0, ξ0) &

WFA(u).

Proof. First we follow the same steps as in the proof of [5], Theo-

rem 3.1. Determine recursively the symbols bj by means of the relations

(2.17) 6 0 (JC, ξ)a(x, ξ) = 1 , ξ e V, \ξ\>B

and for j — 1, 2,

(2.18) &,(*, f)o(x, ί) = - Σ \dla(x, ξ)Dίb,-Ux> ξ) > f e V, |f | > S .

Then for any compact subset K of Ω there are constants Co and CΊ such

that

(2.19) sup |&,$(*> f)l < C0Ciα^1 +^!/3!(l + |f|)-'-iαi-i ?

j ) , j = 0, 1, • .

Let VQ and V1 be any fixed closed convex cones such that f o eVoC V1

c V. Prepare the functions ψό{ξ) e C^iR71) satisfying for j = 0, 1,
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(2.20) 0 < φs(ξ) < 1, ξ e Rn , and

Ψi = 0 if |f I < 2R max ( , 1) or ξ g V1

ψj = 1 if |f I < 3i? max (J, 1) and f e Vo,

(2.21) |ZJv/£)|<£(C/Λ) |β | if

Take R > B and set

(2.22) &(*,£)

Then we have b(x, ξ) e SϊXί(β X Rn). Take h e C0°°(Ω) such that h ΞΞ 1 in

a neighborhood of K. The symbol of the operator r(x, D) = &(x, D)ha(x, D)

satisfies

(2.23) r(x, f) + 1 + q{x, ξ), | f | > B , ξ e Vo

for x in a neighborhood β' of if, K a Ω' CL fl, and ^(x, f) satisfies the

estimate of the form

This means g(x, D) is an analytic regularizer in the direction Vo. We

remark that ha(x, D)u(x) e A! is well defined. Now return to the local

expression (2.4) and (2.4)/. For sufficiently small ε we have

b(x, D)ha(x, D)u(x) = {2π)~n f f uy(exγ> [ί(x - y, ξ}
J J \β-xo\<2ε

As in the proof of Theorem 2.2, choose a system of closed convex cones

Γu , ΓN such that

(η, £0> < 0 for any η e Γ, ,

jR»\O= V0U A* U U f j and ξ»e Γf, j = I, - -, N.

Then we have

M(*) = b(x, D)ha(x, D)u(x) + t i^Yn f f uv(- - -)(r(x, ξ) - 1)

where vε(x) is analytic in \x — xo\ < ε and Xj(ξ) are the cut-off symbols

as in the proof of Theorem 2.2. We can see each term of the summation

in the right hand side is a boundary value of holomorphic function
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defined in {z = x + iy; \x - xo\ < ε, y eΓJ9 0 < \y\ < ΐ, 0 < γ < 1}. Thus

we c o n c l u d e t h a t (x0, ξ0) έ WFA(u) by T h e o r e m 1.5 a n d T h e o r e m 2.2.

T H E O R E M 2.4 (cf. [17], T h e o r e m 2.2). Lβί α(x, f) e S™β f,(β X Rn\ 0<δ

< |O < 1, σ > 1, and (xQ, f 0) e T*(Ω)\0. Assume that there is a cone

neighborhood V of ξQ and there are positive constants c and B and

— oo < m! < oo such that (Hx) in Theorem 2.3 holds. Also assume that

for any compact subset K of Ω, there are positive constants Co and d such

that

(H2y \a{;](x,ξ)\ < Coσr^alβla\a(x

xeK, \ξ\>B, ξeV.

Furthermore assume Θ = max(l//>, σ/(l — δ)) > 1. ΪTien i/ ue£{θ]'(Ω) and

(xQi ξ0) β VFF{,}(α(x5 D ) M ) , ίΛβ/i (x0, ξ0)

Remark. Generally we have

£ = max (lip, σ + (5//?) < θ = max

where the equality holds if and only iί θ — θ = 1/ρ.

Proof of Theorem 2.4. We can obtain merely a weaker conclusion

by only the same process of the proof of Theorem 2.3 in case θ > 1 as

was seen in a series of papers [5], [16] and [17] which treated the ordinary

hypoelliptic problems. However, summing up the method used in the

proof of Theorem 2.3 and those of [16], [17] and [24], the proof of the

theorem will be accomplished. It needs rather long and tedious calcula-

tion, so we shall give an outline of the proof.

First determine recursively the symbols bj(x, ξ), j = 0, 1, , by means

of the relations (2.17) and (2.18). We assume the existence of the follow-

ing cut-off symbol g(ξ) which was constructed in [25], Chapter 5, Lemma

1.4. Let ξo e Vo c Vι c V be closed convex cones in i?n\{0}. There exists

a function g(ξ) such that

(2.25) 0 < g(ξ) < 1, ξ e Rn

(2.26) there exist positive constants Co and CΊ such that

\dtg(ξ)\<CQCl^a\\ξ\-^ if \ξ\>B\a\;

(2.27) g(ξ) - 1 if ξ e Vo, If I > 1 and g(ξ) - 0 if ξ e Vu \ξ | > B.

We set
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(2.28) &(*,f) = έr(?)Σ &,(*,£),

where the number NQ is taken sufficiently large so that (p — δ)NQ — m +

m! > 2n + 1 for later convenience. Then we have b(x, ξ) e S~?,',(β X Rn).

Take a function h e @[Θ](Ω) such that h = 1 in a neighborhood of supp u

c β. By the formula (2.5) with 0 < ε < 1 we have

b(x, D)ha(x, D)u(x)

= ( 2 * ) - if (λαw),(exp [i<* - y, f> - (j8 - X>Ί?l/2])

where wε(x) e ^{^}(|x — xo\ < ε). By assumption the first term in the right

hand side is in <%{θ)(\x — xQ\ < ε), 0 < ε < 1. On the other hand, by using

the results of [16] and [17], we can write

b(x, D)ha(x, D)u(x)

= (2*)- if M,(exp [ί(x - y, ξ> - (β - y)2|?|/2])

X (If \l2π)n/2RNix, ξ)dξdβ + υε(x),

where υε(x) e $[θ](\x — xo\ <. ε) and the symbol RNo(x, ξ) satisfies the condi-

tion of the form

(F)

m+ = max(m - ^ , 0

Especially we can write

where R(x, ξ) satisfies the above condition (F) with m+ replaced by

m+(p — δ)N0. Thus we can finally deduce the problem to the following

equation of the form

(2.29) u + Rι(x,D)u = f,

where u e £{βγ(Ω\ fe @{Θ}'(Ω) and (x0, ξ0) £ WF{θ}(f). We may assume R1(x9 ξ)

satisfies (F) with ra+ = — 2n — 1. As in the proof of [17], Theorem 2.2,

localize the problem so that supp u C {x; \x — xo| < ε}. Take Xe^ { ί ? }(β)

such that X = 1 if \x — xo\ < ε and 1 = 0 if \x — xo| > 2ε. Then the equa-
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tion (2.29) is written as

(2.30) u + XRx(x, D)u = If.

It was proved in [17] that we have

u = (i + xRd-'xf = Σ (-
io

for sufficiently small s > 0. Since the condition (F) yields the condition

(1) and (2) of [24] with K = σ/(l - <5), the results of [24] can be applied to

the Neumann series ΣjU(—fcRiV. According to [24], this is represented

as the sum R2(x, D) + R3(x, D) of the pseudodifferential operators with

symbols R2(x, ξ) and i?3(x, f) where R2(x, ξ) satisfies the condition (1) and

(2) of [24] with fc = a 1(1 - δ) and Rz(x, D) is a regularizer from g w to S{9].

Again we apply the local formula of the form (2.4) for R2(x, D)Xf and we

can see (xθ9 ξ0) g WF[β](u) under the condition (xQ, ξQ) £ WF{θ}(Xf).

Remark. The details of the proof of the results of [24] will be given

in a colaboration of Shinkai and Taniguchi, [21].
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