The Velocity Distribution in the Solar Neighborhood from LAMOST Pilot Survey

Qiran Xia^{1,2}, Chao Liu^{1,3}, Yan Xu^{1,3}, Shude Mao^{1,4} and Shuang Gao^{1,3}

¹National Astronomical Observatories, CAS, 20A Datun Road, Chaoyang District, 100012,

Beijing, China

email: qiranxia@gmail.com

²University of Chinese Academy of Sciences, Beijing 100049, China

³Key Laboratory of Optical Astronomy, National Astronomical Observatories, CAS, 20A

Datun Road, Chaoyang District, 100012, Beijing, China

⁴Jodrell Bank Centre for Astrophysics, The University of Manchester, Alan Turing Building, Manchester M13 9PL, UK

Abstract. We use 63,774 F/G dwarf stars from the LAMOST pilot survey to explore the velocity distribution in the solar neighborhood. The intrinsic UV distribution is reconstructed with a 20-Gaussian model using extreme deconvolution. We find at least two arcs, one extending from (-106, -3) to (94, -27) km/s and the other from (29, -9) to (78, -51) km/s. The arcs are qualitatively consistent with numerical simulations of the resonance induced by the Galactic bar and can be used to constrain its dynamical properties.

Keywords. Solar Neighbourhood, Stars, Velocities

Figure 1. The central figure is the fitting of U vs. V velocity plane. The red dash (Arc1)and dotted-dash (Arc2) lines show the ridges of the two arcs. The crosses indicate the central position of the two new overdensities. The top-right panel shows one of the simulated result by Dehnen (2000).

References

Antoja, T., et al. 2011, MNRAS, 418, 1423
Antoja, T., et al. 2011, MNRAS, 426L, 1
Bovy, J., Hogg, D. W., & Roweis, S. T. 2009, astro-ph, 0905.2979
Dehnen, W. 2000, AJ, 119, 800
Fux, R. 2001, A&A, 373, 511
Hou, J., Chang, R., & Fu, C. 1998, ASP-CS, 138, 143
Quillen, A. C., et al. 2011, MNRAS, 417, 762
Roeser, S., Demleitner, M., & Schilbach, E. 2010, AJ, 139, 2440
Zhao, J., et al. 2009, ApJ, 692, L113