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A CANONICAL FACTORIZATION FOR 
GRAPH HOMOMORPHISMS 

BARRY FAWCETT 

I n t r o d u c t i o n . The graphs are undirected, wi thout loops or multiple edges. 
The edge set E(X) of a graph X is a set of certain unordered pairs [x, y] of 
dist inct elements of the vertex set V(X). For x Ç V(X) we denote by E(x; X) 
the edges of X incident with x. A (homo)morphism 0 : X —> Y is a function 
from V(X) to V(Y) which preserves edges; thus it induces </># : E(X) —» £ ( F ) 
by (/># [x, x'] = [<t>x, </>x']. 0 is strong if and only if 0# is injective. <£X is the graph 
with vertex set <t>V{X) and edge set 4>*E(X). <t> is full if and only if 4>X is a 
section (i.e., an induced subgraph) of Y. 

A congruence of X is an equivalence relation on V{X) which does not identify 
the endpoints of edges. The quot ient graph X/R has the set of /^-equivalence 
classes for vertex set; \Rx, Ry] is an edge of X/R if and only if some edge 
[%', yf] joins these classes in X. & denotes the category of graphs and mor-
phisms ; ^ denotes the full subcategory of graphs wi thout isolated vert ices. 

Definition 1. A proper morphism is a surjective morphism </> : X —> F such tha t 
( a ) <t> is ful l ; 

(b) whenever <t>x = <j)x' and x 9e x' there exists a finite sequence x = xu x2, 
. . . , xn = x' satisfying 

(*) 0xz = <t>x i — 1, 2, . . . , n and 
(**) ^E(XÛ X) H <f>*E(xi+l)X) ^ 0 , i = 1, 2, . . . , n - 1. 

Remarks. In the special case tha t all the sequences (x{) may be taken to be 
of length 2, condition (b) s tates t ha t whenever x and x' are identified, some 
edge incident with x is identified with some edge incident with x''. 

In the general case, there exists a sequence of edges in X as d iagrammed 
below, with parentheses indicating those pairs of edges identified by 0 # . 

Xi X2 ^ 3 

I A A. 
> y ^ > V ' > y . . . 

Chromatic (i.e. minimal) colourings of graphs wi thout isolated vertices are 
proper morphisms onto complete graphs. (To see this, note t ha t in all minimal 

Received May 28, 1976 and in revised form, February 25, 1977. 

738 

xn 

Q 

Ô 

https://doi.org/10.4153/CJM-1977-077-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-077-3


GRAPH HOMOMORPHISMS 739 

colourings each colour-class contains a vertex adjacent to all other colour-
classes.) 

Examples. 

<t> proper, not strong 

4> strong, not proper. 

Q 

* 6 <f>x = <j>xf 

o 

THEOREM 1. Every morphism in ^ may be factored as a strong morphism pre­
ceded by a proper morphism; likewise inffl. 

Proof. Since inclusion preceded by a strong morphism is strong, it may be 
assumed that <£ : X —> F is onto and that Y = X/R (where R = R^, the con­
gruence induced by cf>). Define a relation T (or T<t> if there are more morphisms 
about) as follows: 

(x, x') G T if and only if x = x', or x ^ xf and there exists a finite sequence 

x = xi, x2, . . . , xn = x' satisfying (*) and (**) of Definition 1. 

T is a congruence of X. (Transitivity follows from the observation that two 
sequences satisfying (*) and (**) may be spliced.) Consider the natural 
factorization: 

X- <t> 

X/T 

+ X/R jS: x c-* Tx 

a: Tx ^ Rx 

13 is a morphism since T Q R; like all projections to quotients it is full; it is 
proper by definition of T. a is a well-defined morphism since T C R. To show 
that it is strong, suppose that a* identifies some edges \Tx, Ty], [Tx', Tyf] of 
X/T, say Rx = Rx', Ry = Ry''. Thus an edge in X between Tx, Ty is identified 
by (j)# with an edge between Tx', Ty'. It follows that (x, x') Ç T and Tx = Tx' 
and Ty = Ty'. 
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Note that all identifications of isolated points occur in the stage X/T-* 
X/R and none in X -> X/T. 

Remark. The morphisms which are both strong and proper are exactly the 
isomorphisms. The factorization is natural in the sense that, in the diagram 
below, whenever the outer square is commutative (0</> = \f/a), there exists a 
unique y which makes the diagram commutative. 

tA/R* 

> B/R* 

In fact y(T<pa) = T^(aa). The above observations imply that the factoriza­
tion of Theorem 1 is an (^-^factorization in the sense of [3, p. 187]. 

We require the notions of strict and extremal epimorphism. Other categorical 
notions are used as in [3]. In what follows, it is possible to work with co-
equalizers in place of strict and extremal epimorphisms. The details are similar. 

Definition 2. An epimorphism 0 : Y —» X is strict if and only if whenever 
\j/ \ Y —> Z has the property that <j>f = <j>g implies \pf = \pg for all pairs of 
morphisms/, g: Y' —> Y (that is, \f/ equalizes any pair of morphisms equalized 
by <t>), there exists h: X —> Z such that h<t> = \p. 

Definition 3. An epimorphism </> : Y • 
factorization </> = fix//, \x mono => /x iso. 

X is extremal if and only if in any 

It is known (see [1 ; 2]) that epis are surjective and monos are injective in ^. 
The surjectivity of epis in J ^ goes through without changes. The situation for 
monomorphisms is somewhat different. 

THEOREM 2. în^â\ the monomorphisms are the strong morphisms. 
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Proof. Assume (j>: X —» F is strong and that <\>f = 0g. 

Z Z Z l l - ^ — • F , £(Z) Z Z Z t £ (X) — * - • £ ( 7) 

One has <£#/# = 0#g# and/ # = g# (injectivity of </>#). Let a Ç F(Z). Since we 
are inJ^7 there is an edge [a, b] G E(a\ Z). Since/# [a, b] = g# [a, b] there are 
two possibilities viz., (i) fa = ga or (ii) fa = gb. The second case cannot arise 
since it would imply that 4>fa = cfrgb = cfrga, contradicting that 4>g is a mor-
phism. T h u s / = g and 0 is mono. 

Conversely, if 0: À" —» F is not strong, 4>#e = <$ e' for distinct edges e, e' Ç 
E(X). One easily constructs a pair of morphisms / , g: K2 —* X satisfying 
ct>f = <j>g a n d / * g. (Takef*E(K2) = [e] and g#£(X2) = {e'}). Thus 0 is not 
mono. 

THEOREM 3. In ^, these are equivalent: 
1) </> is a strict epimorphism; 
2) 4> is an extremal epimorphism; 
3) <j> is a full epimorphism. 

Proof. (1) => (2) holds in any category and is well-known. 
(2) => (3). Suppose 0: F —> X is extremal epi and consider the factorization 

below: 

Since inclusion is mono and </> is extremal, this inclusion is iso. </>F~ X and 
(j) is full. 

(3) =» (1). Taking Y' as a one-point graph in the definition of strict, it is 
immediate that the condition on \p may be strengthened to read: \p identifies 
any two vertices identified by </>. Thus the function h: V(X) —» V(Z) given 
by h: (fry —» i/^ is well defined. Since (/> is full, it is a morphism. 

THEOREM 4. InJf, £tee are equivalent: 
1) (j> is a strict epimorphism; 
2) (j) is an extremal epimorphism; 
3) <f) is a proper epimorphism. 

Proof. (2) => (3). Condition a) follows as in Theorem 3. 

https://doi.org/10.4153/CJM-1977-077-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-077-3


742 BARRY FAWCETT 

Since </>: F —> X is full and surjective it may be represented as </>: F —> F/ i? . 
In the factorization of Theorem 1 we have a: Y/T —* Y/R is mono by Theorem 
2. Since 0 is extremal, a is iso and Y/T c^ Y/R. Since T Q R, Y/T = F/7? 
and /3 = 0. So </> is proper. 

(3) => (1). If ^ satisfies the equalization condition of Definition 2 with 
respect to an arbitrary <£, we can assert: \p# identifies any pair of edges identified 
by </>#. (Supposing <j>$ e = <t>* e', use K2 as the Y' in the definition. Const ruct 
m o r p h i s m s / , g: K2 —> F such tha t 0 / = 0g, flE(K2) = {e} and g#E(K2) = 

{ef}. Then ^ / # = tfg* so i//#e = ype'.) 

Suppose now tha t (/>: F—>X is proper and tha t ^ satisfies the equalization 
condition. Define h: V(X) —> F ( Z ) as before by h: (fry^ypy. Since 0 is full, 
h will be a morphism, provided t ha t it is well defined. Suppose t ha t y\ ^ y2 

and <$>y\ = c/ry?. For $ arbi t rary we cannot in general assert t ha t \py\ = \j/y2. 

However, supposing t ha t </># identifies an edge incident with yx with an edge 
incident with y2, then we may assert t ha t ypyi = ^y2. For if [yh Wi] and [y2, w2] 

were such edges, with i/^[ji, w/\ = ^[y2, w2], then, as in the proof of Theorem 
2, the possibility \j/yi = ^w2 can be eliminated. Indeed, two morphisms 

K2 l Y 

could be constructed so tha t 0 / = 4>g and \[/f ^ \[/g. This would violate the 
condition on \p. 

z 

Suppose tha t <f>y = <j>yf'. I t may be assumed tha t y ^ y'. Since 0 is proper 
there is a finite sequence y — yi} y2} . . . , % = y' as in Definition 1. Applying 
the a rgument above to the terms of the sequence in pairs, and using the ac­
companying edges (as i l lustrated after Definition 1) one obtains \j/y = \py± = 
\py2 = . . . = ypyn = \pyf. This completes the proof. 

Remark. Making the obvious modifications, the factorization goes through in 
the category S) of loopless digraphs. There the option presents itself to define 
two congruence relations P and Q, obtained from T by restricting the finite 
sequence of edges to be all outdirected or, respectively, all indirected from 
the X /s. T h u s T is the smallest congruence containing P and Q. If we denote 
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by S the congruence P C\ Q it is possible to factorize as follows: 

X/P 

X *X/S „X/T 

X/Q-

The new quotients, however, are apparently not associated with morphisms 
which are of significance in the category 3)\ they are all identified with X/T 
by the functor 3) —» ^ which forgets the direction of edges. The factorization 
can be established in many other categories of loopless graphs (e.g. multi-
graphs) ; the type of congruence relation involved in the factorization is ap­
parently unsuitable for categories of graphs which admit loops. 

The author is grateful for the many useful suggestions proposed by the 
referee. 
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