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Two-particle billiard system with
arbitrary mass ratio
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Abstract. We describe ergodic properties of the system of two hard discs with
arbitrary masses moving on the two dimensional torus.

1. Introduction
In the present paper we study the system of two disc-like particles in the two
dimensional torus T2. This system was first studied by Sinai [Sinl] in the case of
equal masses. We describe the structure of the system in the case of arbitrary masses.
It turns out that after fixing the values of classical first integrals (the total energy
and the total momentum) we obtain a T2-isometric extension of the Sinai billiard
flow on the torus with a disc removed. Since the Sinai billiard flow is Bernoulli (see
[Gal-Orn]) we can apply the theorem of Rudolph [Rud] to conclude that our system
is also Bernoulli if only it is weakly mixing.

We prove (Theorem) that this is the case when the ratio of the masses is irrational.
In § 3 we describe our system in the case of the rational ratio of the masses. It turns
out that in this case there is always a discrete component in the spectrum.

In particular in the rational case the system is or is not ergodic depending on the
value of the total momentum but in the irrational case the system is Bernoulli for
any value of the total momentum. Somehow this phenomenon is caused by the fact
that the motion takes place on a torus and it is no longer true when the discs are
sufficiently large (r>£).

Our paper relies heavily on the theory of Sinai dispersing billiards. In § 5 we
formulate the two facts from this theory that we use. Modulo these two facts our
proofs are rather nontechnical.

2. Description of the dynamical system
Let us consider a system of two disc-like particles of equal radius r, 0< r<\, and
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masses m^ and m2 moving on the torus T2 = R2/Z2 We assume that the particles
do not interact until they collide and the collisions are elastic.

Let x, € R2, JCj mod 1, i = 1,2, be the position of the centre of the disc with mass
m,. We choose to describe the configuration of the discs by the position of the first
disc yx = X, and the relative position of the discs y2 = x2 - x, and we take both
yi and y 2 modl . The condition that the two discs do not overlap means that
[y2 + z |>2r for every zeZ2. So the configuration space Q=T2xT2 where
T2

r = {y2mod 1| |y2|>2r} i.e. T2 is the torus T2 with the disc |}>2|<2r removed. We
will use }>i and y2 as coordinates in Q.

The first integrals of the system are the total energy E and the total momentum
/. We have / = m,x, + m2x2 = {mx + m2)_y, + m2y2 and

£ K ^ + ^ ) (

Let us fix the values of all three integrals, satisfying the compatibility condition
2(ml + m2)E>I2. We get

m2

ml-r m2 ffi| + m2

and

.2 2(ro1 + m 2 )E-J 2

Hence the reduced phase space is the trivial circle bundle QxS1. By<£', <f>' -.QxS1

±3, t e If we denote the time flow describing the dynamics. The flow <£' preserves
the product measure /i = standard Lebesgue measure in Q x angular measure in Sl.

The important observation is that the dynamics in (y2, y2) does not depend on
yt i.e. the flow <J>' factors onto the flow i/»', i//': T2x S1 ±> by the natural projection
17: Q x S1 -* T2 x Si. By inspection one establishes that the law of ellastic collision
implies that the flow i/»' is the Sinai billiard flow on T2 with the speed

2(m, + m2)E -12

The flow ijt' preserves the product measure v = standard Lebesgue measure in
T2

r x angular measure in S1. Let us note that the passage from the original dynamical
system to the factor flow if/' is a special case of the general reduction procedure for
a Hamiltonian system possessing several first integrals in involution.

In view of (1) we conclude that <f>' is an isometric r2-extension of </>', for the
appropriate definition see [Rud].

It was proved by Sinai ([Sinl, Bun-Sin, Gal, Kel, Kub]) that the flow if/' is a X-flow
and by Gallavotti and Ornstein ([Gal-Orn]) that it is a Bernoulli flow. Hence <f>'
is an isometric T2-extension of a Bernoulli flow and so by the theorem of Rudolph
([Rud]) </>' is also Bernoulli provided it is weakly mixing. We will prove the following
theorem.

THEOREM. Ifm1/m2 is irrational then 4>' is a K-flow and hence also a Bernoulli flow.
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Note that we do not assume anything about the total momentum /. When m1/m2

is rational then <(>' has discrete component in the spectrum and it is or it is not
ergodic depending on the rationality of / i / / 2 where I = (/i, /2).

The flows <f>' for different values of E and / are related in the following way.
Let 0o be the flow in Q x S1 for / = 0 and

mxm2

2(m,-

(the factor flow i//' is the billiard flow with the speed 1). Further let
be the quasiperiodic flow

ri=0.

Where a is the angular coordinate in S1.
The flows <j>'0 and q\ commute and by (1) and (2) we have for given values of E

and / that

<$>' = q'i<f>o' w h e r e a =

This construction allows the reduction of the general case to the study of the flow <f>'0.

3. Lorentz fibres
We will take advantage of the fact that the centre of mass is preserved in our system
when / = 0. Because we are on a torus we prefer not to define what a centre of
mass is.

An immersed 3-dimensional submanifold of QxS1 denned by the equations
m,x, + m2x2 = constant or equivalently (m, + m2)yx + m2y2 = constant will be called
a Lorentz fibre. More precisely a Lorentz fibre is a 3-dimensional immersed submani-
fold defined by an immersion l.R^xS1-* QxS1 given by the formula

l(x, a) = ly1 -2— x, x, a I
\ ml + m2 )

where >>, is chosen arbitrarily, a is the angular coordinate on S1 and

R2
r = {xeR2\\x + z\>2r for every zeZ2}.

It follows straightforwardly from (1) that a Lorentz fibre is invariant under the
flow (p'o and (3) implies that <f>' takes a Lorentz fibre into a Lorentz fibre.

Locally a Lorentz fibre projects 1-1 onto T2
rxSx i.e. TT° I is a covering. Hence

the flow <j>'0 restricted to a Lorentz fibre is the billiard flow on a factor space of R2
r.

4. Rational mi/m2

Let

_nh_ = P
ttli ~\~ TYI2 (\

where p and q are relatively prime. The immersion / factors naturally to the
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embedding /, defined by the following commutative diagram

R2/qZ2xSl

Hence QxS1 is foliated by compact Lorentz fibres and on each Lorentz fibre </>'o
is the billiard flow on the R2./ qZ2 - a torus with q2 discs removed. This is a dispersing
billiard system and hence the flow is Bernoulli [Sinl, Gal-Orn].

We may also obtain this conclusion formally from properties of the flow i]/'.
Indeed IT ° lq is a finite covering (q2 to 1) and so the restriction of 4>'o to a Lorentz
fibre is a finite extension of (/*'. Using again the theorem of Rudolph [Rud] the
extension is Bernoulli if only it is weakly mixing. We may then prove that the
extension has the K -property by the method used in the following in the proof of
Proposition 2.

To describe the flow <(>' we introduce new coordinates (zx, z2) mod 1 in Q defined
by the following formulas

yx = z, -pz2

Now a Lorentz fibre is defined by zx = constant. This change of coordinates is
actually a q2 to 1 covering. In these coordinates we obtain from (1) that

. I

mx + m2

So the dynamics is the product of the quasiperiodic flow in zx and the billiard flow
in z2 - the billiard table being the torus with q2 discs removed.

Hence the flow <j>' is a finite factor of the product of a quasiperiodic flow in T2

and a Bernoulli flow. In particular if Ix/I2 is irrational, where I = (IX, I2), then the
quasiperiodic flow is ergodic and so is the flow $'.

The functions fk = e2"i<k-<»'i+'>^>, k e Z2 are eigenfunctions for the flow </>', so that
tf>' is never weakly mixing. Indeed by (1) we get

^fkat

Further if / , / 1 2 is rational then <j>' has a first integral {fk such that (k, /) = 0) and
so it is not ergodic.

5. Irrational mx/ m2

In this case / is a 1-1 immersion so that <f>'0 restricted to a Lorentz fibre is the billiard
flow on the infinite billiard table R2

r, preserving the infinite Lebesgue measure. Every
Lorentz fibre is dense in QxS1 and the foliation into Lorentz fibres is ergodic in
the following sense.

PROPOSITION 1. A measurable subset of QxS1 which is a union of Lorentz fibres
mod 0 has measure zero or its complement has measure zero.
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Proof. Let us consider an auxiliary R2 action A on T2x T2 denned by the formula

x,y2 + x) .
I

It is well known that such an action is minimal and ergodic.
Let Y <= Q x S1 be a measurable union of Lorentz fibres. We have that Y = Y x S1

and Y <= Q is a measurable union of orbits of the action A restricted to Q. For
sufficiently small e

y,= U AXY= u AXY
xeR2 xeeZ2

so that y, is measurable, Yl n Q = Y and Yl is a union of the orbits of the action
A. Hence either Yx has measure zero or its complement (in T2 x T2) has measure
zero. But then the same is true about Y and Y. •

6. Some facts about the flow if/'
In the proof of the Theorem we will rely on some facts about the Sinai billiard flow
t/j': T2 x Sl ±> which we are now going to formulate. The details and proofs can be
found (at least in principle) in [Sinl, Bun-Sin, Kub, Kub-Mur].

Let us consider the standard section map T of the flow </»'. T is the first return
map defined on the set 2 of unit tangent vectors attached at the boundary of T2.
and pointing inwards. T: 2 -* 2 is piecewise diflerentiable and it preserves a smooth
measure p. For almost every c e S w e can construct two smooth curves yc(v) and
ye{v) which are the local contracting and expanding fibres (l.c.f. and l.e.f.) respec-
tively i.e.

dist (T"vi, T"v2) -» 0 when n -> +oo(n -• -oo)

for every vx,v2e yc(v)(ye(v)) and the decay is exponential.

Let £icoc and ̂ foc be the measurable partitions into the l.c.f. and l.e.f. respectively.

Fact 1.

£focA £r<>c is the trivial partition
The consequence is that T has the K-property and further that iff' is ergodic. To

establish the X-property for the flow i//' we need to construct the l.c.f. and the l.e.f.
for the flow if/' itself. This can be done at almost every point v of the phase space
T^xS1 and we obtain two smooth curves Sc(v) and Se(v). Let £icoc and ijfoc be the
measurable partitions into these curves respectively.

The curve 8c(v) (and Se(v)) in T2xSl can be described as a field of vectors
normal to a convex curve in T2

r. The convexity makes the pair of partitions £foc and
ffoc 'nonintegrable'. More precisely the following holds.

Fact 2. £icoc A f foc contains an atom and this is a local property, i.e. for any neighbour-
hood t / in T^xS1

f iocl u A $ foci v contains an atom.

This is essentially proved in [Kub-Mur, pp. 19-20].
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Let C: R2 x Sl -*• R2
r/Z

2 x S1 = T2
r x Sl be the natural covering map. Using C we

lift the billiard flow if/' to i£': If2 x S1 ±> and the section map T to f:ZxZ2±>
(clearly C~\1.) can be naturally identified with 2 x Z2). \ji' and T preserve the lifted
infinite measures v and p respectively. Let us consider the lifted l.c.f and l.e.f. for
t£' and f which we will denote by 8c(e\v) and yc('\v). Let &£> and £,co

(
c
e) be the

respective measurable partitions. It follows immediately from Fact 1 that £TOC A £foc
is the partition into individual copies of 1, {2, x {z}, z e Z2}. We introduce partitions
into global contracting and expanding fibres for i\i'

PROPOSITION 2. The measurable partition fjc
 A ge is trivial.

Proof. It follows from Fact 2 that £icoc A f foc contains an atom and hence also £c A $e

contains an atom. The last partition though is iff' invariant and hence any of its
atoms is ip' invariant. Let A be such an atom. In particular v(A) is positive, possibly
infinite. Since A is <ji' invariant it follows that B = Ar\C~l (1) has positive p measure
and it is f invariant. Moreover the structure of l.c.f. and l.e.f. for T and &' implies
that B is measurable with respect to ffoC A £,„,.. Hence B is a nonempty union of
copies of 2. But the image of an individual copy of 2 under T has positive p
measure intersections with all the neighbouring copies of 2. It follows that B contains
with every copy of 2 all its neighbours so that actually B = C"'(2) modO. This
implies that A = R2xSx mod 0. •

7. Proof of the Theorem
The l.c.f.'s Sc(v) and the l.e.f.'s Se(v) for i//' can be lifted to every Lorentz fibre. So
for almost every xeQxS1 we have two smooth curves Sc(x) and Se(x). These
curves are clearly local contracting and expanding fibres for tf>'0. It follows from (3)
that they are also local contracting and expanding fibres for <}>' no matter what is
the value of E and /. Let £icoc and f̂oc be the measurable partitions of Q x S1 into
l.c.f.'s Sc{x) and l.e.f.'s Se(x), xeQxS1. By the standard methods (see [Sin2]) we
get that

where II(</>') is the Pinsker partition for the flow <j>'. Hence also for the partitions
into global contracting and expanding fibres

ic= A <l>'£ioc and le = A </>'̂ oc

leR teR

we have

£C>II(<£') and £e >H(<j>').
So to establish the K-property for the flow </>' it is sufficient to show that \c A ge is
the trivial partition. By Proposition 2 we get that any subset of Q x S1 measurable
with respect to £c A £* must be a union of Lorentz fibres. Further by Proposition 1
any measurable union of Lorentz fibres has measure zero or full measure. •
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