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ABSTRACT: The major input and output pathways of the mammalian striatum have been well established. Recent 
studies have identified a number of neurotransmitters used by these pathways as well as by striatal interneurons, and 
have begun to unravel their synaptic connections. The major output neurons have been identified as medium spiny 
neurons which contain 7-aminobutyric acid (GABA), endogeneous opioids, and substance P. These neurons project 
to the pallidum and substantia nigra in a topographic and probably chemically organized manner. The major striatal 
afferents from the cerebral cortex, thalamus, and substantia nigra terminate, at least in part, on these striatal 
projection neurons. Striatal interneurons contain acetylcholine, GABA, and somatostatin plus neuropeptide Y, and 
appear to synapse on striatal projection neurons. In recent years, much activity has been directed to the neurochemi­
cal and hodological heterogeneities which occur at a macroscopic level in the striatum. This has led to the concept of a 
patch-matrix organization in the striatum. 

RESUME: Les neurotransmetteurs dans le striatum des mammiferes: circuits neuronaux et heterogeneite. Les princi-
pales voies afferentes et efTSrentes du striatum chez les mammiferes ont ete bien 6tablies. Des etudes recentes ont 
identifie certains neurotransmetteurs utilises par ces voies ainsi que par les interneurones du striatum et ont 
commence a preciser leurs connexions synaptiques. Les principaux neurones efferentes ont ete identifies comme 
etant les neurones epineux de taille moyenne qui contiennent de l'acide 7-aminobutyrique (GABA), des opioi'des 
endogenes et de la substance P. Ces neurones ont des projections, organisees topographiquement et probablement 
chimiquement, vers le pallidum et la substance noire. Les principaux neurones afferents depuis le cortex cerebral, le 
thalamus et la substance noire se terminent, du moins en partie, sur ces neurones de projection du corps strie. Les 
interneurones du corps strie contiennent de ^acetylcholine, du GABA et de la somatostatine et du neuropeptide Y, et 
semblent faire synapse avec les neurones de projection du corps strie. Ces dernieres annees, plusieurs etudes ont 
porte sur l'heterogeneite neurochimique et hodologique qui se rencontre au niveau macroscopique dans le striatum. 
Ces recherches ont mene a l'elaboration du concept de l'organisation du striatum en matrice parcellaire. 

Can. J. Neurol. Sci. 1987; 14:386-394 

The striatum contains a variety of neurotransmitters, some 
of which have been associated with neurological disorders 
including Parkinson's and Huntington's diseases. The purpose 
of the present review is to provide an updated, brief summary 
of the recent advances in our knowledge of the biochemical 
anatomy of the striatum, with particular emphasis on: 1) the 
synaptic connections among striatal afferents, projection neurons, 
and interneurons, and 2) the neurochemical and hodological 
heterogeneities in the striatum. The reader is referred to the 
following reviews for more comprehensive treatment of the 
literature on the anatomy and neurochemistry of the striatum. '"6 

1. STRIATAL INPUTS 

The cortical afferents 

The major striatal input arises in the cerebral cortex which 
projects topographically to the striatum. At a gross level, the 
putamen receives primarily sensorimotor information, while 
the caudate nucleus receives major inputs from the limbic and 
associational cortical areas. The corticostriatal input has been 
suggested to arise from both supragranular and infragranular 
cortical layers, and some corticostriatal cells may also project 
to other subcortical regions.7"9 Although most of the corticostriatal 
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projection arises from the ipsilateral cortex, as much as a third 
of the cortical projections to the striatum arises in the opposite 
hemisphere.10 The corticostriatal afferents terminate princi­
pally in asymmetric contacts on the spines of the medium spiny 
striatal neurons."1 2 There is much circumstantial evidence to 
suggest that the corticostriatal fibers use an excitatory amino 
acid, perhaps glutamate, as a transmitter.13 

The thalamic afferents 

The second major striatal input arises in the thalamus. Although 
the major sources are the intralaminar nuclei, some striatal 
afferents also arise in "specific" thalamic nuclei including the 
ventral anterior, ventral lateral, lateral posterior and supra-
geniculate nuclei.1415 As with the corticostriatal projection, 
the thalamostriatal pathway is topographically organized.I6 Some 
of the thalamostriatal fibers send collaterals to the cerebral 
cortex.14 Again, like the cortical afferents, terminals arising 
from thalamic neurons appear to form primarily asymmetric 
contacts with the dendritic spines of the medium spiny neurons.3 

Although the thalamostriatal projection appears to be excita­
tory,317 the transmitters contained in this pathway are not 
known. There was a suggestion that this pathway is cholinergic,l8 

but this does not appear to be the case.19 Some neuropeptides 
have recently been detected in thalamostriatal neurons. Cells in 
the centromedian-parafascicular complex in the cat projecting 
to the caudate nucleus have been shown to contain substance 
P-, vasoactive intestinal polypeptide (VIP)-, cholecystokinin 
(CCK)- and neurotensin-immunoreactivities.2021 Some of the 
enkephalin in the cat striatum could also arise in the intralaminar 
thalamus where met-enkephalin-immunoreactive cell bodies 
are present.22 

The nigral afferents 

The well known nigrostriatal dopaminergic projection pro­
vides a third major input to the striatum. In addition, a small 
non-dopaminergic projection from the substantia nigra also 
appears to exist.23"26 As with the other striatal afferents, the 
nigrostriatal projection is topographically organized (e.g., 26). 
The dopaminergic terminals tend to form symmetric contacts 
with dendrites and with the stalks of dendritic spines.27,28 

Many of these spines also receive asymmetric inputs, probably 
arising in the cortex and thalamus.2728 Thus dopaminergic 
terminals may be well placed to modulate the actions of other 
inputs on the striatal neurons. 

Some nigrostriatal dopaminergic neurons also contain neuro­
peptides. CCK-immunoreactivity is found in many of the ventral 
tegmental dopamine neurons projecting to ventral striatal regions 
including the nucleus accumbens and olfactory tubercle.29,30 

Neurotensin may also be present in some of these neurons.31,32 

Other inputs 

The striatum receives numerous other projections. While a 
serotonin afferent from the dorsal raphe has been well docu­
mented,33 many of the afferents from the raphe area are 
dopaminergic.34 Histaminergic neurons in the posterior hypo­
thalamus project to many areas including the striatum.35 A 
pallidostriatal projection has been recently discovered,36,37,37a 

as has an input from the subthalamic nucleus.38 A fairly large 
input from the amygdala has been noted.39"41 CCK immunore-
activity may be present in striatal afferents originating in the 

basolateral amygdala, claustrum and piriform cortex.30,42 Other 
minor projections from brainstem areas such as the locus ceruleus 
(noradrenergic) and the pedunculopontine nucleus (cholinergic) 
require further confirmation.37*43 

2. STRIATAL OUTPUTS 

Evidence from biochemical experiments following various 
lesions has indicated that there is a population of 7-aminobutyric 
acid (GABA) neurons in the striatum.44"46 These studies also 
indicate that striatal GABA neurons project to the pallidum and 
substantia nigra. The development of antibodies to the GABA 
synthesizing enzyme, glutamate decarboxylase (GAD), has per­
mitted the morphological analysis of striatal GABA neurons. 
Bolam et al47,49 have found that neurons which accumulate 
[3H] GABA or display GAD immunoreactivity are not medium 
spiny neurons. Rather, these cells have the morphological fea­
tures of a type of medium aspiny cell. This morphology is 
similar to those of G AD-positive cells seen previously by Ribak 
et al50,5' in the rat striatum, and by Panula et al52 in cultures of 
rat striatum. Bolam et al47,49 suggest that these cells might be 
striatal GABA interneurons, and that the striatonigral GABA 
projection neurons may not be labelled by the GABA uptake 
technique, possibly because of insufficient local axon collaterals. 
Similarly, the striatonigral GABA neurons may not be readily 
detected with GAD antisera if most of their GAD is rapidly 
transported out of the striatum to the pallidum and nigra. Recent 
studies using a different antiserum have demonstrated GAD 
immunoreactivity in two populations of rat striatal neurons, a 
small population of medium to large neurons which was detected 
in normal animals, and a larger population of medium-sized 
neurons that was detected after colchicine treatment.53 In the 
cat, GAD immunoreactivity has been demonstrated in retro-
gradely labelled medium-sized spiny striatonigral neurons.54 

These cells received symmetric GAD-immunoreactive axoso-
matic and axodendritic contacts, plus many asymmetric non-
immunoreactive contacts on their soma, dendrites and spines.54 

Medium-spiny striatonigral neurons have also been labelled 
with tritiated taurine.55 This raises the possibility that taurine 
and GABA might coexist in some of these cells. In addition, 
many of the medium-spiny striatal projection neurons display­
ing GAD immunoreactivity have been found to contain leu- or 
met-enkephalin.53,56"60 Hokfelt et al6' first described the pres­
ence of enkephalin-immunoreactive neurons in the rat striatum. 
These cells appear to project massively upon the globus pallidus.62 

Enkephalin-immunoreactive neurons have also been observed 
in the cat60,63 and primate striatum.64,65 

Pickel et al66 have found that medium spiny neurons in the rat 
striatum contain enkephalin-immunoreactivity. Kubota et al67 

detected axosomatic symmetrical tyrosine hydroxylase (TH)-
immunoreactive contacts on enkephalin-immunoreactive medium 
spiny neurons. Striatal enkephalin terminals form symmetric 
contacts with dendrites of medium spiny neurons that also 
receive asymmetric contacts from cortical afferents.68"70 Somogyi 
et al69 reported that leu-enkephalin-immunoreactive terminals 
also form symmetric contacts with neurons similar to the rare 
aspiny striatonigral neuron described by this group.72 In addi­
tion these investigators reported the presence of a few asymmet­
ric axospinous contacts made by leu-enkephalin-immunoreactive 
boutons. Axoaxonic contacts between cortical afferents and 
enkephalin terminals may also occur in the rat striatum.70 
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In the cat, about half of the medium-sized spiny enkephalin-
immunoreactive neurons contain neurotensin immunoreacti vity, 
and half the neurotensin-immunoreactive neurons display 
enkephalin immunoreactivity.63Dynorphin-immunoreactive neu­
rons have been detected in the rat striatum,73 and these also 
appear to project to the substantia nigra.74 

Substance P-immunoreactive neurons are also found in the 
striatum.75'78 In fact, substance P coexists in many GAD- and 
enkephalin-immunoreacti ve neurons in the rat and cat striatum.60 

In an ultrastructural study of the rat striatum, Bolam et al48 

identified two types of substance P-immunoreactive neurons. 
One appears to correspond to the medium spiny neuron, while 
the other appears to be an aspiny medium-sized neuron, proba­
bly distinct from the aspiny GAB A or somatostatin neurons.48 

Substance P-immunoreactive boutons appear to form symmet­
ric synaptic contacts usually on dendrites or spines of what are 
perhaps medium spiny neurons.48 The morphology of these 
contacts is similar to that of substance P terminals in the substantia 
nigra, and may thus derive from collaterals of striatonigral 
substance P neurons.7'79 

Although substance P, enkephalin and dynorphin are found 
in medium spiny neurons together with GAD, the extent to 
which these substances coexist in the striatal efferents is not 
known. Dense terminal staining for enkephalin is present in the 
external segment of the globus pallidus, while for substance P 
the densest terminal fields are present in the internal pallidal 
segment and substantia nigra.78,80,8' These observations sug­
gest a chemical coding of the striatal GABA efferents, with 
those projecting to the globus pallidus containing predomi­
nantly enkephalin, and those projecting to the entopeduncular 
nucleus and substantia nigra containing mainly substance P. 

3. STRIATAL INTERNEURONS 

It is clear from numerous immunohistochemical studies in 
various species that the cholinergic neurons of the striatum 
correspond to the large aspiny neurons described in Golgi 
studies. This was originally proposed by Lehmann et al82 on the 
basis of pharmacohistochemical studies of acetylcholinesterase 
(AChE). Kimura et al83 subsequently demonstrated that the 
large striatal cells in the rat and guinea pig did in fact display 
choline acetyltransferase (ChAT) immunoreactivity. This has 
since been confirmed in various species including rat,84 cat85'86 

and primate.87 The ultrastructure of these neurons has been 
examined in the rat using both AChE histochemistry88'883 and 
ChAT immunohistochemistry.89'90 Although often referred to 
as the large or giant aspiny neuron, the soma and dendrites of 
this cell type are often sparsely spiny. These neurons receive 
rare symmetric axosomatic and axodendritic contacts,88"90 plus 
some asymmetric contacts.89,90 In addition, the axonal initial 
segments of these neurons appear to receive symmetric 
synapses.90 Bolam et al91 have recently demonstrated that the 
cell bodies and proximal dendrites of striatal cholinergic neu­
rons in the rat receive symmetrical contacts from substance 
P-immunoreactive boutons. The cholinergic terminals make 
symmetric contacts with somata, dendrites and axon initial 
segments of what appear to be medium spiny neurons.90'92 

In addition to the giant aspiny cholinergic neurons, other 
smaller aspiny interneurons are present in the striatum. Light 
and electron microscopic immunohistochemical studies have 
indicated that somatostatin is contained in one such popu­

lation.93"95 Another peptide, neuropeptide Y (NPY) is present 
in the striatal somatostatin neurons,95,96 which are also charac­
terized by the presence of NADPH-diaphorase activity.97,98 

These striatal neurons receive only a few symmetric and asym­
metric inputs to their soma and proximal dendrites,99"101 while 
the distal dendrites usually have asymmetric contacts.99'00 

Somatostatin-immunoreactive boutons form symmetrical con­
tacts with dendrites and spines.99'00 The spines receiving 
somatostatin-immunoreactive input also receive other asym­
metrical contacts.100 

Although other neuropeptides have been noted in striatal 
neurons, these have not been analysed in detail. CCK-immuno-
reactivity is found in a small population of medium aspiny 
neurons.I02 A few neurons containing VIP103 and galanin104 may 
also be present. 

Although important questions regarding the organization of 
the striatum remain, it may be helpful to summarize our current 
knowledge of the basic striatal circuit as follows: the major 
functional unit of the striatum appears to be the medium spiny 
neuron. These cells receive the major inputs from cortex, thala­
mus and substantia nigra, and supply the major output to the 
pallidum and substantia nigra. The cholinergic, GABAergic, 
and somatostatin/NPY-containing interneurons could thus act 
to modulate the activity of the medium spiny neurons. Major 
questions that are still unanswered include: 1) Do the striatal 
interneurons receive cortical, thalamic or nigral input to their 
distal dendrites? 2) Do all medium spiny neurons receive sim­
ilar inputs? 3) What are the connections of the aspiny striatonigral 
neurons, and the aspiny GABA interneurons? 4) How is this 
striatal circuitry accommodated in the plan of the regional 
heterogeneity that is now becoming apparent in the striatum 
(see below)? 

4. HETEROGENEITY IN THE STRIATUM 

Studies over the past decade have revealed that the striatum 
displays considerable heterogeneity with respect to cytoarchi-
tecture'05"'07 and, in particular, the distribution of various 
neurotransmitter-related markers, and afferent and efferent 
connections. In addition to regional differences, there is a 
mosaic pattern in which the presence or absence of a given 
anatomical marker is localized to "patches" against the back­
ground or "matrix". Moreover, the "patches" revealed by 
different markers do not appear to be independent from each 
other, but display varying degrees of correspondence. These 
observations have led to the suggestion that this mosaic pattern 
may represent the basic organizational plan of compartmental-
ization in the mammalian striatum. 

As intriguing as the concept is, there are limitations in the 
current data that suggest a striatal patch-matrix organization. 
The concept is at present based entirely on qualitative observa­
tions. The patch and matrix compartments have been com­
monly defined by either opiate receptor binding, neuropeptide 
immunoreactivity, or AChE staining, and increasingly these 
are being assumed to demarcate identical regions. Until these 
matches are firmly established in quantitative terms, the results 
of the studies using different markers to define the patch and 
matrix compartments may not be directly comparable. The 
observations reviewed below should be considered with these 
caveats in mind. 
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Neurochemistry 
Early reports on macroscopic heterogeneity in the striatum 

were made with AChE staining in cat, monkey, and human,108 

and opiate receptor binding with [3H]-diprenorphine in the 
rat.'09 AChE histochemistry reveals occasional zones, about 
0.5 mm in width, of pale staining. These AChE-poor zones, 
termed "striosomes", were subsequently reported to match 
the "islands" of opiate receptors revealed by [3H]-naloxone 
binding in the rat striatum,110 as well as the compartments of 
high met-enkephalin-like1""3 and dynorphin-B-like immuno-
reactivity in the dorsal striatum of cats and kittens."3 

Neurotensin-positive neuropil also appears to be in register 
with enkephalin-like immunoreactive neuropil and AChE-poor 
zones in the cat."4 This is consistent with the coexistence of 
these two peptides.63 However, unlike opiates and opiate 
receptors, the distributions of neurotensin and its receptors do 
not appear to be coincident; high densities of neurotensin recep­
tors are found in the opiate-poor, AChE-rich matrix."5 

Substance P immunoreactive neuropil is largely confined to 
AChE-poor striosomes in rat"6 and ca t . " 1 " 3 Substance 
P-positive perikarya are seen more frequently in the patches, 
defined by dense substance P neuropil, than in the matrix in 
rat,60 baboon, and human striatum.78 

Somatostatin immunoreactive fibers have been reported to 
be dense in the matrix defined by the absence of opiate receptor 
binding, substance P or enkephalin immunostaining in rat"6"7 

and cat.941" The distribution of NPY is heterogeneous, with 
patchy zones of weak immunoreactivity in the cat, whereas it is 
homogeneous in the monkey .6 Dense N ADPH-diaphorase stain­
ing appears to be in register with the AChE-rich matrix in the 
cat."8 Somatostatin-immunoreactive cell bodies are found in 
both patches and matrix in the rat, although their processes are 
seen mostly in the matrix."6"7 

The distribution of cholinergic neurons has been reported to 
be homogeneous.' '9 More recently, using an antiserum to ChAT 
combined with AChE staining in cat and monkey, Graybiel et 
al120 have reported that ChAT-positive neuropil is confined to 
AChE-rich matrix zones. Concentrations of muscarinic recep­
tors revealed by [3H]-propylbenzilylcholine mustard in the cat 
appear to correspond to AChE-poor patches in the dorsal 
striatum.121 However, a homogeneous density was seen with 
[3H]-quinuclidinyl benzilate.122 

Neither dopamine fluorescence nor TH immunoreactivity 
displays obvious heterogeneity in adult animals,123124 although 
they form "islands" in immature animals (see below). A hetero­
geneity has been reported to be detected in adult animals by 
quantitative analyses of TH immunohistochemistry.I25 The patchy 
pattern of TH immunoreactivity can also be "unmasked" in 
adult rats by pretreatment with a TH inhibitor.126127 In the 
human striatum, the density of D2 receptors is high in AChE-
rich matrix regions.128 

Connections 

The mosaic patterns seen with various neurochemical mark­
ers described above have been reported to be superimposed, to 
a considerable extent, on the terminal patterns of various affer-
ents and the distributions of projection neurons. Heterogene­
ous patterns of terminations described as "patchy" were noted 
in autoradiographic studies of corticostriatal107129 and thalamo-
striatal projections.15''30 Recently, Donoghue and Herkenham'3' 
have shown in adult rats that prelimbic frontal cortical afferents 

tend to terminate in opiate receptor dense patches, and the 
afferents from the somatosensory, visual, motor, and cingulate 
cortices terminate in the matrix. The termination of the affer­
ents from the medial prefrontal (or prelimbic) cortex in the 
patches defined by the absence of somatostatin neuropil has 
also been reported in the rat."6 In adult cat and monkey, 
Ragsdale and Graybiel132 have reported that in the dorsal half of 
the caudate nucleus, the presence of afferent terminals from the 
frontal cortex matches with AChE-poor striosomes, whereas in 
the ventral half, the absence of afferent terminals tends to be in 
register with the striosomes. Varicose terminals of afferents 
from the parafascicular thalamic nucleus are found to distribute 
heterogeneously in the cat,133 outside of opiate receptor dense 
islands, and within the AChE-rich matrix in the rat."0 Amyg-
dalostriatal projections have been reported to terminate in patchy 
patterns in the monkey.41 

The nigral afferents also appear to have a heterogeneous 
distribution of terminal labelling in the striatum of the rat134 and 
cat.I33 The projection from the ventral tegmental area has been 
reported to terminate predominantly in the matrix of the ventral 
striatum, including the nucleus accumbens, in the rat.135 More 
recently in a systematic study of the projection to the striatum 
from the ventral tegmental area (A10), substantia nigra (A9), 
and retrorubral area (A8), Gerfen et al26 have reported that 
dopaminergic fibers from the ventral part of the substantia 
nigra pars compacta and the ventral tier of the pars reticulata 
(displaced A9 cells) terminate in the opiate receptor-dense 
patches, whereas both dopaminergic and non-dopaminergic 
afferents from all the other areas terminate outside of the patches. 
In addition, those dopaminergic neurons giving rise to the 
afferents to the matrix, but not those innervating the patches, 
contain a calcium binding protein, and appear to develop later 
than those without this protein.136 

A mosaic pattern is also seen in efferent projections of the 
striatum. Graybiel et al137 have reported that projection neu­
rons (mostly medium-sized) retrogradely labelled following HRP 
injections into the globus pallidus and substantia nigra are 
found largely in the AChE-rich matrix compartment in the cat. 
In the rat, Gerfen"7 has reported that striatal neurons project­
ing to the substantia nigra pars compacta are located in 
somatostatin-poor patches, whereas those projecting to the 
pars reticulata are located in the matrix. 

The above findings suggest that the striatum may be segre­
gated in a mosaic manner into two compartments which repre­
sent two separate input-output channels. The patch compartment 
receives a major input from the prelimbic cortex and its output 
is directed to the substantia nigra pars compacta. The matrix 
compartment receives major afferents from the sensory and 
motor cortices and the centromedian-parafascicular complex 
of the thalamus, and directs its output to the substantia nigra 
pars reticulata. 

Development 
The heterogeneity of some striatal neurochemical markers 

develops during embryonic development and is already present 
at birth. These include enkephalin neuropil in the cat,"1 and 
opiate receptor binding,124138139 muscarinic receptors,140 

neurotensin, and neurotensin receptors141 in the rat. However, 
there are also markers whose distributions change during devel­
opment. For example, AChE staining reveals dense patches, 
rather than pale patches as seen in adults, in the striatum of 
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neonatal rats,142 fetal and neonatal cats ,1""2 and human fetus 
and young infants.I43 Dopamine fluorescence, which is homoge­
neous in adult rats, begins to display heterogeneity on embry­
onic day 19; this develops into conspicuous "islands" by the 
time of birth, but then gradually fades by postnatal day 16. I23'124 

Lanca et al139 have shown that the ratio of the opiate receptor-
dense patches to the total striatal area peaks on postnatal day 7. 

In neonatal and fetal cats, the AChE-rich patches correspond 
to dopamine islands,"2 as well as to the patches of enkephalin-, 
and, to some extent, substance P-positive neuropil.'" Match­
ing of dopamine islands and dense AChE staining is not surpris­
ing because most of the AChE seen early during development is 
probably contained within dopaminergic fibers from the substantia 
nigra.'44 It is, however, not clear how the reversal of the AChE 
staining pattern occurs during development. 

In the cat, using [3H]-thyrriidine autoradiography, Graybiel 
and Hickeyl45 have shown that neurons which became postmitotic 
around embryonic day 24 to 30 (the gestation period of the cat is 
65-68 days) tend to form clusters which were superimposed on 
AChE-poor striosomes and enkephalin-rich compartments. On 
the basis of [3H]-thymidine-dense patches as a marker, Nastuk 
and Graybiell2' suggested that the AChE-dense patches seen in 
neonatal cats are the precursor of the AChE-poor striosomes 
seen in adults. In the rat, van der Kooy and Fishell146 have 
reported that neurons which become postmitotic earliest 
(embryonic day 13-15) are located in the patches defined by 
opiate receptor binding, whereas those cells leaving the mitotic 
cycle later (embryonic day 18-20) are found in the matrix. 
Similar observations have been made by Marchand and Lajoie.'47 

Although the mechanisms of the formation of patch-matrix 
compartments are unknown, Lan§a et al139 suggested that the 
striatal connections with the brainstem are important in the 
formation and/or maintenance of the matrix-patch compart­
ments (see also148). 

CONCLUSIONS 

The mammalian striatum, particularly its dorsal part, appears 
to be segregated into two neurochemically and hodologically 
separate compartments: patches and matrix. The two compart­
ments are organized in a mosaic pattern in which the patch 
compartment forms a labyrinth through the matrix compartment, 
giving the appearance of Swiss cheese. Although the functions 
of the two compartments need to be examined by physiological 
techniques, this mosaic structure raises the possibility of paral­
lel information processing through two anatomically segre­
gated input-output channels. Similar compartmentalization of 
functionally related neurons has been seen in ocular dominance 
columns'49 and vibrissal barrels'50 in the cerebral cortex. 

Historically, the concept of the patch-matrix organization 
began with a few early independent observations of macro­
scopic heterogeneity in histochemical staining and connections. 
These initial observations have been extended, with the aid of 
more recently developed anatomical tools, and integrated into 
a novel concept of striatal organization. The underlying hypothe­
sis which has stimulated all these studies has been that the 
striatal heterogeneities reflect anatomically and functionally 
segregated compartments. As previously stated, the hypothe­
sis has so far been based entirely on qualitative observations, 
and there is a need to determine the degree of matching in 
quantitative terms. Quantitative tests should include an exami­

nation of the extent of matching among different neurochemical/ 
hodological labelling conducted on the same or alternate sections. 
Such examinations would provide a foundation on which stud­
ies using different markers to define the patch and matrix 
compartments become mutually comparable, and also may 
indicate the "best" marker to use in future studies. 

Attention also should be paid to the fact that the mosaic 
pattern may not be evident in all regions of the striatum. Heimer 
and Wilson151 have proposed that the striatum consists of two 
subregions: the dorsal, non-limbic part, and the ventral, limbic 
part. At present it appears that the most conspicuous patches as 
well as the most consistent matching between different markers 
occur in the dorsal striatum. In the ventral striatum, patches are 
less obvious and the matching is either less convincing, absent, 
or sometimes, reversed. One explanation for such regional 
differences is that some peptides are contained in afferents 
which terminate heterogeneously in the striatum."7 

Although the segregation of patches and matrix in the dorsal 
striatum seems relatively convincing at the macroscopic level, 
the information at the cellular level remains limited to some 
preliminary data with projection neurons and somatostatin-
containing interneurons. Gerfen"6 has noted that striatal neu­
rons retrogradely labelled with fluorescent tracers have dendrites 
mostly confined to the somatostatin-dense compartment con­
taining their cell bodies. Consistent results have been reported 
for medium spiny neurons in an abstract by Penny et all52 using 
the intracellular HRP technique, which can reveal more exten­
sive dendritic fields than retrograde labelling. 

The issue of somatostatin-containing neurons as link neurons 
which connect the patch and the matrix compartments requires 
further clarification. Gerfen"6"7 has reported that, although 
somatostatin-immunoreactive cell bodies are found in both 
matrix and patches, axons of these neurons in patches extend 
into surrounding matrix in rat. This has led Gerfen"6"7 to 
suggest that somatostatin-containing neurons may play a role 
as a link from the patches to the matrix. Similar observations 
have been made in the cat.94 However, these authors consid­
ered it unlikely that a major function of somatostatin neurons is 
linking, because cross-compartmental somatostatin fibers do 
not occur frequently. The question of possible link neurons, as 
well as the dendritic morphology of striatal neurons, in general, 
in relation to the patch-matrix organization might be better 
addressed by combining intracellular injection techniques with 
immunohistochemistry. 
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