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Abstract

We analyze the undulator radiation from planar bi-harmonic undulators with account for all principle losses in real devices.
The exact analytical expressions for the UR spectrum, intensity, and the line shape are obtained in terms of special
functions. The interplay of various broadening contribution is elucidated and their role is explored. Suspension and
boost of certain harmonics by fine tuning the undulator parameters is demonstrated. The constant non-periodic
magnetic constituents are studied to compensate the divergency of the electronic beam. The examples of harmonic
generation in various undulator schemes with single and double period magnetic field are explored. Influence of
inhomogeneous and homogeneous broadening on these harmonics is demonstrated. The analysis is applied to evaluate
the harmonics in self-amplified spontaneous emission free electron laser.

Keywords: Free electron laser; Harmonics generation and broadening; Homogeneous and inhomogeneous losses;
Undulator radiation

1. INTRODUCTION

Synchrotron radiation (SR) and undulator radiation (UR) have
been attracting researcher’s attention for more than half a cen-
tury. The reasons for that varied with time passing as the chal-
lenges for the scientists evolved and the technical progress
stepped forwards. UR was predicted by Ginzburg (1947)
and then discovered by Motz et al. (1953) in the middle of
the 20th century. During the following 70 years its theory
was developed and refined (Artcimovich & Pomeranchuk,
1945; Bordovitsyn, 1999; Ternov et al., 1985; Alferov et al.,
1973; Alferov et al., 1989). Now UR is again in focus due
to the request for coherent X-ray sources [see, e.g., Bessonov
et al. (2008)], while free electron lasers (FEL) extend to
X-range [see McNeil & Thompson (2010)]. Both, SR and
UR are due to the radiation of relativistic electrons, executing
curved trajectories (Sokolov & Ternov, 1986). The difference
between them is in the length on which the radiation is
formed: Short part of the circle for UR and the full length
of the undulator for the UR. This determines the fundamental
difference in the quality of the radiation obtained from these
two sources: Short pulses with very broad spectrum for the

SR and relatively long lasting radiation bursts with narrow
spectrum for the UR (Mikhailin, 2013). Nowadays the re-
search frontier is represented by studies of ultra-short attosec-
ond time intervals and Roentgen range (Feldhaus & Sonntag,
2009; Zholents, 2005). To achieve these characteristics, the
devices require extremely high quality and intense magnetic
fields, long undulators with many periods (Korchuganov,
2010). In order to obtain high-frequency radiation, sometimes
undulator periodic structure with double or even triple period
are used (Bessonov, 2007; Mishra et al., 2009; Tripathi &
Mishra 2011; Zhukovsky, 2012; Zhukovsky, 2015a, d), facil-
itating control over high harmonics and regulating their emis-
sion (Alferov et al., 1989; Dattoli et al., 2006a, b).
Maintaining best quality UR line is important. Unfortunately,
even in the most modern undulators the emission lines inevi-
tably broaden due to a number of reasons, first of all due to the
electron beam energy spread and the beam divergency, as well
as due to inhomogeneity of the periodic magnetic field in un-
dulators. They may have internal or external origin (Walker,
1993; Onuki & Elleaume, 2003; Hussain et al., 2009; Reiss,
1980), but their presence is eminent also due to the fact that
the ideal �H = H0 sin(2πz/λ) periodic magnetic field simply
does not satisfy Maxwell equations. The electron energy
spread is most common detrimental factor; some researchers
even concluded that the spectral properties of higher UR
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harmonics should be limited only by the electron beam prop-
erties and not by the undulators (Vagin et al., 2011). The role
of the divergency was underlined, for example, in Smolyakov
(1991); Walker (1993). At the same time the constant magnet-
ic field shifts the resonance frequencies and causes loss of in-
tensity (Dattoli et al., 2008; Dattoli et al., 2009; Mikhailin
et al., 2014; Hussain & Mishra, 2015). Distortions and
losses are particularly pronounced in long undulators (Zhu-
kovsky, 2014a; Zhukovsky, 2015c; Zhukovsky, 2016a).
In what follows we will compare the contributions of all

sources of broadening in various undulator schemes employ-
ing precise analytical treatment of the UR by means of ex-
tended forms of special functions of Airy and Bessel type.
We will explore the role of the various broadening terms ac-
counting for the real size and the emittance of the electron
beam, for the energy spread and for the constant field com-
ponent. We will show the effect of the undulator length on
the spontaneous harmonic emission and demonstrate partial
compensation of the beam divergences by constant magnets.
In conclusion we will also evaluate FEL performance with
account for our analysis.

2. BROADENING CONTRIBUTIONS EFFECT ON
THE UR

To compute the spontaneous UR we suppose that the follow-
ing conditions, common in modern undulators, are satisfied:
The electrons are ultrarelativistic γ≫ 1, which is natural in
contemporary accelerators, they have small transverse mo-
mentum β⊥≪ 1, β⊥H∥ ≪ H⊥, �E = 0, moreover, the elec-
tric field is absent. It is commonly known that UR from a
planar undulator (for a schematic drawing of a planar undu-
lator, see Fig. 1) with N periods of λ0 with the undulator pa-
rameter k= (e/mc2)(H0/kλ) and the sinusoidal magnetic
field Hy=H0 sin (kλz), where kλ= 2π/λ0, has the peak
frequencies

ωn = nωR = 2nω0γ2

1+ k2/2+ (γψ)2 , ωR0 = 2ω0γ2

1+ k2/2
,

ωn0 = nωR0,

(1)

where ω0 = kλβ
0
z c, β

0
z = 1− (1/2γ2)(1+ k2/2) is the aver-

age drift speed of the electrons along the undulator axis

and ψ is off the undulator axis angle. The shape of the UR
emission line is described by the detuning parameter

nn = 2πNn
ω

ωn
− 1

( )
(2)

and constitutes (sinnn/2)/(nn/2) function. The homoge-
neous bandwidth, sometimes called half-width of UR spec-
trum line at its half-height or simply half-width is (Δω/
ωn0)= (1/2nN) (green line in Fig. 2) and the half-width is
(Δω/ωn0)= (ω− ωn0/ωn0)= (1/nN) (blue line in Fig. 2).
In real devices 1/nN≪ 1.
The shape and the intensity of the UR strongly depends on

constant magnetic constituents Hx= ρH0, Hy= κH0, ρ, κ=
constant. For ultrarelativistic beams the longitudinal compo-
nent Hz= δH0 is irrelevant, since it effects in higher orders
of k/γ than the transversal magnetic component Hd=H0κ1,

κ1 =
���������
κ2 + ρ2

√
(Dattoli et al., 2009; Mikhailin et al., 2014;

Zhukovsky, 2014b). The latter bends the electrons trajectory
into the effective angle θH = (2/ ��

3
√ )(k/γ)πNκ1 and causes

the spectrum shift as demonstrated by dashed lines in
Figure 2. The effect of Hd, expressed in terms of θH, is accu-
mulated all along the undulator axis and, therefore, the undu-
lator length L matters. The trajectories of an electron in an
undulator in a reference frame, moving at the electron drift
speed in an undulator between the 1st and 3rd periods and be-
tween the 100th and 102nd periods are shown in Figure 3
with account for the constant magnetic components. The de-
viation due to κ= ρ= 10−4 from the undulator axis z, where
(x, y)= (0, 0), is evident and exceeds the electron oscillations
more than 20 times. This raises question about the coherency
of the oscillations at the end of the undulator. Wewill explore
it in what follows.
Qualitative estimations give the following answer. The elec-

tron in constant magnetic field H executes a circle of radius R
≅ 3.3E[GeV]/B[T]. The field curves the trajectory in an arc
of a length L=Nλu and produces the bent angle f= L/R.
The product γf≅ 6Nλu [m]H0 [T]κ1 of the actual length of

Fig. 1. Schematic drawing of a planar undulator.
Fig. 2. UR line and its homogeneous bandwidth, influenced by the shift due
to the constant magnetic field.
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the undulator L with the magnetic field strength H0 is decisive.
The observer, looking at the curved trajectory, must take into
account the angular width of the undulator. If the latter is
small, comparedwith the above estimated curvature, the observ-
er views the radiation of the electron from the whole trajectory,
if it is significant, then only from the part of it. This results in
partial coherence of the emitted radiation. The deviation off
the axis in the angleψ has similar effect. Broadening parameters
μi≡ (Δω/ωn)i/(Δω/ωn0), where i the factor, responsible for
the broadening (Δω/ωn)i, qualitatively describes the UR losses
(Mikhailin et al., 2014;Zhukovsky, 2014b) through the total bro-

adening [Δω/ωn]Tot = (Δω/ωn0)
���������������������������
1+ μ2e + μ2H + (μ2x + μ2y)

√
and consists of the electron energy spread

���
σe

√
contribution

μe ≡ (Δω/ωn)e/(Δω/ωn0) ≈ 4Nn
���
σe

√
, that of the constant

magnetic field μH=Nn(γθH)
2/(1+ k2/2), where θH=(2/ ��

3
√ )

(k/γ)πNκ1and that of the angular divergences Θx,y= εx,y/σx,y
of the beam, where εx,y are the emittances of the beam, σx,y are
the beam sizes (Dattoli, 1993), yielding μx,y = (nNγ2Θ2

x,y)/
(1+ k2/2). Other effects can be similarly included, but they
play minor role. The role of the angles θH and Θx,y in the con-
cept of the broadening parameters is the same, while in reality
they can interplay with subtle consequences (Zhukovsky,
2014a, c). The account for focusing magnetic components
(Dattoli, 1993;Quattromini et al., 2012), inherent in undulators,
can be done based upon themaximumvalue of the correspond-
ing magnetic field: HMAX f = 2H0(γ/k)2L2(ε3x/σ5x)(εy/σy)
(Zhukovsky, 2014b). Extensive discussion of the contribution
of each of these broadening factors can be found, for example,
in Zhukovsky (2014a, b, c). The broadening coefficients in
modern undulators, aimed on working in high frequency
FELs, can be or comparable with each other order and each
may amount to 0.5. If

∑
μi ≥ 1, the UR line broadening and

reduction become significant.

3. INTENSITY AND SPECTRUM OF THE
TWO-FREQUENCY UNDULATOR RADIATION

More precise account for the losses can be done with the
help of the generalized special functions of the Bessel type
J(m)n (x0, x1, x2, x3) (Dattoli et al., 2008) and of the Airy-type

S(α, β, η) ≡ �1
0 dτe

i(ατ+ητ2+βτ3) (Zhukovsky, 2012). These
functions arise naturally in problems, related to SR and
beam propagation (Dattoli et al., 2008; Zhukovsky, 2014d).
They are closely related to the generalized Hermite polynomi-
als (Gould & Hopper, 1962), which appear in pure mathemat-
ical studies (Dattoli et al., 2005; Dattoli et al., 2006a, b;
Zhukovsky, 2016b) and in a wide range of solutions for phys-
ical problems from SR and UR studies (Dattoli et al., 2008) to
heat and mass transfer (Zhukovsky, 2015b; Zhukovsky,
2016c, d). In a weak constant field with κ≪ 1 generalized
Airy functions simplify on the axis. We calculate the UR in-
tensity, following the radiation integral formula of classical
electrodynamics (Jackson, 1975; Landau & Lifshits, 1975):

d2I

dωdΩ
= e2

4π2c
ω

∫∞
−∞

�n × �n × �β
[ ][ ]

exp iω t − �n�r/c
( )[ ]

dt

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, (3)

where �n ≅ (ψ cosφ,ψ sinφ, 1− ψ2/2) is the observation
vector for γ≫ 1. The result for a one-frequency undulator
is just the particular case of the following double frequency
undulator with the magnetic field

�H = H0(ρ, κ+ sin(kλz) + d sin(hkλz), 0), h ∈ integers. (4)

Two-frequency undulators have been studied and used for
harmonic adjustments (Bessonov, 2007; Mishra et al.,

Fig. 3. The electron trajectory in an undulator with the constant magnetic components κ= ρ= 10−4 in the reference frame, moving with
mean velocity β0z c between the 1st and the 3rd (left figure) and between the 100th and 102nd (right figure) periods.
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2009; Tripathi & Mishra, 2011; Zhukovsky, 2012; Zhukov-
sky, 2015a, c). Helical two-frequency undulator has,
perhaps, most flexible design, but it does not allow complete
cancellation of undesired harmonics. It is best suited for two
color FELs with elliptically polarized radiation as done in
Dattoli et al. (2014); Mirian et al. (2014). We recall
that with equal periods on each line of poles the single har-
monic generation is possible, but at the expense of the fre-
quency reduction, since the effective undulator parameter
becomes keff =

��������
k21 + k22

√
. In what follows we will perform

comprehensive analytical exploration of the properties of
the harmonic radiation from a planar two-frequency undulator
Eq. (4) with account for all relevant losses, including beam
divergency, its compensation, and energy spread in the
beam. The goal of this study is to demonstrate that such
planar undulator, being not much more difficult to construct
than helical, provides much wider range of facilities in
terms of harmonic regulation. While the polarization of the
emitted radiation is evidently limited to one plane, the emitted
harmonics can be adjusted better than in its helical counter-
part. Expectedly, radiation from the undulator Eq. (4) has
only x – component; calculating the radiation integral Eq.
(3), we obtain the intensity of the linearly polarized radiation
with account for the field Hd:

d2I

dωdΩ

∣∣∣∣ Hd

H0

( )2

≪
1

(4πN)2
≅

e2N2γ2

c

k2

(1+ k2eff/2)2
×

∑∞
n=−∞

n2 S(nn, β, η) Tn−1 + Tn−1 + d

h
(Tn+h + Tn−h)

( )[ ]2
,

(5)

where k2eff = k2 + k22, k2= k |d/h| and Tn is the generalized
Bessel function

Tn(arg) =
∫2π
0

df

2π
cos n

f+ k2 sin(2f)
4(1+ k2eff/2)

− dk2 sin((h− 1)f)
h(h− 1)(1+ k2eff/2)

dk2 sin((h+ 1)f)
h(h+ 1)(1+ k2eff/2)

− d2k2 sin(2hf)
4h3(1+ k2eff/2)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,
(6)

The arguments of the special function S(nn, β, η) are
the detuning parameter nn Eq. (2), β = (2πnN + nn)(γθH)2/
(1+ k2eff/2+ (γθH)2) and η= 2π2 N2 (κ cos φ− ρ sin φ)(ω/
ω0)(k/γ)ψ. The UR spectrum with account for two undulator
periods and for the broadening contributions becomes

ωn = nωR

= 2nω0γ2

1+ k2eff
2

+ (γψ)2 + (γθH)2 − γ2θHψ
��
3

√ ρ sinφ− κ cosφ
κ1

,

(7)

where φ is the polar angle. The last term in the denominator
of the above expression allows for the partial compensation
of the horizontal and the vertical divergences by half when

applying proper vertical and horizontal constant magnetic com-
ponents, respectively. The latter produce the effective bending
angle θ̃H = Ω

��
3

√
/2 and reduce the divergency from ψ to ψ/2:

θ̃H = ∓ψ

��
3

√

2
κ

κ1
, for φ = 0, π and θ̃H = ±ψ

��
3

√

2
ρ

κ1
, for φ

= ±
π

2
. (8)

In the case of a common planar undulator with single period
magnetic field, we just set d= 0 in the above formulae Eqs.
(5)–(7). Then we obtain the intensity Eq. (5) in terms of
common Bessel functions: Tn,x= (Jn+1/2 (ξ/8)+ Jn+1/2 (ξ/
8)), where J(n±1)/2 (ξ/8). The broadening affects mostly
higher harmonics, which are of primary interest in the case
of a double frequency undulator. The parameters d and h are
frequently chosen so that d/h< 1 and they influence rather
the harmonic interference than the UR line shape. Indeed, for
harmonic regulation, for example, in Dattoli et al. (2006a, b)
they chose h= 3, 5 and d=± 0.5. The strength of the addi-
tional field Hd should be kept low, obeying the approximate
condition Hd < Hmax ≅ H0/(πN)3/2

������������������������
(3/n)((1/2) + (1/k2))

√
(Zhukovsky, 2014b). For example, for the 3rd harmonic we
obtain, Hmax,n=3,k=2,N=150≅ 10−4 H0, which is in agreement
with Zhukovsky (2014a, c) and with our following study.
Indeed, the UR line does not improve for Hd> 10−4 H0. For
the undulator with the amplitude of the periodic field H0=
5 kG we have the value Hmax,≅ 0.5 G, which is of the order
of the strength of the magnetic field of the Earth, and therefore
this last should not be neglected.

4. REGULATION OF HARMONIC RADIATION IN A
TWO-FREQUENCY UNDULATOR

New UR sources, including FEL with self-amplified sponta-
neous emission (SASE) and with high-gain harmonic gener-
ation (HGHG), use high UR harmonics. Other segmented
devices with chicanes need as pure single harmonic as possi-
ble. In any of the cases they demand high-quality beams and
spontaneous UR with selected harmonics. Isolated single
harmonic radiation is also important for spectroscopy.
Some exotic undulators with multiple periodic fields of
linear and of orthogonal polarizations were proposed to pro-
duce more intense high harmonics (Dattoli et al., 2006a, b;
Mishra et al., 2009). However, the supposed theoretical ad-
vantage (Hussain et al., 2009; Mirian et al., 2014) of their
generation in such schemes may not always be achieved be-
cause of the losses as we have noted in the previous section.
In what follows we shall study the facilities of the UR har-
monics tuning in the undulator Eq. (4) with account for
major sources of broadening. To calculate them precisely
we exploit the expressions Eq. (5) and (6), obtained with
the help of the formalism of the generalized special func-
tions. Various losses influence the UR harmonics intensity.
Qualitative estimations were given in the first section. To
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perform realistic study with regard to the two-frequency un-
dulator Eq. (4) it is necessary to account as precisely as pos-
sible at least for the electron energy spread and for the
divergency in the electronic beam. We use the following con-
volution (Dattoli, 1993), modified accordingly to account for
the angular divergence:

I =
∫ ∫

dεdψ |S nn + 4πnNε, β
( )|2( )

exp[−ε2/(2σe)]/
����
2σe

√
π3/2,

(9)

where
���
σε

√
is the energy spread and nn is the detuning param-

eter. The analysis of the integrated UR intensity reveals the
dependence of the harmonic intensities on the choice of
the parameters d and k in Figure 4 for the fundamental
frequency, in Figure 5 for the 3rd UR harmonic, in Figure 6
for the 5th harmonic and in Figure 7 for the 7th harmonic.
We observe in Figures 4–7 that high (n= 3,5,7) harmonics

fade out if d≅ 0.5 independently from k, while the funda-
mental harmonic radiation is close to its maximum. This
fact can be exploited for cutting off high harmonics. On
the other hand, by choosing k= 2.2, d=−1 we get the
utmost from the 7th harmonic radiation, which intensity re-
lates to those of the 5th, the 3rd, and the 1st harmonic as
0.6/0.5/0.2/0.05, respectively.
On the contrary, choosing k= 1.5, d= 1, we obtain max-

imum radiation of the fundamental harmonic, some weaker
3rd harmonic and very weak higher harmonics (see Figs
4–7). Thus, our analysis allows choosing optimal values of
the undulator parameters for undulators, specifically de-
signed for high or low harmonic generation.
The comparative behavior of various harmonics is not in-

fluenced by the number of periods, which is evident from
Figures 8 and 9. The increase of N just expectably raises
the intensities.

4.1. Suppression of Undesired Harmonics

Interestingly, the values of d≈ 0.5 reduce the radiation of all
high harmonics in the undulator with h= 3 and it is not
sensitive to k and N (compare Figs 5–9). This fact allows ef-
fective suppression of high-harmonic emission. Apart from
that with the help of the plots in Figures 4–7 one can
easily choose parameters d and h of the two-frequency undu-
lator to obtain the best desired harmonic profile, it is worth
noting that complete elimination of the 3rd harmonic is pos-
sible! In some applications, for example, in FEL with mir-
rors, the radiation of high harmonics can be harmful and
the clean emission of the 1st harmonic is required. This
can be achieved in a symmetric helical undulator with
equal each other magnetic fields and periods, which produce
circular polarized single harmonic. However, the emitted

Fig. 4. The dependence of the fundamental n= 1 UR harmonic intensity on
the amplitude of the second periodic undulator field d and on the undulator
parameter k for h= 3, N= 150. (Scaled by c/5 · 104 e2γ2).

Fig. 5. The dependence of the 3rd n= 3 UR harmonic intensity on the am-
plitude of the second periodic undulator field d and on the undulator param-
eter k for h= 3, N= 150. (Scaled by c/5 · 104 e2γ2).

Fig. 6. The dependence of the 5th n= 5 UR harmonic intensity on the am-
plitude of the second periodic undulator field d and on the undulator param-
eter k for h= 3, N= 150. (Scaled by c/5 · 104 e2γ2).
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frequency in such device is lower than in a planar undulator
with single row of the same magnets, because the effective
value of k2 in a helical undulator becomes double of that of
the planar undulator: k2eff = k21 + k22 = 2k2.
In the cases, when the cleanest possible fundamental fre-

quency is needed and it should possibly be high, the two-
frequency undulator Eq. (4) with h= 3 can satisfy the
demand. We choose k= 1.5 for the maximum of the 1st har-
monic according to Figure 4. Then, we find numerically that
the 3rd harmonic is totally suppressed I3= 0 for d=
0.48061668 (see Fig. 5). The radiation of higher harmonics
is strongly suppressed: I7≈ 0.5 10−3, I5≈ 1.5 10−2, as com-
pared with the intensity of the fundamental frequency I1≈
1.5 10−1. Similarly radiation of other harmonics can be
minimized.

4.2. Enhancement of High Harmonics

One of the main arguments for two-frequency undulators is
their ability to enhance high-harmonic radiation. For exam-
ple, for the undulator with h= 3, N= 150 periods, the 5th
harmonic is at its maximum for k≈ 1.75÷2 and d=−1
(see Fig. 6); its intensity exceeds 10−5 c/e2γ2 units. For
k= 2 the intensities of other high harmonics are at their max-
imum too, while the fundamental frequency is rather weak.
Thus, the set of values k= 2, h= 3, d=−1 in the double fre-
quency undulator is favorable for applications, where high
harmonics are requested, such as SASE FEL and HGHG
FEL. The 7th harmonic exhibits similar to the 5th harmonic
behavior; we omit its plot for brevity. The comparative inten-
sity of the harmonics for k= 2, h= 3 is seen in Figure 10.
We observe that the intensities of the 5th and of the 7th har-
monics for d=−1 exceed that of the fundamental frequency
by more than one order of magnitude!
Supposed we can build short period undulator structure,

which forms the second periodic magnetic field in Eq. (4),

Fig. 7. The dependence of the 7th n= 7 UR harmonic intensity on the am-
plitude of the second periodic undulator field d and on the undulator param-
eter k for h= 3, N= 150. (Scaled by c/5 · 104 e2γ2).

Fig. 8. Dependence of the 3rd harmonic intensity on the period number N.

Fig. 9. Dependence of the 5th harmonic intensity on the period number N.

Fig. 10. The dependence of the intensities of UR harmonics n= 1 – red line,
n= 3 – green line, n= 5 – blue line and n= 7 – lilac line on the amplitude of
the second periodic undulator field d in the undulator with k= 2, h= 3, N=
150. (Scaled by c/5 · 104 e2γ2).
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the question rises how much the long period structure in Eq.
(4) helps harmonic radiation. To answer it we compare the
obtained intensity of high-harmonic radiation from the two-
frequency undulator with that, obtained from the planar un-
dulator Eq. (4), where the long period λu field is absent,
that is, from the undulator of identical length L, containing
only the short periods λu/h with the magnetic field strength
dH0. Let us inspect the 3rd harmonic intensity. For k= 1.5,
where the 3rd harmonic is at its maximum (see Fig. 5),
d =−1, h= 3, N= 150 we find the intensity from the two-
frequency undulator I3 twoFreq= 0.378761. Same length of
the second periodic field alone yields the value I3 singlFreq=
0.234532. The advantage of the two-frequency undulator in
terms of pure intensity is obvious! Further improvement can
be made by constant magnetic constituents as described in
what follows.

5. LOSSES IN THE RADIATION OFHARMONICS IN
THE TWO-FREQUENCY UNDULATOR

The length L= λuN of the undulator matters as well as k∝
λuH0 and the number n of the UR harmonic. It is interesting
to inspect the effect of the mutually opposite magnetic field
Hd ≅ −κH0 sgn x on both sides of the undulator, imposed
according to Eq. (8) to reduce the beam divergence. This
effect was recognized in Zhukovsky (2014c), where vertical
constant magnetic component was shown to reduce the hor-
izontal divergence. In Figure 11 we show the line shape of
the 3rd harmonic in the two-frequency undulator Eq. (5) with
N= 150 undulator periods λu with k= 1.5, N= 150, d=−1,
h= 3, with account for the compensating field Hd, beam
energy spread and divergency: γψmax= 0.1,

���
σε

√ = 5 · 10−4,
plotted versus N and versus the factorized field parameter κ ×
104 and nn. The intensity is plotted in absolute units versus

the detuning parameter nn and the factorized field parameter
κ × 104.

We observe that in the presence of the field Hd ≅ −0.6·
10−4H0 sgn x the spread of the 3rd n= 3 harmonic reduces
and its frequency returns to the ideal from the detuning in
nn=−2 due to the divergency in γψmax= 0.1. Similar
effect can be observed for the 5th n= 5 harmonic in
Figure 12, which intensity is plotted versus N and versus
the factorized field parameter κ × 104 and nn. Most effective
in this case appears the fieldHd ≅ −0.55·10−4H0 sgn x. The
improvement of the intensity in 20–30% can be achieved (see
Fig. 11, 12 for κ= 0 and κ≈ 0.6 10−4). For example, the in-
tensity of the 3rd harmonic rises from I3= 0.378761 to
I3corr= 0.50674.

The intensity of the UR evidently depends on the length of
the undulator. However, homogeneous and inhomogeneous
broadening contributions unavoidably accumulate along the
undulator length and reduce the gain in the undulator. To
demonstrate this effect we plot the UR intensity of the 5th
harmonic in the undulator Eq. (5) for the number N of its
λu long periods versus the detuning parameter nn. In Figure 13
we plot I(N, nn) and account for the following very low beam
energy spread and divergency: γψmax= 0.1,

���
σe

√ = 10−5.
We observe the growth of the intensity of the spontaneous
UR along the undulator, plotted versus the number of the un-
dulator periods N and versus the detuning parameter nn. In
real life the UR intensity of the 5th harmonic is much
lower because of the realistic inhomogeneous and homoge-
neous losses are rather γψmax= 0.1,

���
σε

√ = 5·10−4, so that
we obtain very different figure for the 5th harmonic when ac-
counting for them (see Fig. 14). We observe that ≈3 times
more intense radiation for N= 150 in Figure 13 than in
Figure 14, where homogeneous and inhomogeneous broad-
ening contributions, accumulated along the undulator,
reduce the harmonic intensity, plotted versus N and versus nn.

Fig. 11. The shape of the UR line of the 3rd n= 3 harmonic in the undulator
Eq. (4) with k= 1.5, N= 150, d=−1, h= 3, with account for the beam
energy spread and divergency γψmax= 0.1,

���
σε

√ = 5 · 10−4 in the presence
of the correcting magnetic fieldHd = −κH0 sgn x. The values are factorized
by c/5 · 104 e2γ2.

Fig. 12. The shape of the UR line of the 5th n= 5 harmonic in the undulator
Eq. (4) with k= 1.5, N= 150, d=−1, h= 3, with account for the beam
energy spread and divergency γψmax= 0.1,

���
σε

√ = 5 · 10−4 in the presence
of the correcting magnetic fieldHd = −κH0 sgn x. The values are factorized
by c/5 · 104 e2γ2.
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Growth of the intensity of the 3rd UR harmonic in the two-
frequency undulator, influenced by broadening, is shown in
Figure 15 for comparison with that of the 5th harmonic. It
is plotted versus the number of the undulator periods N and
the detuning parameter nn. Note that the 3rd harmonic
keeps the shape better and grows faster with rising N than
the 5th one.
Stimulated UR from the two-frequency undulators can be

calculated with the help of FEL handbooks (see, e.g., Colson
et al. (1993); Dattoli et al. (2007)), based upon the above ob-
tained results for the spontaneous UR and on the design of
the FEL. We make use of Dattoli et al. (2007) and for high-
gain SASE FEL, we simulate the emission of the harmonics
from the two-frequency undulator Eq. (4), accounting for the
homogeneous and the inhomogeneous losses along its
length.

The power of FEL radiation along the undulator with ac-
count for the losses is plotted in Figure 16. We assume the
beam of Siberia 2 installation in the high quality regime
with the energy E= 1.3 GeV, spread

���
σe

√
≅ 3·10−4, diver-

gency γψmax= 0.07, and the undulator with the period
λu= 1 cm, to obtain the fundamental harmonic radiation
length λ∼1 nm. Note as the 3rd harmonic vanishes for d=
0.48061668 and k= 1.5; the 5th harmonic remains, although
not being so strong (see Fig. 16). Its power is more than one
order of magnitude lower than it would be in the ideal case
without losses. The saturation of the fundamental harmonic
at MW power occurs at ∼15 m and the 5th harmonic reaches
kW power. Moreover, the two-frequency undulator generates
roughly 30% more intense 5th harmonic than a proper ultra-

Fig. 14. The intensity of the 5th UR harmonic n= 5 versus the number of
periods N in the undulator with k= 2, the beam energy spread and diver-
gency γψmax= 0.1,

���
σε

√ = 5 · 10−4, factorized by c/5 · 104 e2γ2.

Fig. 15. The intensity of the 3rd UR harmonic n= 3 versus the number of
periods N in the undulator with k= 2, the beam energy spread and diver-
gency γψmax= 0.1,

���
σε

√ = 5 · 10−4, factorized by c/5 · 104 e2γ2.

Fig. 13. The intensity of the 5th UR harmonic n= 5 versus the number of
periods N in the undulator with k= 2, the beam energy spread and diver-
gency γψmax= 0.01,

���
εe

√ = 10−5, factorized by c/5 · 104 e2γ2.

Fig. 16. Evolution of two first non-vanishing SASE FEL harmonics along
the two-frequency undulator with k= 1.5, h= 3, d= 0.48061668.
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short period single frequency undulator of the same length,
constructed to generate it at its fundamental frequency.
So, the 3rd harmonic is cut off completely by the choice of
d= 0.48061668 for k= 1.5; the 5th FEL harmonic although
expectedly weak, is present in the UR spectrum. Enhance-
ment of both the 3rd and the 5th harmonics can be achieved
by choosing d= – 1 (see Fig. 10). Their amplitude exceeds
that of the fundamental harmonic. Even small values of the
energy spread

���
σε

√
and of the divergence γψmax reduce the

intensity of high-harmonic radiation.

6. CONCLUSIONS

Employing generalized special functions, we obtained accu-
rate expressions for the UR intensity and spectrum with ac-
count for major sources of broadening. The beam energy
spread and the angular divergency may produce comparable
with other broadening contributions. The effect of the cons-
tant magnetic components can be of the same order. The an-
gular divergency can be partially compensated by half angle
if mutually opposite constant magnetic components are im-
posed on both sides of the undulator axis. The proper strength
of the fieldHd has been determined in Eq. (8). Such fields are
very effective for high harmonics n= 3, 5, etc. Complete
compensation cannot be achieved, since any additional mag-
netic field eventually disrupts the coherency of the on-axis
electron oscillations. These effects are more pronounced in
long undulators; they can reach and exceed the electron
beam energy spread in undulators with N> 150 and k> 1.
Relevant line broadening may be favorable for the FEL mir-
rors, protecting them from the hard components of the spec-
trum. Same can be viewed as disadvantage in SASE FEL and
HGHG schemes, where high harmonics are needed. The
tuning of the harmonics in two-frequency undulators and
the limitation of the harmonic gain was demonstrated. Opti-
mized values for the second periodic field in the two-
frequency undulator Eq. (4) found for cancellation of the
3rd harmonic and simultaneous amplification of the 5th
and reduction of the 7th harmonics. Even for high-quality
beam, the losses of the intensity due to comprehensive broad-
ening may amount to 50% for the 5th harmonic. For the high-
quality beam with the beam energy spread

���
σe

√ = 3 · 10−4

and the divergency γψmax= 0.07 we have obtained for a
SASE FEL the reduction by one order of magnitude of the
high-harmonic power.
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