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Abstract

The behaviour of duopolists is considered within a framework that allows for
flexibility of the adopted strategy against the rival. In a difficult external climate,
a firm may concentrate on its own profit, whereas in a more favourable external
climate, it may adopt a more aggressive attitude towards the rival. The strategy
considered in this paper permits this flexible approach. The market functions are
kept general to allow the widest interpretation of the results.

1. Introduction

Duopoly and oligopoly problems have received extensive study by economists
since the work of Cournot [2]. The reason for this is probably that most indus-
tries in the Western Economies can be approximated by either a duopoly or an
oligopoly model.

A major deficiency of duopoly and oligopoly models is that they assume a
fixed behaviour of the competitors. This is clearly unrealistic. In a difficult sales
period, a firm may concentrate solely on its own immediate profit. In a more-
favourable climate, it may decide it can afford to wage a war on its rivals, in an
attempt to secure a superior position in the industry. If this attempt fails, the
firm may revert to a more conciliatory behaviour towards its rivals. A model of
a duopoly or an oligopoly thus needs to have this flexibility of strategy built into
it.

A model which has some of this flexibility was used by Bishop (1] in the anal-
ysis of a duopoly model. He examined the case of duopolists, with constant
and equal average costs, producing a homogeneous product subject to a linear
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demand. The duopolists are quantity setters, simultaneously setting quantities
which are then sold at the appropriate price determined from the demand func-
tion. No verbal communication between rivals is allowed and no side payments
occur.

Bishop proposed that each duopolist have a reaction schedule to the other’s
output. This reaction schedule gives a competitor’s output as a function of the
rival’s output. It has three branches. Along the first, or conciliatory branch,
a duopolist attempts to maximise the combined profit n; + w3, where =; is the
profit of the ith duopolist. Consequently, as his rival increases his output, the
duopolist must decrease his own output. On the second, or antagonistic branch,
a competitor more or less matches his rival’s increased outputs with his own
increase in output. A competitor tries to ensure that, even if he suffers in
the process, the opposition gets no more than what the competitor thinks his
rival’s share should be. The third, or limiting branch, involves a point beyond
which a competitor will not increase his warfare output. He may feel that to
go beyond this point places too high a cost upon himself. In transferring from
the antagonistic branch to the limiting branch, a competitor’s strategy changes
from placing direct pressure on his rival to minimising his own losses, whilst not
conceding to his rival’s demands.

The eventual outcome of the warfare cannot be rationally deduced. It may
depend on the tempers of the two competitors-two stubborn competitors may
adopt a permanent warfare stance against each other. The duration of the
warfare could also depend on the competitors’ willingness and ability to sustain
recurrent losses. Even if he is neither able nor willing to sustain such losses, a
competitor may wish to convey to his rival the opposite impression. Thus an
element of “bluffing” is introduced. Bishop comments that the resistance of a
competitor to his rival’s demands could stem from the suspicion that the rival
is bluffing. As bluffing is not easily discernible, this may also give rise to a
stalemate.

The existence of a long-term stalemate raises the question of the stability of
such solutions. Intuitively one feels that a system with two aggressive opponents
would be quite unstable. We shall be concerned with this question in this paper.
It will be shown that, with suitable limits on the aggression of each competi-
tor, stable equilibrium solutions occur in the warfare state. Hence long-term
stalemates are a distinct possibility.

Finally, it should be noted that we shall not be considering the general ques-
tion of entry and exit. We are however, considering a possible warfare strategy
to be used by existing competitors. A consideration of the problem of exit and
entry may be found in, for instance, Friedman (3].
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2. Demand, cost and profit functions

Rather than introduce explicit functions to describe the demand and cost
functions pertaining to the market, as in Hathaway et al. [4], we shall use general
unspecified functions throughout. Some assumptions about the properties of
these functions are necessary in an attempt to make them reflect realistic market
behaviour.

Let z;(t) be the output of competitor ¢ at time t. The total industry output
is then given by zr(t) = } i, z:(t), n being the number of firms.

The market demand function, p, is assumed to be a function of z7. The
specific properties attributed to p = p(zr) are as follows:-

p(z) >0 for all z > 0, (1a)
Dp(z) <0 for all z > 0, (1b)
D?p(z) >0  forallz >0, (1c)

where D, without any subscripts, denotes ordinary differentiation and D? second
order differentiation. These properties assert that the demand function is a
positive, decreasing and concave function respectively.

The total cost incurred by competitor 7 is given by the function C; = Ci(z;).
Hence we are assuming that a competitor’s costs depend solely on his own output.
In the following analysis, only the marginal costs and the rate of change of
these marginal costs will appear. Hence the fixed costs of a competitor may be
neglected and our cost function may be considered as the total variable cost. This
(variable) cost function is assumed to be everywhere non-negative and marginal
costs are a non-increasing function of output; that is

Ci{z;) >0 forall 2; >0,
and
D?Ci(z;) 0 for all z; > 0.

The following two assumptions will also be used in the subsequent analysis.
These are:-

Dp(:cT) - D2Ci (:l:,') <0, (2)
and

.’I:,'D2p(IT) + Dp(zr) < 0. (3)
Assumption (2) states that a competitor’s marginal costs cannot decline as fast
as price. Assumption (3) asserts that the marginal revenue of any competitor is
a decreasing function of the total output of his competitors.

The profit function of competitor ¢, 7y, is given by

7y = z;p(zT) — Ci(Zs).
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The marginal profit function is given by
D;ni(z1,22) = 2;Dp(zT) + p(zr) — DCi(2:);  1=1,2,

where Dym; denotes the partial derivative of m; with respect to the kth variable.
Assumptions (2) and (3) are sufficient to ensure that a competitor’s marginal
profit is a decreasing function of his own output. We see this by calculating the
rate of change of a competitor’s marginal profit with respect to his own output.
This gives

D; imi(z1,z2) = 2;D*p(zr) + 2Dp(z1) — D2Ci(7:)
= {z:D%p(z7) + Dp(zr)} + {Dp(z7) — D*Ci(=:)},
where Dy ;m; denotes the partial derivative of Dym; with respect to the /th vari-
able. The terms within the braces are each negative by assumptions (2) and (3).
Hence we have
D,-,,-m(a:l,a:g) <0.

The profit function of competitor ¢, x;, is thus a convex function of the competi-
tor’s own output, x;.

3. Strategies

The warfare strategy is such that an oligopolist attempts to maximise the
difference between his own profit and a weighted sum of his rival’s profits. Com-
petitor 7 thus aims to maximise

1
™ — — Zaiﬂr,-.
J#i

In the case of a duopoly, this reduces to competitor 7 attempting to maximise
T — @i, ,7=1,2; ¢t #7. (4)

The scalar a; is an indication of the aggressiveness or otherwise of competitor
7. If a; < 0, competitor 7 is attempting to maximise a weighted sum of his own
and his rival’s profits. When a; = 0, competitor 7 is attempting to maximize
his own profit, disregarding any improvement or otherwise in his rival’s profit.
If a; > 0, competitor 7 is adopting an antagonistic behaviour of attempting to
maximise a weighted difference of his own and his rival’s profits. If each duopolist
behaves in this way, that is, a; > 0, ¢ = 1,2, we may anticipate that unstable
equilibria occur. Stable equilibria may still occur however, as positive profits
may be achieved when a; > 0, 7 = 1,2. However, if ajas > 1, it is easily shown
that the expressions given by (4) cannot both be positive.
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A choice of a; < —1 would be irrational and self-defeating. We thus assume
that
a; > -1, 1=1,2. (5)

We now restrict ourselves to the duopoly problem of maximising (4). Com-
petitor z thus calculates
Di(n; — a;mj) = 0,

given
D; i(m; — aﬂl’_,') < 0. (6)
Performing these calculations, we find
(zi — a;z;)Dp(z1 + z2) + p(z1 + 22) — DCi(z:) =0, (7)
with
(zi — a;z)D*p(z1 + 23) + 2Dp(z1 + 22) — D*Ci(z;) < 0. (8)

We now assume that there is a unique solution z} = z}(z;, ¢;) maximising
(4) and hence satisfying (7) and (8). Implicitly differentiating (7) we find
__ A(z} —aiz;) D?p(z} +25) + (1 - ai) Dp(z; + 2;)}

{(z; — aiz;)D?p(z} + z;) + 2Dp(a} + ;) — D?Ci(a})}’

Dizi(z5,a:) =

or
ai{z; D%p(z} + z;) + Dp(z; + )} — {z} D?p(z} + z;) + Dp(z} + z;)}
{(z} — asz;)D?p(z} + z;) + 2Dp(z} + z;) — D2Cy(x})}

Dizi(zj,a;) =

9
From (7) it can be seen that when both duopolists have the same marginal
costs and are both joint profit maximisers (DC, = DC, and a; = a2 = —1) then

z7 and z3 have identical function forms. Hence such a perfectly symmetrical sys-
tem possesses a symmetrical collusive solution. Each duopolist may be content
with or resign themselves to this equal market share situation. Alternatively,
one or both might desire a larger market share and increase their aggressiveness
towards the rival to try and achieve this aim.

It is unlikely that each duopolist has identical marginal costs or that they
exhibit identical levels of aggression. In this case, the expression (9) needs to
be examined. The denominator of (9) is just the expression in (8) which is
negative. Each term in the numerator is negative by assumption (3). Hence
whenever the aggression coefficient a; is negative, the slope of the reaction curve
z; is always negative. This reflects the co-operative behaviour corresponding to
a; < 0. When the competitor j increases his output, z;, competitor ¢ decreases
his output in order to maximise the joint profit m; — a;x;.

When a; = 0, competitor ¢ is attempting to maximise his own profit, 7;. In
this case, 7 = z](z;) is just the familiar Cournot reaction curve for competitor
1. Again this curve always has a negative slope.
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The properties of the reaction schedule are more complicated, and more in-
teresting, for the case of a; > 0. The qualitative behaviour can most easily be
seen for the rivalistic case of a; = 1. In this case, D;z} has the same sign as
z] — z;. Then the assumed properties of the market functions are such that if
zj > zj, then 0 < Dyzj < 1and if z7 < z;, then -1 < D1z} < 0. If z} = z;,
then Dz} = 0.

The warfare strategy for a rivalistic firm depends on the relative market shares
of the two firms. If such an aggressive firm has the greater market share, then its
optimal behaviour is to follow increases in its rival’s output with increases in its
own output but not to match such increases. If the firm has the smaller market
share, its optimal strategy is to decrease its output when the rival increases its
output, but the decrease is to be less than the rival’s increase.

In either case, the strategy is seen as one of attempting to control total market
output in such a manner as to place the maximum pressure on the rival. For
the firm with the smaller market share, this increase in market output has to be
controlled by decreasing its own output. Such output decreases are not usually
associated with an aggressive firm. Indeed, from the opposition’s view, it will
not be obvious which strategy the firm is adopting. Along a co-operative firm'’s
reaction schedule (a; = —1), total market output is always decreasing. That is,
increases in one firm’s output are more than compensated by decreases in the
co-operative firm’s output. It is thus obvious to the rival that a firm is adopting
a co-operative approach.

However, for any Cournot firm (a; = 0) or a somewhat aggressive firm (a; > 0)
with the smaller market share, decreases in its output do not match the other
firm’s increases. This can also occur for a firm that is mildly co-operative; that
is a firm with an aggression coefficient that is negative but near zero. Hence the
other firm cannot be confident it knows the level of aggression being adopted by
its rival.

4. Stability analysis

In this section we present the stability analysis of the duopoly system, with
both competitors using the strategies outlined above.

Given competitor j’s output z;(t), the output z7 (z;(t), a;) is the output com-
petitor 7 would like to produce. However, in practice, a large change in output
from z;(t) to z}(¢t) may not be possible. By comparing z;(t) to z}(t), competitor
7 will see in which direction his output needs to change. With this in mind, we
use the adjustment process employed by Fisher, namely

Dx,'(t) = k,’(.’E: — .’E,’), 1=1,2, (10)

where Dz;(t) denotes differentiation with respect to time.
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The coefficients k; are positive scalars. The adjustment process is thus de-
signed so that firm ¢ is always adjusting its output towards z; (¢).

The constant k; may be interpreted as a measure of the “speed of adjustment”
of firm 7. Alternatively, it may be thought of as a “confidence factor”, indicating
the degree of confidence firm ¢ has in its theoretical result z}(¢t). Hence k; = 1
would indicate full confidence in the calculated figure.

Equilibrium points of (10) are points

z1(Bi) = @i, and z3(a;) = Gi. (11)

We will assume that the two curves z] and z intersect at a finite number of
points (a;, B;) and include the possibility of no intersection point at all. This
latter case is interesting in that it leads to one of the duopolists producing zero
output and the successful duopolist, say competitor ¢, producing his monopoly
output of z7(0). Which of the two duopolists is forced to a zero output is
determined by the relative positions of the two reaction curves. This positioning
depends in turn on the particular demand and cost curves pertaining to the
duopoly and the aggressiveness factors a;.

The equilibrium points (e, f;) will be a series of consecutive stable and unsta-
ble points. This is easily seen by considering the sign of Dz; and Dz, along the
reaction curves z] and z3. Clearly then the equilibrium points can only be lo-
cally stable or unstable. This precludes an analysis based on global techniques,
such as that in Seade [6]. The analysis of local stability properties presented
below may be found in a text such as Hirsch and Smale [5].

To investigate the stability of the system at equilibrium points, we linearise
the differential equation (10) about the point ¢; = (a4, 5;).

If we introduce the change of variables, u = z; — a; and v = 25 — 3;, then the
system of equations (10) may be written

[DU(t)] _[ —ky lex’{(ﬂi)] [U

- kQDI; (a,-) —k, |4

DV (t) ] + non-linear terms. (12)

The eigenvalues of D f(e;) are thus
Mi = —5(ky + ko) £ 3{(k1 — ks)? + 4k1k2q:}/%,

where, for notational convenience, we have introduced the term
¢ = Dzi(B:) - Dxj(c). (13)
If (k1 — k2)? + 4k1kaq; < 0, the equilibrium point (a4, 3;) is asymptotically

stable, as the eigenvalues are complex with negative real parts.
For unstable equilibria to occur, it is necessary that (k; — k2)? + 4k1k2g; > 0.

In this case A; and A_ are real, distinct eigenvalues.
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By calculating the magnitudes of the two eigenvalues, it is easily seen that for
stability to occur, it is necessary that ¢; < 1 and sufficient that ¢; < 1.

The question arises as to what effect the aggression coefficients, a; and as,
have on the stability of an equilibrium point (o4, ;). We have developed the
necessary conditions and sufficient conditions for such a point to be stable, in
the form ¢; < 1 and ¢; < 1 respectively, where ¢; = D;z}(8;,a1)D1z5(ai, az).
From (9) we have Dz} (fi,a1) and Dy z3(a;,az) as functions of ¢4, §; and a; or
a2 respectively. Thus we can write the inequality ¢; < 1 as

q;i = G(aiaﬂiaal) ' H(ai’ﬁi,GQ) < 13

where G(ai, 8;,a1) = Di121(0i,a1) and H(ay, Bi,a2) = Di23(,a2). But o
and g; are both functions of ¢; and as. Thus ¢; = ¢;(a1,az2). How g; varies as
either a; or ay is varied is rather complicated, due to a change in @; causing a
change in both a; and g;.

The convexity of the curves z} and z3 at the point (a4, ;) as well as the
slopes of these two curves at the point (a;, 8;) plays a part in determining the
effect on ¢; of a change in a;. From this it is obvious that the effect is difficult to
describe. However some partial results may be obtained by using the expressions
(9) evaluated at (o, 8;) for the functions G and H. The inequality ¢; < 1 then
becomes

(a1a2 — 1)(0 + Bi)Dp(o + B;) D?p(ai + B;)
+ [(a1 — 1){ag — 1) — 4|{Dp(a; + 5;)}*
< — D?Cy(a:){(B: — a20:)D?p(a + i) + 2Dp(a + B;) — D*Ca(B;)}
— D2C2(B:){ (0 — a18:)D?p(ai + Bi) + 2Dp(a; + fi) — D*Cr(ai)}
— D201 (ai) d DQCg(ﬂ,‘). (14)
If both competitors have constant marginal costs, inequality (14) may be
reduced to
(a102 — 1)(a; + Bi) - D?p(c + Bi) + [(a1 — 1)(a2 — 1) — 4] - Dp(e + B:) > 0. (15)
This in turn may be expressed in the form
(a1a2—1)[(cs +Bi) D*p(cs + B;) +2Dp(a; + Bi)] — (a1 +1)(az +1) Dp(a; + ;) > 0.
(16)
By assumption (3) we have a;D%p(a; + Bi) + Dp(es + fi) < 0 and
B:D%p(a; + Bi) + Dp(a; + ) < 0. From assumption (1b) we have
—Dp(a; + Bi) > 0 and assumption (5) implies that (1 + a;)(1 + a2) > 0. Hence
inequality (16) will be satisfied when ajas — 1 < 0 but not both a; and a2
are equal to —1. If a; = ap = —1, then (16) is identically zero. The case of

a; = a2 = —1 and constant marginal costs needs to be considered separately.
Referring back to (9), we see that if D2C; = 0, then Dz} (z;,—1) = —1. Hence
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the curves z} and z3 are parallel. From (7), we observe that if the marginal
costs of the duopolists are the same, then 2} and zj are coincident lines. If the
marginal costs are different, then the curves z} and z are distinct parallel lines.
Thus we have either a continuum of intersection points of the curves z} and z3
or no intersection points. In the first case, as Bishop pointed out, we cannot
predict the outcome. If firm ¢ maintains its co-operative strategy of a; = —1
and its rival increases its output, then firm ¢ must lower its own output by the
corresponding increase of its rival’s output. In the second case of no intersection
point, all trajectories tend to one of the monopoly points z7(0) or z3(0). In ac-
tual fact, the trajectories tend to the monopoly point with the lowest marginal
cost. Clearly, it is self-destructive for the firm with the highest marginal costs,
finding itself in the above situation, to be so co-operative. By doing so, it is
obligingly eliminating itself from the market.

If both competitors have decreasing marginal costs, inequalities (15) or (16)
are necessary conditions for stability. In particular, if a; = a3 = —1, we see
that inequality (14) is not satisfied. Further, from (9), it readily follows that
gi(—1,~1) > 1. Then all equilibrium points corresponding to joint-maximisation

strategies (that is a; = a; = —1) are unstable. As there are no closed trajectories
anywhere in the phase-plane, the trajectories must tend to one of the monopoly
outputs.

We found above that ¢; < 0 is a sufficient condition for stability. For ¢; < 0,
the numerators of D;z}(8;,a1) and Dyz3(cy,az) must have opposite signs. If
we let

A = a;D?*p(vi + Bi) + Dp(osi + Bi),
and

B = ;D’p(a; + i) + Dp(ai + B5),
then we see, from (9), that ¢; < 0 is equivalent to

[a1B — A] - [aA~ B] <0,

or

—-a132 - a2{12 + (1 + alag)AB S 0.
From the theory of quadratic forms, we can deduce that ¢; < 0 is satisfied for
ay,a2 > 0, ajaz = 1. In particular, the rivalistic case of a; = az = 1 is always
stable. This analysis for ¢; < 0 is valid regardless of whether the marginal costs
are decreasing, constant or increasing—the rivalistic case is stable in all cases.

5. Conclusion

The analysis has been presented of a duopoly model which incorporates a
degree of flexibility in behaviour of the firms. This flexibility is such that a
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firm can vary its strategy from co-operation through to antagonism towards the
rival. One obvious conclusion is that if both competitors myopically attempt to
maximise their joint profit by adjusting their own output, the resulting system is
unstable and will in general lead to the elimination of one firm from the market.
Clearly it is not in the interest of this firm to persist with this strategy.

All equilibrium points are stable for the rivalistic strategies of a; = a2 = 1.
This result holds regardless of the cost functions, that is, regardless of whether
the marginal costs are increasing, decreasing or constant.

This persistence with antagonistic behaviour could be caused by a number of
factors. For instance, one of the duopolists may believe that, by attacking his
rival strongly enough, thereby causing both competitors to suffer a loss, he may
eventually drive the rival from the market. Another reason for the persistent
aggressive behaviour may be due to an element of bluffing. The suspicion that
his rival’s aggressive behaviour is a bluff may induce a competitor to maintain
his own aggressive stance, hoping eventually to call his opponent’s bluff. The
model does not include any mechanism for a competitor to withdraw from such
a long-term stalemate. In practice, he may not be able to sustain this stalemate
position indefinitely if this entails a protracted loss.

From the stability analysis we found that a sufficient condition for stability is
¢: <1 and a necessary condition for stability is ¢; < 1.

The algebraic expressions ¢; < 1 have a geometric interpretation concerning
the manner in which the two reaction curves zj and zj intersect at an equilibrium
point. It will always be satisfied if one of z] and z3 is increasing and the other
is decreasing. While it was not possible to give definitive economic criteria for
q; < 1, some interesting results were found.
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