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Abstract

Motivated by work of Garsia and Lamperti we consider null-recurrent renewal sequences with
a regularly varying tail and seek information about their rate of convergence to zero. The main
result shows that such sequences subject to a monotonicity condition obey a limit law whatever
the value of the exponent a is, 0 < a < 1. This monotonicity property is seen to hold for a
large class of renewal sequences, the so-called Kaluza sequences. This class includes moment
sequences, and therefore includes the sequences generated by reversible Markov chains. Several
subsidiary results are proved.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 60 K 05;
secondary 60 J 10.

1. Introduction

Let {/„}, n = 1,2,..., be a sequence of real numbers with

(1.1) / n > 0 , X)/» = 1 ' g.cd.{n:/n>0} = l.
n=l

Define another sequence {un}, n = 0,1,2,..., by

(1.2) uo = l, un =
fc=i

It can be seen that 0 < «„ < 1. The sequences {/„} and {un} are related to
Markov chain theory as follows: consider a recurrent aperiodic Markov chain
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{X n , n > 0} with state space the integers and P(X0 = 0) = 1. Let T be the 
time of first return to the origin. If we put 

(1.3) P(T = «) = / „ , n > 1, 

then (1.1) is satisfied (the second condition there is equivalent to recurrence of 
the process and the third to its aperiodicity). Let 

(1.4) P(Xn = 0\Xo = 0) = un. 

Then {un} satisfies (1.2). 
The classical renewal theorem [2] states 

(1.5) lim un — 

where the right side is taken to be zero when the denominator diverges. In 
Markov chain terminology the denominator diverges when the chain is null-
recurrent, and this is the case of interest in this paper. 

Garsia and Lamperti [5] studied the rate of convergence to zero in (1.5) in 
the null-recurrent case when T is in the domain of attraction of a stable law of 
index a, 0 < a < 1. Their main result (Theorem 1.1) states that if 

oo 

(1.6) Y, h = n-aL(n), 0 < a < 1, 
k=n+l 

where L(n) is a slowly varying function, then 

(1.7) hminfn 1 aL(n)un = 
n—»oo 7T 

and if | < a < 1 then (1.7) can be sharpened to 

l-ar' <• sin7TCY (1.8) lim n1-aL{n)un = 
n—>oo 7T 

The principal result of this note (Theorem 3.1) is the observation that if 
the renewal sequence {un} satisfies the monotonicity property (3.2), then (1.6) 
is sufficient to imply (1.8) without regard to the value of a, 0 < a < 1. In 
particular it follows that any renewal sequence {u„} such that {unk} is a Kaluza 
or moment sequence for some fixed k > 1 (see Section 4) satisfies (1.8) when 
(1.6) is true; this includes the case of reversible Markov chains (Corollary 4.1). 

Section 2 presents the mostly well-known tools on rates of growth needed for 
the rest of the article. Finally, Proposition 3.1 gives some information on the 
boundary cases a — 0 and a = 1, including Erickson's renewal theorem (3.14) 
when a = 1. 
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2. Preliminary results on rates of growth

DEFINITION. A positive function L defined on the positive real axis is slowly
varying (at infinity) if, for each A > 0

(2-1) lim ^ = 1.
v ' t-oo L{i)
U is regularly varying with exponent p if

(2.2) U(x) = xpL{x)

with — oo < p < oo and L slowly varying. A basic reference on slow and regular
variation is [11]. We require the following results.

LEMMA 2 . 1 . Let 0 < a < 1, and let L(x) be slowly varying. Then

(2.3) ]T ±L(k) ~ -J_ n i - °L( n ) .

LEMMA 2 .2 . Let L{x) be slowly varying with

(2.4) ^ -L(k) T oo.

Then the function

(2.5)

is slowly varying, and

(2.6) _

LEMMA 2 . 3 . Let Y%=1Pk ~ naL{n), 0 < a < 1, where L(n) is slowly
varying and pn is monotone non-increasing. Then

(2.7) pn ~ ana-1L(n).

LEMMA 2.4 . Let 5Z£=1Pfc ~ L(n) where L(n) is slowly varying and pn is
monotone non-increasing. Then

(2.8) lim - ^ - = 0.
n—»oo L(n)

From (2.8) one gets

(2.9) lim nl-sp{n) = 0, for all 6 > 0.
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The above results are either all well known or easily accessible. Observe that
from [11, 4°, pages 19-21], integral test comparisons on [11, Theorem 2.1] yield
Lemma 2.1, and a similar argument using [11, Exercise 2.2] proves Lemma 2.2
(see also [4, Theorem 8.9.1]). Lemma 2.3 is part of [4, Theorem 13.5.4] or [11,
Exercise 2.8], and the latter reference yields (2.8). Then (2.9) follows from (2.8)
and

lim x*(L(x))"1 = o o for«5>0.
x—*oo

(See, for example, [11,1° and 3°, page 18].)

3. Principal results

Recall the definitions of the sequences {/n} and {un} and of the random
variable T given in Section 1. Let

oo

rn= Yl fk = P(T>n).
k=n+l

Throughout this section it will be assumed that (1.1) holds and that ET = oo
(or equivalently, J2rk diverges).

THEOREM 3.1 . Let T be in the domain of attraction of a stable law of index
a, 0 < a < 1; more precisely, suppose

(3.1) rn ~ n-aL(n)

for L(n) slowly varying. If

there exists a fixed integer k > 1 such that the sequence

{unk} is monotone non-increasing, then

Conversely, suppose (3.3) is true for some a, 0 < a < 1, andL(n) slowly varying.
Then (3.1) holds.

PROOF. The sum
(n

(3.4)
j=o

may be decomposed into the fc sums

j=o

https://doi.org/10.1017/S1446788700031098 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031098


[5] Rates of convergence for renewal sequences in the null-recurrent case 385

The monotonicity of {unk} implies t h a t the sequence {un} possesses t he s t rong
ratio limit proper ty (SRLP) (see [10]) so t h a t

(3.5) unk+i ~ unk+j

for fixed i,j, 0 < i, j < k - 1. Now (3.4) diverges, in fact, by [5, Lemma 2.3.1]
we know

3.6

Thus at least one £/,(n) diverges, and (3.5) easily implies

(3.7) Ui(n) ~ Uj(n), 0 < ij < k - 1.

By (3.6) and properties of slowly varying functions we obtain

t - l (n+Ofc-l ^-r,_ + 1 ) j f e _ 1 } a C ( n f c ) c

C — (wa)"1 sin7ra.

From (3.7) we conclude that

C{nk)<* _ j

for each i. The terms of f/o(n) are monotone non-increasing and so, by Lemma
2.3

a~1

L(nk)
Using the SRLP

proving (3.3).
To prove the converse assertion, it will be sufficient to show that if

(3.8) u.-C'Q

for some constant C, then rn ~ Cin~aL(n) for some constant C\. Below C
denotes a constant, not necessarily the same one in different relations. Since the
reciprocal of a slowly varying function is also slowly varying, (3.8) can be written
as un ~ Cna~1Li(n). Lemma 2.1 then gives
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An Abelian theorem [4, page 423] shows that the generating function U(s) of
the sequence {un} satisfies

(3.9) U(s)

Use a standard renewal Tauberian argument (for example, see [5, Lemma
2.3.1], and reverse the steps) to obtain

i=o

Monotonicity of {rn} and Lemma 2.3 allow us to deduce (3.1).
Suppose we now relax the condition on T in Theorem 3.1: let us assume that

T only has a regularly varying tail. This means that (3.1) now holds where L is
slowly varying and a is some real number. Since we are interested in the null-
recurrent case, Ylirk diverges and hence 0 < a < 1. So there are two extreme
cases, a = 0 and a = 1, not covered by Theorem 3.1. Erickson obtained the
result (3.14) for a = 1 [3]. We have the following

PROPOSITION 3 .1 . (a) Let (3.1) hold with a = 0. Then

(3.10) ^Uj-iHn))-1.
3=0

If the monotonicity condition (3.2) also holds, then
fill

(3.11) lim • — - = 0 and lim n1'8^ = 0 for all 6 > 0.
n-»oo L(n) n-»oo

(b) Let (3.1) hold with a = 1 and let

(3.12)
f
i y

Then

(3.13)

and

(3.14)

PROOF. Under (a), Lemma 2.1 and the Tauberian argument of [5, Lemma
2.3.1] cited previously prove (3.10). An argument similar to that in the proof of
Theorem 3.1 coupled with Lemma 2.4 proves (3.11).

Under (b), divergence of Ylrk implies divergence of (3.12) so that by Lemma
2.2, L\{x) is slowly varying and (2.6) is true. Again, the Tauberian argument
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easily gives (3.13). Note tha t (3.14) does not follow immediately from (3.13), for
we have not assumed monotonici ty here; we refer the reader to Erickson's proof
[3, page 266].

Remark 1. The failure of Lemma 2.3 for the case a — 0 means t h a t we are
not able to obtain the exact ra te of convergence of {un} in this case. Lemma
2.4 gives us (3.11), bu t this is unsatisfactory. The case of simple random walk
in the plane suggests improvement on (3.11) may be possible; there one has

-K ^ logn 1
> « ~ a n d " ~logn *r^ J n 7rn

Remark 2. It is perhaps not surprising that the case a = 1 can be added to
the Garsia-Lamperti range \ < a < 1 of values of a where renewal theorems
hold automatically without further conditions. Thus there is a kind of continuity
at a = 1 of the good behavior at a = 1~, although (3.3) and (3.14) are different.
Whether such continuity also holds at a = \ is an open question (see [5, page
230], the discussion following (3.4.9)).

4. Applications

Throughout this section the renewal sequence {un} is associated with the
sequence {/„} where (1.1) is assumed to be valid, and Ylrk diverges.

The sequence {un} is called a Kaluza sequence if

(4.1) u2
n < «„_! •«„+!, n > 1,

and it is called a moment sequence if there exists a probability measure v on [0,1]
with un — f0 xnv{dx), n > 0. Every moment sequence is a Kaluza sequence. The
most interesting property of Kaluza sequences in the present discussion is that
they are non-increasing. Moreover, many renewal sequences turn out to have the
Kaluza or moment properties. Perhaps the most famous case is un = (2^)2~2n

where {un} is associated with simple random walk on the line. We refer the
reader to [8] (also see [7] and [9]) for further discussion of Kaluza sequences.

A class of moment sequences arises by considering reversible Markov chains.
A chain is reversible if ir(i)p(i,j) = ft{j)p(j,i) for all i,j, where n is the invariant
measure of the chain, and p(-, •) is its transition probability (see for example [10,
page 83]). Under our assumptions, the chain is recurrent and aperiodic and has a
non-trivial tr-finite invariant measure. A result of Kendall ([6], also [10, page 83])
shows that for reversible chains u<in is a moment sequence. The monotonicity
property of Kaluza sequences enables us to apply Theorem 3.1 or Proposition
3.1 (a). We summarize this in the following corollary.
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COROLLARY 4 . 1 . Let {un} be a renewal sequence such that {unk} is a

Kaluza sequence for a fixed integer k > 1.

(a) / / ( 3 . 1 ) is valid for some a, 0<a< I, then (3.3) holds.

(b) //(3.1) is valid for a = 0 then (3.11) holds.

In particular, if {un} is derived from a reversible Markov chain, then {«2n}

is a moment (hence Kaluza) sequence, so that if T has a regularly varying tail,

(3.3), (3.11) or (3.14) holds, depending upon the value of a.

I am grateful to the referee for a careful reading of the manuscript and for

a number of valuable suggestions. Thanks are also due to Paul Embrechts for

letting me know about [5].
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