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A nonlinear ensemble-variational data assimilation is performed in order to estimate
the unknown flow field over a slender cone at Mach 6, from isolated wall-pressure
measurements. The cost functional accounts for discrepancies in wall-pressure spectra
and total intensity between the experiment and the prediction using direct numerical
simulations, as well as our relative confidence in the measurements and the estimated state.
We demonstrate the robustness of the predicted flow by direct propagation of posterior
statistics. The approach provides a unique first look at the flow beyond the sensor data, and
rigorously accounts for the role of nonlinearity, unlike previous efforts that adopted ad hoc
inflow syntheses. Away from the wall, two- and three-dimensional assimilated states both
show rope-like structures, qualitatively similar to independent schlieren visualizations.
Despite this resemblance, and even though the planar second modes are the most unstable
upstream, three-dimensional waves must be included in the assimilation in order to
accurately reproduce the wall-pressure measurements recorded in the AFRL Ludwieg
Tube facility. The results highlight the importance of three-dimensionality of the field
and of the base-state distortion on the instability waves in this experiment, and motivate
future measurements that probe the three-dimensional nature of the flow field.

Key words: high-speed flow, compressible boundary layers, transition to turbulence

1. Introduction

Hypersonic boundary-layer transition is extremely sensitive to environmental disturbances.
Accurate transition predictions are therefore challenging in uncertain environments,
especially when measurements are limited, for example for flight vehicles that are
commonly instrumented with isolated wall-pressure probes. To reduce uncertainty, the
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current work is the first to infuse isolated wall-pressure measurements from a physical
experiment in direct numerical simulations (DNS) of a Mach-6 boundary layer over a sharp
cone. The computation thus reproduces the measurements and provides an unprecedented
window into the transition process of the experiment.

Computational studies of transition on cones have focused on basic breakdown
mechanisms, and have sought to explore receptivity and to model the disturbance
environment in experiments. Simulations of fundamental and subharmonic resonant
instability waves initiated by a wall forcing yield controlled breakdown scenarios that
are suited for analysis (Hader & Fasel 2019), but they can deviate significantly from
measurements of surface heat flux and wall-pressure spectra, e.g. an order-of-magnitude
difference in wall-pressure fluctuation magnitude (Chynoweth et al. 2019). A significant
improvement was achieved by Hader & Fasel (2018), who used a simple random-noise
inflow forcing to model the receptivity processes from acoustic waves in a Mach-6 flow.
However, significant overpredictions remain: the streamwise average heat flux by 65 % and
peak wall-pressure power spectra by over a factor of 20. The above studies are valuable for
understanding canonical transition scenarios and phenomenology from the experiments.
The focus of the present work is to adopt a robust approach with objective guarantees that
the simulations reproduce experimental measurements.

The herein adopted methodology systematically uses experimental measurements to
rigorously determine the disturbance environment. Our particular focus will be the
experiments by Kennedy et al. (2022), where wall-pressure measurements were recorded
on a 7◦ straight cone with a sharp nose in the Mach-6 Ludwieg Tube facility at the Air
Force Research Laboratory (AFRL). The instrumentation layout is typical for this type
of research, with pressure probes arranged in a streamwise ray to provide time-resolved
information on streamwise amplification of instabilities; in addition, three azimuthal
probes are placed to assess axisymmetry of the pressure fluctuations. The wall-pressure
data indicate that the second-mode features prominently without full breakdown to
turbulence. Recent computations using the axisymmetric nonlinear parabolized stability
equations (NPSE) qualitatively capture the trend of the N-factor, without quantitative
agreement (Kennedy et al. 2022) or guidance on how to objectively select the upstream
disturbance spectra. Furthermore, the role of three-dimensional waves and their relative
amplitudes remain unknown since the simulations were axisymmetric.

The present approach will consider the relevant two- (2-D) and three-dimensional
(3-D) instability waves and optimize their amplitudes using a variational framework
so that their nonlinear evolution best reproduces the available measurements, thereby
establishing confidence in the entire reconstructed flow field. The following section details
the experimental set-up, numerical simulation and data assimilation framework. Section 3
presents the outcomes of the data assimilation, including an analysis of the nonlinear
dynamics from the reconstructed flow field that faithfully reproduces the measurements.
Finally, a conclusion is provided in § 4.

2. Flow configuration and methodology

2.1. Experiment and measurements
The experimental flow configuration is shown in figure 1(a). The Mach M∞ =
6.14 flow developed as part of the dynamics of a Ludwieg tube, whereby heated
(T0 = 450 K) and pressurized gas was contained in the charge tube upstream of
the converging–diverging nozzle. Once the fast-acting valve was opened, the gas
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Figure 1. (a) Schematic of the flow configuration. (b) Extended time series of the PCB pressure data and (c)
a detail for a 80 μs window. Signals are offset by 2 kPa for clarity.

accelerated through the nozzle to calculated free-stream conditions of U∞ = 904 m s−1,
T∞ = 54 K and ρ∞ = 0.0274 kg m−3, yielding a unit free-stream Reynolds number
Re∞/L = 7.11 × 106 m−1. The total test time was approximately 0.2 s, which was
separated into two approximately time-stationary periods, lasting 100 ms. Data from the
second period are analysed for this work (for detailed characteristics of the AFRL Ludwieg
Tube, see Kimmel et al. 2017; Kennedy et al. 2022).

The test article was a θ = 7◦ half-angle circular cone with a sharp nose (tip radius
rn = 0.508 mm) and a total length of 414 mm. The model was installed at zero incidence
to the streamwise direction; it was at room temperature (Tw = 300 K) prior to the
start of the experiments, and changes to the surface temperature during the brief test
time are small enough that they can be ignored. The cone was instrumented with six
PCB model 132A piezoelectric pressure sensors, positioned at four streamwise positions
{s1, s2, s3, s4} = {215, 241, 266, 291, 316} mm, measured downstream of the nose. In
addition, the s4 row has two probes offset from the primary ray of sensors by ±8.5◦ in
order to assess azimuthal dependence. Simulations and test data suggest that the effective
sensing area has a diameter of approximately ds = 0.97 mm (Ort & Dosch 2019). For
the case considered, time-resolved pressure data are available for six probes, acquired
at a frequency of 5 MHz. A sample of the measurements is shown in figure 1(b,c).
In figure 1(c), the pressure signatures show the presence of second-mode wave packets
amplifying and advecting downstream. For any instance in figure 1(b,c), the signals do
not appear to be chaotic with a broad range of time scales, suggesting the flow has not
transitioned to turbulence at the sensor locations. High-speed schlieren measurements
were also acquired, which provide additional points of validation above the wall. However,
our focus is on wall data, which are considered to be the primary modality taken during
flight.

An analysis of the experimental data can aid in the choice of inflow frequencies and
wavenumbers adopted in the data-assimilation simulations. The time-resolved pressure
measurements are Fourier-analysed using the Welch method, similar to previous efforts
(Casper et al. 2016; Kennedy et al. 2022). The window size of 80 μs (figure 1c) furnishes
103 non-overlapping Hann windows, which yields converged spectral amplitudes. The
spectral resolution was halved by combining every two frequency bins, while conserving
energy, in order to reduce the dimensionality of the data-assimilation problem. Although
the flow is instantaneously 3-D (figure 1c), it is statistically axisymmetric under nominal
conditions, i.e. zero incidence. Since the experimental set-up was nominally axisymmetric,
we assume homogeneity in the azimuthal direction and average the spectra of the three
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Figure 2. Schematic of the ensemble-variational (EnVar) data assimilation framework.

probes at s4. The post-processed measurements are then concatenated into two vectors,

mS = [p̂p̂�(s1, f1), . . . , p̂p̂�(s4, fNf )]
T, mI =

[∑
i
p̂p̂�(s1, fi), . . . ,

∑
i
p̂p̂�(s4, fi)

]T
,

(2.1a,b)

representing the individual spectral amplitudes and overall intensity of the signal.
The experimental spectra and signal intensity, used in the data assimilation, are shown

with symbols in figure 2. At position s1, the spectrum is dominated by a peak between
f = 225 and 275 kHz, which is expected due to the presence of unstable second modes
on straight cones (Kennedy et al. 2022). As the boundary layer thickens downstream, the
frequency for the peak energy decreases. By s4, the peak amplitude is near 200 kHz, and
higher harmonics, near 400 kHz, also appear, possibly due to nonlinearity from these
high-amplitude waves. The total intensity of the signal amplifies between s1 and s3 and
appears to saturate between s3 and s4, also signalling the presence of nonlinear effects.
The goal of this work, then, is to identify the unknown 2-D and 3-D instability waves
upstream of s1 that reproduce these measurements, and to study the associated flow field
beyond the scope of the sensor data.

2.2. Simulation configuration
The simulation domain is shown in figure 1. The flow behind the cone-generated
shock is considered in order to interpret the measured wall-pressure spectra in terms
of post-shock boundary-layer disturbances. The base flow is axisymmetric and obeys
the Taylor–Maccoll approximation above the boundary layer, which is a solution to
the Blasius equations in coordinates parallel (ξ ) and normal (η) to the cone surface
using the Mangler–Levy–Lees transformation. Prescribing the initial base state, qB(ξ, η),
in this manner is a well-established approach (Sivasubramanian & Fasel 2015). The
inflow Reynolds number, based on the post-shock boundary-layer-edge conditions
(Ue = 880 m s−1, Te = 65 K and ρ∞ = 0.0458 kg m−3) is Reo ≡ ρeUeLo/μe = 1345
using the length scale Lo = √

νeξo/Ue. At this streamwise position, the inflow condition
is expressed as a superposition of the base state and instability waves,

qo = qB(ξ0, η) + Re

(∑
m

∑
n

cn,mq̂n,m(η) exp[ikmφ − iωnt + iϕn,m]

)
, (2.2)
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Figure 3. (a) Power spectra at measurement stations for the experiment (black circles), EnVar prediction
(connected small blue squares) and linear prediction (red line). (b) Integral of power spectra. The confidence
in each predicted observation is represented by ±75σi, where σi is the ensemble standard deviation of each ith
observation. (c) Cost and gradient during data assimilation.

where cn,m is the amplitude, q̂n,m is the discrete slow-mode profile, and km, ωn and ϕn,m
are the azimuthal wavenumber, frequency and relative phase, respectively, for each (n, m)

instability wave.
The data assimilation attempts to identify the vector c = [. . . , cn,m, . . .]T of amplitudes

of these waves at the inlet. We assume the average spectrum is independent of relative
modal phase (ϕn,m), which is reasonable given the random nature of free-stream tunnel
forcing and the relatively long-time acquisition of the spectra. To reflect this assumption
and lack of information especially for 3-D waves, each phase is independently selected
from a uniform random distribution ϕn,m = [−π, π] and remains fixed during the course
of the data assimilation. In contrast, if the objective were to assimilate the instantaneous
wall-pressure signals, the relative phases of the inflow modes would need to be included
in the control vector and accurately estimated (Buchta & Zaki 2021).

We consider 52 frequency and azimuthal wavenumber pairs that encompass Mack’s
first- and second-mode instabilities for the Reynolds-number range 1345 ≤ √

Reξ ≤ 1872.
This size of the control vector was based on spectral analysis of the pressure-probe
data to determine the dominant frequencies in the observations (see figure 3a)
and preliminary testing. The frequencies and integer azimuthal wavenumbers are
f ∈ [50, 75, . . . , 350] kHz and k ∈ [0, 20, 40, 60], respectively. For each ( f , k) pair, we
consider the most unstable slow modes (Fedorov 2011) over the Reynolds-number range
of interest, from the discrete Orr–Sommerfeld and Squire spectra. For the computation of
the inflow instability profiles q̂n,m(η) only, the effect of curvature was neglected, i.e. we
adopt the wavenumber βm = km/ro, where ro is the radius of the cone at the inflow, which
is a reasonable assumption for this Reynolds number (Malik & Spall 1991).
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Once the inflow condition (2.2) is prescribed, the downstream evolution in the
DNS/LNS numerical simulations (see next paragraph for explanation of DNS and LNS)
accounts for curvature fully. Since the experimental measurements lack 3-D information
to guide the selection of relevant oblique modes, we consider a range of azimuthal
wavenumbers that are linearly unstable (k ≤ 60), and discretize this range in a manner that
we can efficiently search and that enables the generation of important higher harmonics by
nonlinear interactions. Beyond the inflow, the azimuthal discretization of the computations
permits the formation of waves up to k = 540, thus providing ample resolution for
secondary instabilities that arise due to fundamental resonance between oblique and planar
instability waves.

Most of the present simulations solve the compressible, nonlinear Navier–Stokes
equations in curvilinear coordinates (termed DNS) for the simulation domain shown
in figure 1. Linearized dynamics are acquired with exactly the same solver assuming
a steady base state and neglecting nonlinear interactions only (termed LNS). LNS is
used to provide an initial estimate of the unknown inflow spectra that will be refined
to account for nonlinear effects; LNS will also be referenced in the discussion to
contrast the disturbance field to the nonlinear evolution. The gas is assumed ideal
with ratio of specific heats γ = 1.4 and temperature-dependent viscosity, following a
power-law formula, Tn, where n is determined from measured viscosity data between
the boundary-layer edge and wall temperatures (Te = 65 K and Tw = 300 K). The flow
equations are solved using a standard fourth-order Runge–Kutta scheme and interior
fourth-order finite differences. Near boundaries, stencils are biased and accuracy is
reduced to second order. Second derivatives in the viscous terms are evaluated using
repeated first derivatives, instead of discretizing the operator directly (Mattsson &
Nordström 2004), which requires adding high-order numerical dissipation of short waves
to stabilize the solution – for details, see Vishnampet, Bodony & Freund (2015). The
computational domain size (Lξ , Lη, Lφ) = (105 mm, 17.6 mm, 36◦) is discretized with
(Ns, Ny, Nθ ) = (751, 201, 108) grid points. The azimuthal size was chosen to extend
beyond the peripheral probes at s4 in order to reduce any artificial correlation by the
periodic boundaries. In viscous units, the grid spacing along the wall at the inflow is (�ξ+,
�η+, ro�φ+) = (2.8, 0.1, 3.1). The azimuthal and streamwise grids are uniform, and the
wall-normal grid spacing is stretched according to the transformation used in Pruett et al.
(1995).

For all of the simulations, the flow develops for 1.75 flow-through times, based
on the edge velocity Ue, before data acquisition commences. During 40 μs, wall
pressure is recorded at every time step; the time-step size is chosen to ensure the
Courant–Friedrichs–Lewy number CFL ≈ 0.4 throughout the simulated time horizon.
The finite-sensing area of the PCB probes is modelled by averaging the wall pressure,
p̃j = (1/N)

∑N
i=1 pi, for N grid points that satisfy the inequality (xj − xi)

2 + ( yj − yi)
2 +

(zj − zi)
2 ≤ (ds/2)2, where ds is the sensing diameter. To take advantage of statistical

homogeneity in the simulation, this operation is performed at the streamwise sensor
position for all azimuthal grid points. The simple averaging used to model the sensing
area in DNS was shown to improve adherence to measurements of pressure spectra and
intensity (Huang et al. 2020). The data from the simulated probe pressure p̃ are processed
and concatenated into two vectors in the same manner as the experimental measurements,

hS = [p̂p̂�(s1, f1), . . . , p̂p̂�(s4, fNf )]
T, hI =

[∑
i
p̂p̂�(s1, fi), . . . ,

∑
i
p̂p̂�(s4, fi)

]T
.

(2.3a,b)

947 R2-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.668


Assimilation of wall-pressure measurements on a cone

These vectors are used as inputs for the following data assimilation framework.

2.3. Data assimilation procedure
The unknown amplitudes c of instability waves are sought using an ensemble-variational
(EnVar) framework (Buchta & Zaki 2021). To initiate the nonlinear optimization, an
estimate for the control vector c0 is determined using linear dynamics of the flow.
This choice provides a more physics-based approximation than adopting white noise
across the spectrum and, as such, a more accurate starting estimate for the subsequent
nonlinear optimization. For the linear estimate, the control vector is computed by direct
differentiation of

Jl = 1
2‖m − Lv‖2 + �

2
‖v‖2 (2.4)

with respect to the weights and identifying v at a stationary point ∇Jl = 0. Each column of
matrix L = [. . . |lf ,k| . . .] represents the wall observations acquired from an independent
evolution of the ith instability wave at (f , k) using the linearized flow equations and an
axisymmetric Blasius base state. Since the performance of the linear method is predicated
on the validity of a linear assumption, only measurements from the first sensor position
s1, where harmonics of the large-amplitude waves are absent, are included for the estimate
of c0. The second term in (2.4) represents a penalty, which has two desired effects: (i) it
mitigates against high-energy inflow disturbances, and (ii) it improves the conditioning
of the inverse problem. The value of � is chosen such that Jl/Jv=0 = 10−4, which
ensures that the measurements are accurately reproduced to within 1% (see § 3). If the
experimental conditions only trigger a linear boundary-layer response, then minimizing
(2.4) will be sufficient to accurately assimilate the measurements and predict the inflow
amplitudes.

For the experiment considered in § 2.1, signatures of nonlinearity are present in the
measurements. As a result, the initial estimate c0 of the control vector based on (2.4) is
not sufficient, and the data assimilation requires an iterative nonlinear optimization. We
consider the following cost,

J = 1
2‖log10 mS − log10 hS‖2

Σ−1
m

+ 1
2‖mI − hI‖2

Σ−1
n

+ 1
2‖c − ci‖2

Σ−1
c

, (2.5)

which comprises three parts. The first term is the logarithm of the pressure spectra. Since
the spectra span several orders of magnitude, the logarithm ensures that the cost function
is not solely focused on the spectral peak but rather targets the entire range of frequencies.
The second term captures the importance of the spectral peak in determining the overall
pressure intensity. The final term represents the degree of trust in a prior control vector
(ci) to avoid large steps from the previous control vector. The choice of the cost function
can affect performance of the data assimilation, and our experience has shown that (2.5)
furnishes better accuracy in fewer iterations relative to, for example, pressure spectra on a
linear scale.

An EnVar technique is used to update the control vector in order to minimize the cost
function (2.5). Figure 2 shows a schematic of the algorithm. An updated estimate of
the control vector c is sought from its previous value ci using a weighted superposition
of ensemble members c(j), specifically ci+1 = ci + Pw, where P = [. . . |c(j) − ci| . . .]
is a matrix of the perturbation vectors. Each control vector, ci and c(i), is evolved
with the governing equations, in this case the Navier–Stokes equations, to produce the
spatio-temporal representation of the state qi and q(j). Model observations are then
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extracted from the mean and ensemble states using hi = M(ci) and h(j) = M(c(j));
they are then compared with the experimental data in the cost function. An estimate of
the local gradient and Hessian furnish the optimal weights w by assuming a stationary
point (∇J̃ = 0). Multiple updates of the control vector can be performed in the descent
direction, until the cost stagnates or starts to increase. At this point, the entire EnVar
process is repeated, iteratively and till convergence. The number of ensemble members
in the main algorithm was Ne = 10. Each EnVar iteration thus involves Ne + 1 =
11 simulations to acquire the local gradient, where the additional DNS corresponds to
the mean of the ensemble. Previous characterizations of the performance of this method
are provided elsewhere (Jahanbakhshi & Zaki 2019; Buchta & Zaki 2021; Mons, Du &
Zaki 2021). The results of the linear and nonlinear optimization are presented in the next
section.

3. Results

The outcomes of the linear and nonlinear assimilations are shown in figure 3. By design
of (2.4), the linear estimate accurately approximates the experimental measurements at
s1 in figure 3(a,b). However, the subsequent downstream predictions deviate from the
measurements. The linear amplification of the second mode atop the Blasius base state
is more intense than in the experiments, and modes with f � 300 kHz decay rather than
amplify. The linear dynamics do not reproduce the wider experimental spectra downstream
or the accumulation of energy in frequencies adjacent to the energetic second modes.
The absence of nonlinear interactions contributes to these discrepancies, specifically
due to the omitted generation of higher harmonics and the lack of base-flow distortion,
which will both be discussed below. Most importantly, these effects were also omitted
from the linear estimate of the inflow disturbance spectra, and the disagreement with
downstream measurements underscores the importance of a nonlinear interpretation of
the observations.

Nonetheless, figure 3 demonstrates that our physics-based linear estimate of the inflow
is a better initial guess for the nonlinear assimilation than an ad hoc approach to inflow
synthesis. Starting from the linear estimate, figure 3(c) shows the cost reduction by
nonlinear EnVar iterations relative to the LNS, Jref , and the decrease in the gradient
magnitude. After six iterations, the cost and gradient decrease over three and four orders
of magnitude, respectively, and the trends indicate an optimum has been identified.
Additionally, the EnVar approach enables propagated uncertainty of the prediction. By
evolving ensemble members at the final iteration, the sample standard deviation for each
observation, σi, is computed. These error bars, ±75σi in figure 3(a,b), confirm the low
uncertainty for our estimates of the measurement. A positive bias, not explained by
parametric uncertainty, remains in the lowest-amplitude signals at s1 and s2. Overall,
however, the adherence of the DNS to the observations in terms of spectral amplitude
and the overall intensity is encouraging. This level of agreement surpasses in accuracy
what we were able to achieve using the same optimization procedure and considering 2-D
modes only. In fact, when the inflow is restricted to axisymmetric waves only (not shown),
the objective function was 60 % higher, and the mismatch with the measurements was
most egregious on the final sensor position.

Figures 4(a) and 4(b) show the distribution of modal amplitudes predicted by the
nonlinear data assimilation procedure, assuming 2-D and 3-D incoming disturbances,
respectively. The axisymmetric reconstruction, which was less effective in reducing
the cost function, requires three times more inflow energy in the 2-D waves in
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Figure 4. (a,b) Amplitudes of the optimized inflow spectra for the 2-D and 3-D assimilation. (c,d)
Reconstructed wall quantities: instantaneous p′, time-averaged near-wall temperature and pressure intensity.
(e) Spanwise variation of time-averaged wall-pressure root mean square and streamwise vorticity at sensors
s1–s4. ( f ) Experimental schlieren and (g,h) numerical schlieren ∂yρ

′.

order to approximate the measurements with lower fidelity. The better-performing 3-D
interpretation prominently features the oblique waves (275 ≤ f ≤ 300 and 20 ≤ k ≤ 40),
which demonstrates that three-dimensionality is required to reproduce experimental
measurements even when the flow is non-turbulent within the sensing region – an
important point that is often overlooked in the interpretation of wall-pressure data in
high-Mach-number transitional flows in terms of the dominant planar instability waves.

In addition to discovering the unknown inflow that best reproduces the measurements,
figure 4 shows that the data assimilations identify the entire time-dependent and
3-D flow field, far beyond the measurement probes. The instantaneous pressure
fluctuations in figure 4(c,d) along the wall reveal long-streamwise-wavelength 2-D
envelopes of instability waves distributed along the cone. Despite its appearance, we
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verified using spectral analysis (cf. figure 6) that this pattern is not an amplitude
modulation. Instead, the pattern of repeated amplification and decay is due to an
interference of waves with approximately the same advection speed. Atop this pattern,
the signature of oblique fluctuations is prominent in figure 4(d), where the instantaneous
pressure fluctuations are more realistic than in the 2-D assimilation since they more
closely reproduced the measured wall-pressure intensity. Figure 4(d) also shows the
time-averaged near-wall temperature and squared-pressure fluctuations, both of which
feature streamwise-elongated intense streaks extending across multiple sensor positions.

Besides the fact that the 3-D interpretation is more accurate, the 3-D characteristics
of the flow share common features observed in previous DNS of fundamental resonance
breakdown (Sivasubramanian & Fasel 2015; Hader & Fasel 2019) and random-noise
forcing (Hader & Fasel 2018), e.g. steady streamwise-elongated near-wall hot streaks
and pairs of counter-rotating vortical structures. Thus, the reconstructed 3-D inflow
produces previously realizable flow fields, but most importantly quantitatively agrees
with measurements. Figure 4(e) focuses on the three-dimensionality of the wall-pressure
intensity and the streamwise vorticity above the sensor positions. At s3 and s4, prominent
wall-pressure intensity streaks, with peak amplitude nearly twice the mean, fall between
pairs of intense counter-rotating vortices above which fluid is ejected upwards. These
structures correspond to a distortion ( f , k) = (0, 20) to the base flow, which can support
parametric resonance (subharmonic, fundamental or detune) with the instability waves –
a point that we will revisit below.

We recall that independent schlieren measurements were performed in the experiment,
and were kept for blind comparison to the outcome of assimilating the wall-pressure data.
Figure 4( f ) shows an instantaneous realization from the experimentally acquired schlieren
data, and captures the rope-like structures near the boundary-layer edge. Figures 4(g)
and 4(h) show numerical schlieren from both the 2-D and 3-D assimilated flows. Both
figures 4(g,h) feature the rope-like structures in the wall-normal density gradient, bear
clear similarity to the experimental schlieren images in that region and are similar to
one another near the wall. This qualitative agreement serves as another note of caution
against the often-adopted 2-D interpretation of pre-transitional experimental schlieren
measurements. In the present case, only the 3-D inflow disturbance field can justify, and
reproduce, the measured wall-pressure data.

We initially argued that the experimental measurements show symptoms of nonlinearity
since harmonics of the dominant frequencies were observed in the spectra (figure 3),
and subsequently that three-dimensionality is important for successful interpretation of
the data. In order to assess the extent of nonlinearity and three-dimensionality in the
3-D assimilated state, in figure 5 we report the wall-pressure spectra as a function of
( f , k), evaluated at the inflow (s0) and at the four streamwise sensor positions (s1–s4). The
broadening of the spectra starting at s3 coincides with the prominent base-state distortion
in figure 4(d), which is an important nonlinear effect. Figure 5 also shows the energy
integrated over the entire frequency range and plotted versus the azimuthal wavenumber.
The energy in the oblique waves is commensurate with that in planar ones at s{1,3,4},
i.e. throughout the majority of the domain.

Select modes of the wall-pressure spectra from DNS are reported in figure 6(a,c),
separated into unsteady waves ( f , k) and base-state distortions (0, k). For comparison,
figure 6(b) shows the linear evolution of the unsteady modes. For the base flow in the
LNS, we adopted the time-averaged 3-D distorted state computed in the DNS, and as such
we reproduce figure 6(c,d). The spectra highlight the necessity of nonlinear assimilation
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with 3-D distorted base state qB = 〈q〉t. (c) Dominant steady modes from DNS, which are part of the distorted
base state used in LNS (reproduced in (d)).

of the measurements. Between the inflow and s1, nonlinearity causes the spectra in
figure 6(a) to already differ from the linearized case in figure 6(b). For example, linear
theory predicts that ( f , k) = (250, 0) is important at s1, but this interpretation would
lead to an underprediction at the inflow; the nonlinear evolution of the mode, which
is relatively muted rather than amplified, would not match the measurements. Another
example relates to the dominant planar waves (225, 0) and (200, 0) from the DNS, which
are respectively delayed and underpredicted in LNS. To compensate, a linear interpretation
of the measurements would require large, practically non-physical, inflow amplitudes for
these second-mode instabilities; such prediction would lead to drastically poor nonlinear
flow response.

As for the 3-D waves, the most energetic mode near s3 is ( f , k) = (225, 40). This
instability has similar amplification in figure 6(a,b), and this agreement was only possible
by adopting the nonlinearly distorted base flow in the LNS. The growth of this mode
also parallels the trend of the base-state distortion (0, 20). The latter corresponds to the
streaks in wall-pressure intensity in figure 4(d), and can support parametric resonance
leading to the amplification of ( f , 20m), where m = 1, 2, . . . for fundamental resonance.
The most dominant of these waves, namely ( f , k) = (225, 40), would elude detection by
the experimental azimuthal probes at s4, whose Nyquist wavenumber is ≈ 21.

In summary, for the considered experiment, a linear interpretation even of the
most upstream data does not reproduce the downstream measurements, and a focus
on 2-D instability waves is fraught with uncertainty, even within the non-turbulent
region. Only nonlinear assimilation of the wall-pressure sensor data provides rigorous
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prediction of the inflow amplitudes, and the present work demonstrated the importance of
three-dimensionality.

4. Conclusion

The unknown upstream disturbances for a Mach-6 flow over a sharp cone were
reconstructed by assimilation of spectral and statistical data from discrete wall-pressure
probes. The data assimilation considered a multi-objective cost functional: (i) the
logarithm of the pressure spectra promoted matching the data across a wide range of
measured frequencies and (ii) the integral of the spectra promoted the prediction accuracy
of modes comprising most of the intensity. Fidelity of reproducing the measurements
from the present Ludwieg-tube experiment is possible only when 3-D nonlinear
interactions are incorporated in the assimilation framework. The need to reproduce these
interactions accurately when considering more consequential and sensitive dynamics,
e.g. transition to turbulence, remains of high importance. For the present configuration,
future measurements must probe three-dimensionality because the nonlinear optimization
showed that only with 3-D effects can we reproduce the data.

The data assimilation approach is robust, and can be applied to other experimental
conditions. If the dynamics are linear, the initial linear estimate of the control vector
is sufficient to reproduce the measurements. When important effects are not simulated,
the quantitative deviation from the measurements can guide the improvement of the
computational model, in our case by taking into account nonlinearity and 3-D instability
waves. While in this work we focused on predicting the upstream instability waves in
the boundary layer, our methodology can also be applied to estimate incident free-stream
disturbances, either post- or pre-leading-edge shock, including in the considerably
uncertain disturbance environment faced in flight.
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