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Flow over closely packed cubical roughness
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Cube arrays are one of the most extensively studied types of surface roughness, and there
has been much research on cubical roughness with low-to-moderate surface coverage
densities. In order to help populate the literature of flow over cube arrays with high surface
coverage densities, we conduct direct numerical simulations (DNSs) of flow over aligned
cube arrays with coverage densities λ = 0.25 (for validation and comparison purposes),
0.5, 0.6, 0.7, 0.8 and 0.9. The roughness are in the d-type roughness regime. Essential
flow quantities, including the mean velocity profiles, Reynolds stresses, dispersive stresses
and roughness properties, are reported. Special attention is given to secondary turbulent
motions in the roughness sublayer. The spanwise-alternating pattern of the thin slots
between two neighbouring cubes gives rise to spanwise-alternating regions of low- and
high-momentum pathways above the cube crests. We show that the strength and spanwise
location of these low- and high-momentum pathways depend on the surface coverage
density, and that the high-momentum pathways are not necessarily located directly above
the roughness elements. In order to determine the physical processes responsible for
the generation and the destruction of these secondary turbulent motions, we analyse the
dispersive kinetic energy (DKE) budget. The data shows that the secondary motions get
their energy from the DKE-specific production term and the wake production term, and
lose energy to the DKE-specific dissipation term.

Key words: turbulent boundary layers

1. Introduction

Closely packed roughness is common in urban boundary layer flows (Barlow & Coceal
2008). A prominent example is closely packed buildings in a metropolitan area (Giometto
et al. 2017; Krayenhoff et al. 2020). In this work, we study flow over closely packed cubes.

Flows over cube arrays have been extensively studied experimentally and using
scale-resolving computational tools (Cheng et al. 2007; Leonardi & Castro 2010; Yang
2016; Li & Bou-Zeid 2019). Depending on the packing density, wall-mounted cubes can
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be generally categorized into: isolated roughness, k-type roughness and d-type roughness
(Oke 1988; Jiménez 2004). In the isolated regime, the roughness elements are sparsely
packed and each roughness element acts as an isolated roughness element (see Yang
et al. (2019) for a more detailed discussion). In the k-type roughness regime, the packing
density/surface coverage density is such that the wakes of upstream roughness elements
reaches downstream roughness element. In this regime, the flow in the outer layer
actively exchanges momentum with the flow in the roughness-occupied layer, and the
equivalent roughness height zo is an increasing function of the packing density λ. In
the d-type roughness regime, the packing density is high and the flow in the outer
layer does not actively exchange momentum with the flow in the roughness-occupied
layer. In this regime, the equivalent roughness height zo is a decreasing function of the
packing density. The common expectation is that roughness morphologies in the same
roughness regime will have similar hydro/aerodynamic properties and flow features. For
example, with closely packed cubes (λ > 0.4, d-type roughness), the common expectation
is that cubes with higher packing densities should have similar properties. Owing to this
common expectation, few have studied cubes with packing densities above λ = O(0.4).
The objective of this work is to study these higher coverage densities more extensively than
has appeared to date. We study the behaviour of the effectiveness roughness height zo and
the displacement height d as a function of the surface coverage density for closely packed
cubes. We would show that the displacement height approaches the cube height as the
surface coverage density approaches one. Another motivation of this work is to study flow
in the ‘street canyons’, that is, narrow streets between closely packed buildings. Closely
packed buildings block momentum exchange between street canyons and the atmosphere,
leading to low wind speed inside these street canyons and poor air quality at the pedestrian
level (Li, Liu & Leung 2008, 2005; Huang et al. 2000).

In the following, we summarize a few relevant studies on flow over cubical roughness.
Cheng & Porté-Agel (2015) and Yang (2016) found that a flat plate turbulent boundary
layer (TBL) becomes fully developed shortly after the transition from a smooth wall to
a rough wall. When fully developed, roughness directly affects the flow in the roughness
sublayer (RSL), above which the flow is nearly homogeneous in the horizontal directions.
For closely packed cubical roughness, the height of the RSL is usually thin with δRSL < 2h
(Cheng et al. 2007; Leonardi & Castro 2010), where δRSL is the height of the RSL and
h is the cube height. A thin RSL is also observed for other closely packed roughness
morphologies, see, e.g., Chan et al. (2015) where the authors conducted DNSs of pipe
flow with closely packed sinusoidal bumps on the pipe surfaces. A thin RSL justifies
the use of a small vertical domain (Coceal et al. 2006; Jiang et al. 2008). In particular,
Coceal et al. (2006) studied the effects of domain size and concluded that a domain of
size 4h × 4h × 4h is sufficient for capturing the mean flow. Blackman, Perret & Calmet
(2016) and Blackman et al. (2017) conducted in-depth analysis of the turbulent kinetic
energy (TKE) budget in the RSL. The authors found that the production term in the
TKE equation is not necessarily positive. A negative production term transfers energy
from the turbulence to the mean flow, and is responsible for the generation of secondary
turbulent motions. From a phenomenological standpoint, secondary turbulent motions
are spatial variations of the mean flow. For example, spanwise heterogeneity in surface
roughness, e.g. spanwise-alternating regions of low and high roughness, gives rise to
spanwise-alternating regions of momentum deficit and surplus in the RSL. These regions
of momentum deficit and surplus are known as low- and high-momentum pathways (LMPs
and HMPs) (Barros & Christensen 2014). LMPs and HMPs have received significant
attention in the recent literature. For example, Mejia-Alvarez & Christensen (2013),
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Nugroho, Hutchins & Monty (2013) and Barros & Christensen (2014) established that any
spanwise heterogeneous roughness can give raise to LMPs and HMPs in the mean flow,
and Anderson et al. (2015) showed that the HMPs and LMPs observed in previous works
(Mejia-Alvarez & Christensen 2013; Barros & Christensen 2014; Willingham et al. 2014)
are of Prandtl’s second kind, that is, they arise due to gradients of the Reynolds stress
components.

In this work, we study closely packed cubes in an aligned arrangement. We vary the
surface coverage densities from 0.25 to 1, where λ = 1 corresponds to a plane channel.
We report essential flow statistics including mean velocity profiles, Reynolds stresses,
dispersive stresses and roughness properties. Mean velocity profiles and roughness
properties have been reported extensively for cubes with low-to-moderate packing
densities (Macdonald, Griffiths & Hall 1998; Leonardi & Castro 2010; Lee, Sung &
Krogstad 2011; Volino, Schultz & Flack 2011; Yang & Meneveau 2016, among others).
Here, we augment the literature by studying cubes with high packing densities. It is
worth noting that because the width of the thin slots between the cubes are comparable
to the viscous length scale as λ→ 1, our results are inevitably affected by the Reynolds
number. The same is true for fractal roughness where the multi-scale nature of the surface
roughness dictates that there cannot be a clear scale separation between the roughness
length scale and the viscous length scale (Busse, Thakkar & Sandham 2017). In addition
to the basic flow statistics, we put an emphasis here on secondary turbulent motions.
We analyse the dispersive kinetic energy (DKE) budget and study the generation and
destruction of the secondary turbulent motions. We also determine whether the physics
is such that the correct prediction of the secondary turbulent motions depends critically on
the correct prediction of the small-scale turbulence.

Before proceeding with the computational details, we define the friction velocity used
for normalizing the mean velocity. For a rough wall TBL, there is more than one way to
define the friction velocity. Consider a half channel with a rough wall and a free slip top
boundary, a common definition of the friction velocity is based on the momentum balance:

uτ =
√

body force × volume occupied by the fluid
fluid density × planar area

=
√

fb
ρ

(Lz − λh), (1.1)

where Lx, Ly and Lz are the extents of the half channel in the streamwise (x), spanwise (y)
and wall-normal (z) directions, respectively, fb is the body force and ρ = unity is the fluid
density. It follows that the definition of the friction Reynolds number is

Reτ = uτ Lz

ν
. (1.2)

A second definition leads to the so-called nominal friction velocity

uτ,N =
√

body force × volume of the channel
fluid density × planar area

=
√

fb
ρ

Lz. (1.3)

A third definition is by Coceal et al. (2006). The authors argued that to scale the velocity in
the logarithmic layer, the friction velocity must only account for the flow above the virtual
ground, that is, above the zero-plane displacement height d, i.e.

uτ,C = uτ,N
√

1 − d/Lz. (1.4)

Chan-Braun, García-Villalba & Uhlmann (2011) and Forooghi et al. (2018) proposed to
define the friction velocity by extrapolating the total stress from the outer region to the
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wall, which leads to a fourth definition for uτ . Lastly, we define

uτ,T =
√

fb
ρ

(Lz − h), (1.5)

which accounts for the flow above the roughness only, and provides a lower bound
for the friction velocity. The ambiguities in the definition of the friction velocity are
often overlooked. Although these definitions may end up returning similar values, we
think it is important that we explicitly mention the ambiguities involved in the definition
of uτ .

Having defined the friction velocity, the mean flow in the inertial layer conforms to

U+= 1
κ

ln z+ + C − �U+, (1.6)

where U+ = U/uτ , z+ = zuτ /ν, κ is the von Kármán constant, C is a constant and �U
is the roughness function. Unless otherwise noted, in the following, all velocities are
normalized using plus units. An alternative expression of the above scaling reads

U
uτ

= 1
κ

log
z − d

z0
. (1.7)

Equating (1.6) and (1.7), we have

1
κ

log
z − d

z0
= 1

κ
log

[
(z − d)+

] + C − 1
κ

log
[
z+

0 exp(κC)
]
, (1.8)

and

�U+≈1/κ log
[
z+

0 exp(κC)
]
. (1.9)

That is, �U and zo are correlated. In addition to the flow in the inertial layer, we
report the mean flow U in the roughness-occupied layer. The definition of U involves
horizontal averaging in the roughness-occupied layer. There are two ways one can go
approximately horizontal averaging: comprehensive spatial averaging (CSA) and intrinsic
spatial averaging (ISA). When conducting CSA, the fluid velocity within a roughness
element is treated as zero, and the roughness occupied space is not excluded from spatial
averaging. On the other hand, when conducting ISA, one excludes the solid volume
entirely. For cubical roughness, the fluid occupied horizontal area is As(1 − λ) for z < h
and As for z > h, where As is the planar area. Owing to this discontinuity in the fluid
occupied area at h, ISA leads to a discontinuity in the mean velocity at z = h (Xie & Fuka
2018), which is rather undesirable. Accordingly, in this work, unless otherwise specified,
horizontal averaging refers to CSA.

The rest of paper is organized as follows. The computational details are presented in
§ 2. We report the most essential flow quantities including the mean velocity profiles,
the Reynolds stresses, the dispersive stresses and the roughness properties in § 3. It is
observed, as hypothesized, that at a surface coverage density of λ > 0.4, the roughness
fields are d-type and behave qualitatively similarly as aligned cubes with a surface coverage
density of λ = 0.25. We devote § 4 to secondary turbulent motions. We observe that these
motions exhibit significant variation within the d-type regime. Conclusions are given
in § 5, and we present further discussion approximately the domain size and the grid
resolution in Appendix A.
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y

Lz

h

�l

z

x

Figure 1. A sketch of the flow configuration. The half channel height is Lz. Here �l is the inter-cube distance
and x, y and z are the streamwise, spanwise and wall-normal directions.

2. Computational details

Figure 1 shows a sketch of the flow configuration. The computational domain is a half
channel. Periodic boundary conditions are imposed in the streamwise and the spanwise
directions. The flow is driven by a constant body force fb, which is set such that the nominal
friction Reynolds number

Reτ,N = uτ,NLz

ν
(2.1)

is 500. We note that imposing a constant Ub is not the common practice in DNSs of
channel flow. The standard practice is to directly impose a constant body force, or to use
a constant Ub until the flow is fully developed and then switch to a constant body force
(Kim, Moin & Moser 1987; Hoyas & Jiménez 2006; Graham et al. 2016; Yamamoto &
Tsuji 2018). Details of our DNS simulations are summarized in table 1. We vary λ from
0.25 to 1. For R100, i.e. for λ = 1, the top surfaces of the cubes form a continuous wall
at z = h, and the flow reduces to a plane channel with half channel height Lz = 3h.The
half channel height is otherwise Lz = 4h following Coceal et al. (2006). For reference
purposes, the computational domain size in Coceal et al. (2006) is Lx × Ly × Lz = 4h ×
4h × 4h, and Lx × Ly × Lz = 8h × 6h × 6h in Leonardi & Castro (2010). In § 3, we further
justify our use of a somewhat narrower channel. Figure 2(a–c) shows the top view of
the rough walls for R25, R50 and R90. The cubes are aligned in both the streamwise
and spanwise directions. Figure 2(d–f ) show the mesh for R25, R50 and R90. The grid
resolution is such that �+

n < �+
ν,l at the wall and �z+ ≈ 5�+

ν in the bulk. Here, �+
n is the

wall-normal grid spacing, �+
ν,l is the locally defined viscous unit, �+

x/y/z is the grid spacing
in the x, y and z directions, and �+

ν = ν/uτ is the viscous unit. Table 2 lists the detailed
grid information. For reference purposes, the streamwise and spanwise grid resolution is
�+

x/y = 18.75 in Leonardi & Castro (2010), �+
x/y/z = 7.8 to 15.6 in Coceal et al. (2006)

and �+
z ≈ 8 to 13 in the recent work by MacDonald et al. (2018). The resolution of a DNS
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Case λ Lx/h × Ly/h × Lz/h Mesh N Reτ Reτ,N Rebulk
R25 0.25 8.00 × 8.00 × 4.00 11.4M 4 × 4 484 500 3710
R50 0.50 8.48 × 8.48 × 4.00 13.5M 6 × 6 468 500 3884
C50 0.50 8.48 × 8.48 × 4.00 4.2M 6 × 6 468 500 3884
R60 0.60 9.02 × 9.02 × 4.00 15.3M 7 × 7 461 500 4142
R70 0.70 9.55 × 9.55 × 4.00 16.3M 8 × 8 454 500 4558
R80 0.80 8.94 × 8.94 × 4.00 14.6M 8 × 8 447 500 5257
L80 0.80 18.99 × 10.05 × 4.00 34.9M 17 × 9 447 500 5257
C80 0.80 8.94 × 8.94 × 4.00 3.7M 8 × 8 447 500 5257
R90 0.90 8.42 × 8.42 × 4.00 16.0M 8 × 8 440 500 5455
R100 1.00 18.85 × 9.42× 4.00 11.3M 18.85 × 9.42 433 500 5506

Table 1. DNS details. ‘R’ stands for ‘regular domain size and regular grid resolution’, ‘C’ stands for ‘coarse
grid resolution’ and ‘L’ stands for ‘large domain”. The nominal friction Reynolds number, i.e. Reτ,N =
uτ,NLz/ν = 500 is held constant. Here Rebulk = ubLz/ν is the bulk Reynolds number, ub is the bulk velocity,
‘Mesh’ is the total number of grids in million cells (M) and ‘N’ is the number of wall-mounted cubes in
ncube,x × ncube,y, where ncube,x and ncube,y are the numbers of cubes in x and y directions, respectively.
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Figure 2. (a–c) Top view of cube roughness topology for R25, R50 and R90. (d–e) Mesh cross-section in x–z
plane for R25, R50 and R90.

should be proportional to the Kolmogorov length scale:

η(z) =
[
ν3/ε

]1/4
, (2.2)

where ε is the viscous dissipation. Figure 3(a,b) show our grid spacing in terms of the
Kolmogorov length. For reference, the grid spacing is approximately 5 to 10η in a typical
channel DNS. Two coarse-grid DNSs are conducted at surface coverage densities 0.5 and
0.8. We compare the two coarse-grid DNSs with their fine-grid counterparts in § A.
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Case nx × ny × nz �+
x,min �+

x,max �+
y,min �+

y,max �+
z,min �+

z,max

R25 289 × 289 × 151 0.97 4.8 0.97 4.9 0.97 5.2
R50 325 × 325 × 151 0.94 4.7 0.94 4.7 0.94 5.0
C50 181 × 181 × 151 1.7 8.6 1.7 8.6 0.94 5.0
R60 351 × 351 × 151 0.92 4.6 0.922 4.6 0.92 5.0
R70 369 × 369 × 151 0.91 4.6 0.91 4.6 0.91 4.9
R80 353 × 353 × 151 0.82 4.7 0.82 4.7 0.89 4.8
L80 749 × 397 × 151 0.82 4.7 0.82 4.7 0.89 4.8
C80 177 × 177 × 151 1.6 9.5 1.6 9.5 0.89 4.8
R90 385 × 385 × 132 0.48 4.4 0.48 4.4 0.88 4.8
R100 342 × 256 × 132 8.00 8.00 5.4 5.4 0.67 6.7

Table 2. Details of the DNS grids. Here nx,y,z is the grid number in x, y and z directions, respectively. There
is no grid within the wall-mounted cubes.
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Figure 3. (a) The maximum grid spacing in the x and y directions, normalized by the Kolmogorov length
scale, as a function of z. (b) Grid spacing in the z direction normalized by the Kolmogorov length scale, as a
function of z.

The DNS solver is the in-house finite-volume code CharLES. It uses a fourth-order
accurate spatial discretization and a third-order accurate temporal discretization (Mahesh,
Constantinescu & Moin 2004). This code has been extensively used for wall-bounded
flow calculations (Ma, Yang & Ihme 2018; Yang et al. 2019). Further details of the code
can be found in Khalighi et al. (2011) and Bermejo-Moreno et al. (2014). Time averages
are taken over approximately 200 flow-through times after the flow reaches a statistically
stationary state. We verify the adequacy of the time averaging by comparing the sum
of the Reynolds stress −〈u′w′〉+, the dispersive stress −〈ū′′w̄′′〉+ and the viscous stress
〈dū+/dz+〉 to 1 − z/Lz, where u, v and w are the velocity in the three Cartesian directions,
′ denotes temporal fluctuation, 〈·〉 denotes horizontal averaging, ·̄ denotes time averaging
and ′′ denotes spatial variation. We also use Dij to denote the dispersive stress tensor and
Rij to denote the Reynolds stress tensor. Figure 4(a–f ) show the results. We see that the
total stresses follow 1 − z/Lz closely above z = h. Hence, we can safely conclude that our
time averaging is adequate (for first- and second-order statistics).

3. Basic flow phenomenology

In this section, we report the most essential flow quantities including the mean velocity
profiles 〈ū〉, the Reynolds stresses Rij, the dispersive stresses Dij, the equivalent roughness
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Figure 4. Reynolds stress 〈u′w′〉, dispersive stress 〈ū′w̄′′〉 and viscous stress in (a) R25, (b) R50, (c) R60,
(d) R70, (e) R80 and (f) R90. Total stress is the sum of dispersive, Reynolds and viscous stresses. Normalization
by the friction velocity uτ,N in (1.3). Bold solid line is 1 − z/Lz.

heights zo and the displacement heights d. The roughness including R25 and certainly
including R50 to R90 are d-type. (Note that staggered cubes with λ = 0.25 would belong
to k-type roughness.) The common expectation is that the roughness in the same roughness
regime would have similar roughness properties. Specifically, the expectation is that 〈ū〉,
Rij, Dij, zo and d are monotonic functions of λ within the d-type regime.

3.1. Mean velocity profiles
Figures 5(a) and 5(b) show the time and horizontally averaged velocity profiles above
and below z = h, respectively. The mean velocities above z = h follow approximately
a logarithmic scaling from (z − h)+ ≈ 30. Below z = h, the flow is impeded by the
closely packed roughness, and the velocity decreases quickly towards the bottom wall.
Quantitatively, the mean flow follows the exponential scaling U/Uh = exp[a(b − z)/h]
in R25, R50, R60 and R70, where a is the attenuation factor, b is a constant and
Uh = 〈ū〉(z = h) (Cionco 1965; Yang et al. 2016).

3.2. Roughness properties
An important objective of rough-wall boundary-layer flow modelling is to correlate
roughness properties with roughness morphology. Historically, this goes hand in hand with
drag partition analysis. In this section, we report the partition of the drag forces and our
measurements of rough wall properties. Figure 6(a) shows τS/τR in our DNSs, where τS is
the friction force on the bottom wall and τR is the force on the wall-mounted cubes. The
roughness are d-type, and the flow skims over the roughness without much interaction with
the bottom wall, leading to a small τS/τR ratio. A more detailed drag partition is shown in
figure 6(b), where we show the breakdown of the drag force into the pressure, the friction
on the top surfaces, the friction on the side surfaces and the friction on the bottom wall.
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Figure 5. (a) Time and horizontally averaged velocity profiles above the cube crests. Normalization is by uτ,T ,
which is defined in (1.5). LoW corresponds to 〈ū〉+ = 1/κ log((z − h)+) + C, where κ = 0.384 and C = 4.6.
(b) Time and horizontally averaged velocity profiles beneath the cube crests. The dashed lines are best fits to
the exponential law.
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Figure 6. (a) The ratio of the friction force on the bottom wall, τS, and the drag due to the wall-mounted
cubes, τR, as a function of λ. (b) A breakdown of the drag forces into the pressure force, the friction on the top
surfaces, the friction on the bottom wall and the friction on the side surfaces.

The pressure force dominates at λ = 0.25. For λ > 0.6, the top surface friction dominates,
and the flow transits from being fully rough to transitionally rough.

Next, we measure the effective roughness height z0 and the displacement height d. We
use a von Kármán constant of κ = 0.384 following Marusic et al. (2013). The friction
velocity is uτ,C following Coceal et al. (2006). Jackson (1981) argued that the virtual
ground must be located at the height where the resultant drag force acts

d =

∫
Dz dA∫
D dA

. (3.1)

Here, D is the drag force, and the integration is from the bottom wall to z = h. For sparsely
packed roughness, where the boundary layer interacts with the flow near the bottom, the
argument of Jackson (1981) is valid, but for a boundary layer that interacts with only
the top part of the roughness, (3.1) underestimates the height of the virtual ground. To
see that more clearly, we consider flow over an array of slender roughness elements, as
sketched in figure 7. The flow is driven by an imposed body force, the same as in our DNSs.
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U

d2

d1

Top wall

Body force

Body force

Bottom wall

Figure 7. A sketch of flow over an array of slender roughness elements. The flow is driven by a body force. A
boundary layer forms above the crests of the roughness elements. Here d1 is the height of the virtual ground
and d2 is the height where the drag force acts.

A boundary layer forms above the roughness crests, and it interacts with only the top
part of the roughness, i.e. the shaded part in figure 7. The flow below the dashed line is
similar to that in a porous media, where the body force drives the flow through an array of
obstacles. The drag force on the shaded part balances the body force imposed on the fluid
in the boundary layer. Hence, the virtual ground of the boundary layer should be located
between the dashed line and the crests of the roughness elements, i.e. at d1. However,
because the fluid near the bottom wall is also subjected to the imposed body force, which
is balanced by the drag on the unshaded roughness elements, (3.1) yields a virtual ground
at d2, which is an underestimate. That is, when spacing between roughness elements is
small, the virtual ground should approach the cubes’ top surface (MacDonald et al. 2016;
Sharma & García-Mayoral 2020; Chung et al. 2021). That being said, because detailed
measurements of the drag force are often unavailable, (3.1) is not widely used, and the
zero-plane displacement height is usually such that it yields a log layer in the mean velocity
profile (Zhu et al. 2017; Volino & Schultz 2018; Womack, Meneveau & Schultz 2019).

Figure 8(a) shows the displacement heights computed according to (3.1), and figure 8(b)
shows the displacement heights such that they yield a log layer in the mean velocity
profile. In the fitting, the log layer is from z/h = 1.5 to approximately (z − d)/h = 1,
within which layer the dispersive stress is essentially zero, and the flow is not susceptible
to the effects of the top boundary. Compared with d that yields a log layer in the mean
profile, (3.1) underestimates the zero-plane displacement height d. Next, we fit for the
effective roughness height z0. The results are shown in figure 9(a,b). Although the value
of d depends very much on how it is measured, the effective roughness heights seem to be
quite robust. In fact, the displacement heights in figure 8(a,b) lead to essentially the same
effective roughness heights. In figures 8 and 9, we have also included measurements in
Cheng et al. (2007) of aligned cubes at a surface coverage density of 0.25, which gives a
rough idea of the uncertainty in the data.

3.3. Reynolds and dispersive stresses
Figure 10 shows the diagonal components of the Reynolds and the dispersive *stress
tensors. The streamwise components R11 and D11 dominate. The roughness suppresses
turbulence for z < h. As a result, R11 decreases as λ increases below z = h. Above the
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Figure 8. (a) Zero-plane displacement d computed according to (3.1). Note that the y axis does not start from
zero. (b) Zero-plane displacement d such that it yields the best log layer. The cross symbols are measurements
reported in Cheng et al. (2007).
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Figure 9. (a,b) The effective roughness heights that best fit the velocity profiles with the zero-plane
displacements in figure 8(a,b).

cube-occupied layer, the peak magnitude in R11 increases as λ increases. The R11 profiles
do not depend significantly on the surface coverage density above z/h ≈ 1.6, suggesting
a thin RSL. The dispersive component D11 peaks at z ≈ h, and decreases with λ in the
roughness-occupied layer. Above z = h, the dispersive stress decays rapidly to zero, again,
suggesting a thin RSL.

4. Secondary turbulent motions

We pay special attention to the secondary turbulent motions. In this section, we report the
basic phenomenology of these motions and determine the physical processes responsible
for their generation and destruction.

4.1. Secondary flow phenomenology
Figure 11(a–f ) show the contours of the mean streamwise velocity at a constant x plane
through the centre plane of the wall-mounted cubes. The highlighted contour lines go
through y = 0, z = 1.2. The contour lines are relatively flat in R50, R80 and R90,
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Figure 10. (a) The normal components of the Reynolds stress tensor Rij = 〈u′
iu

′
j〉+ and the dispersive stress

tensor Dij = 〈ū′′
i ū′′

j 〉+ in (a) R25, (b) R50, (c) R60, (d) R70, (e) R80 and ( f ) R90. Normalization is by the
friction velocity uτ in (1.1). The vertical line is at z/h = 1.

suggesting spanwise homogeneity. The lines are concave in R25, and convex in R60
and R70, suggesting the presence of LMPs at the cube location in R25, and HMPs at
the cube locations in R60 and R70. The location of the HMPs and LMPs are more
clearly visualized in figure 12, where we show the spatial variations of the time-averaged
streamwise velocity, i.e. ū+′′ = ū+ − 〈ū〉+, at a distance 0.2h above the cubes. In R25,
a LMP is found at the cube location, and in R60 and R70, a HMP is found at the cube
location, consistent with figure 11. Evidently, the positions of the LMPs and HMPs depend
on the roughness geometry, and they do not necessarily bring high-momentum fluid to the
roughness (Vanderwel & Ganapathisubramani 2015). In addition, we see from figure 12
that the flow is (mostly) homogeneous in the spanwise direction in R50, R80 and R90
(figure 12b,e, f ). The presence of LMPs and HMPs is usually accompanied by streamwise
vorticity. Here, we choose to examine ū′′ instead of the streamwise vorticity, because
the connection between LMP, HMP and the streamwise vorticity is not as direct as that
between LMP, HMP and ū′′.

Figure 13(a) shows a sketch of the principal vortical structures that arise in a
cube-roughened boundary layer flow (Martinuzzi & Tropea 1993; Hussein & Martinuzzi
1996), and figure 13(b) show the visualization of these principal vortical structures in
DNS via the Q-criterion at the surface coverage density of λ = 0.5. As the Q-criterion
only gives a qualitative description of the vortical structures in the flow field, we more
closely examine the induced flow due to the principal vortical structures in figure 14.
The tip vortices give rise to LMPs and HMPs. The arch vortex is confined between
two neighbouring cubes and gives rise to vortical motions as seen in the DNS results
in figure 14. Specifically, figure 14(a,c) shows the in-plane streamlines and the in-plane
velocity magnitude contours at a constant y location through the centre of a wall-mounted
cube in R50 and R70; figure 14(b,d) shows the in-plane streamlines and the in-plane
velocity magnitude contours at a constant z = 0.8h location in R50 and R70. The head

920 A37-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.456


Flow over closely packed cubical roughness

2.0
15

u–+ u–+ u–+

0

5

10

15

0

5

10

u–+u–+

15

0

5

10

15

0

5

10

u–+

15

0

5

10

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0
–0.5 0

z/h

z/h

0.5

–0.5 0

y/h
0.5 –0.5 0

y/h
0.5 –0.5 0

y/h
0.5

–0.5 0 0.5

15

0

5

10

2.0

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0

–0.5 0 0.5

(a)

(d)

(b)

(e)

(c)

( f )

Figure 11. (a) Contours of the mean streamwise velocity at a constant x location through the centre of a
wall-mounted cube in (a) R25, (b) R50, (c) R60, (d) R70, (e) R80 and ( f ) R90. Normalization is by the friction
velocity uτ in (1.1).
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Figure 12. (a) Contours of the spatial variation of the mean streamwise velocity at a wall-normal height z =
1.2h, i.e. 0.2h above the cubes, in (a) R25, (b) R50, (c) R60, (d) R70, (e) R80 and ( f ) R90. The dashed line
indicates the cube location. Normalization is by the friction velocity uτ in (1.1).

of the arch vortex gives rise to the vortex close to z/h = 1 in figure 14(a,c), and the two
legs of the arch vortex give rise to the vortices close to y = ±0.5h in figure 14(b,d) The
vortices are also confined by the back surface of the upstream cube and the front surface
of the downstream cube, and their sizes decrease as the cubes are packed more closely.
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Tip vortex

Figure 13. (a) A sketch of the vortical structures when the roughness elements are closely packed.
(b) Visualization of the vortical structures in R50 via the Q-criterion (Hunt, Wray & Moin 1988).
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Figure 14. (a) Contours of the mean streamwise velocity and the in-plane streamlines at a constant y location
through the centre of a row of wall-mounted cubes in R50. (b) Contours of the mean streamwise velocity and
the in-plane streamlines at a constant z location z = 0.8h in R50. (c) Same as (a) but for R70. (d) Same as
(b) but for R70. Normalization is by the friction velocity uτ in (1.1).

In addition, the roughnesses are obviously d-type, i.e. the flow above the cubes does not
actively interact with the flow in the roughness-occupied layer.

These secondary motions lead to a redistribution of the momentum/momentum flux in
the RSL. Figure 15(a–d) shows contours of u′w′ at a constant y location through the centre
location between two rows of cubes, and figure 15(e–h) show u′w′ at a constant y location
through the centre of a row of cubes. R80 is similar to R90 and is not included for brevity.
R60 is similar to R70 and is not shown for brevity as well. Form drag leads to momentum
extraction at the front surfaces of the wall-mounted cubes, which in turn results in a large
momentum flux from the bulk to the roughness just upstream of the cubes in R25 and R50
(figure 15e, f ), as expected. Interestingly, if we compare figure 15(b, f ) or figure 15(c,g),
we see that, in R50 and R70, turbulence is actively transporting momentum to the thin
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Figure 15. (a–d) Contours of u′w′ through the centre location of two columns of cubes in (a) R25, (b) R50,
(c) R70 and (d) R90. (e–h) Contours of u′w′ through the centre of a column of cubes in (e) R25, ( f ) R50,
(g) R70 and (h) R90. The normalization is by the nominal friction velocity uτ,N . The solid lines go through
x/h = 1, z/h = 2 and x/h = 1, z/h = 1.2. The contour levels are kept unchanged.

slit between two rows of cubes, which, in turn, leads to a large friction force on the side
surfaces as shown in figure 6 (b).

4.2. Budget
Next, we examine the physical processes responsible for the generation and the destruction
of the secondary motions by analysing the budget of 〈ū′′

i ū′′
i 〉 and 〈u′

iu
′
i〉. In this work,

turbulent secondary motions refers to LMPs and HMPs, which manifests as ū′′, so studying
the generation and destruction of ū′′ is to study the fate of secondary turbulent motions.
This is like u′ and the TKE budget. The TKE budget governs the generation and the
destruction of u′, and we study the TKE budget to understand the fate of u′.

In general, the total kinetic energy is (note that the prefactor 1/2 is not included here in
the definition)

〈uiui〉 = 〈ūiūi〉 +
〈
u′

iu
′
i

〉
+ 〈

ū′′
i ū′′

i
〉
, (4.1)

where the first term on the right-hand side represents the kinetic energy in the mean
flow (MKE), the second term represents the kinetic energy in the fluctuating turbulence
(temporal variation of the fluid velocity) and the third term is the kinetic energy in the
secondary motions (spatial variation of the time-averaged velocity). In anticipation of the
results in the next section, we write the budget for the TKE in a periodic channel:

0 = −
〈
u′

1u′
3

〉 ∂ 〈ū1〉
∂x3

−
〈
u′

iu
′
j
′′ ∂ui

′′

∂xj

〉
− ∂

∂x3

〈
u′

3u′
iu

′
i

2

〉
− ∂

∂x3

〈
u3

′′u′
iu

′
i
′′

2

〉

− ∂

∂x3

〈
u′

3p′〉 + ν
∂2

∂x2
3

〈
u′

iu
′
i

2

〉
− ν

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
, (4.2)
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Figure 16. (a) The production term. The bold lines represent turbulent production. The thin lines represent
dispersive production. (b) The dissipation term. (c) The viscous diffusion term. The friction velocity uτ,T in
(1.5) is used for normalization.

where we have neglected buoyancy and assumed periodicity in both the streamwise and
the spanwise directions. The flow is at a statistically stationary state, hence the 0 on the
left-hand side. The terms on the right-hand side are the production terms (the first term,
Pt, is the turbulent production, and the second term, Pd, is the wake production), the
transport terms (the third term, Πt, is the turbulent transport and the fourth term, Πd, is
the wake transport), the pressure work (the fifth term W), the viscous diffusion (the sixth
term D), and the dissipation term (the last term ε). In addition, the budget of the DKE
reads (Raupach & Shaw 1982)

0 = − 〈
ū′′

1 ū′′
3
〉 ∂ 〈ū1〉

∂x3
+

〈
u′

iu
′
j
′′ ∂ui

′′

∂xj

〉
− ∂

∂x3

〈
ū′′

3 ū′′
i ū′′

i

2

〉
− ∂

∂x3

〈
ū′′

i u′
iu

′
3
′′〉

− 1
ρ

∂

∂x3

〈
ū′′

3 p̄′′〉 + ν
∂2

∂x2
3

〈
u′′

i u′′
i

2

〉
− ν

〈
∂u′′

i
∂xj

∂u′′
i

∂xj

〉
+ 1

ρ
〈ūi〉

〈
∂ p̄′′

∂xi

〉
. (4.3)

The left-hand side is, again, 0. The first term on the right-hand side is the DKE-specific
production term. The second term is the wake production term. This term shows up in the
TKE budget as well, and it transfers energy from/to turbulence eddies to/from secondary
eddies. The third, fourth and fifth terms are DKE-specific transport terms. The sixth term
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Figure 17. (a) Production term, i.e. the first term on the right-hand side of (4.3). (b) The dissipation term, i.e.
the seventh term on the right-hand side of (4.3). (c) The transport terms, i.e. the sum of the third and the fourth
terms on the right-hand side of (4.3). (d) The diffusion term, i.e. the sixth term on the right-hand side of (4.3).
Normalization is by the friction velocity uτ,N in (1.3).

is the DKE-specific viscous diffusion term. The seventh term is the DKE-specific viscous
dissipation term. The last term is a source term and in a periodic channel is zero.

Figure 16 shows the dominant terms in (4.2). All terms are very small in the
roughness-occupied layer and we show results for z > h only. The profiles collapse above
approximately (z − h)+ = 60, again suggesting thin RSLs in our DNSs. Figure 16(a)
shows the production terms, i.e. the first and the second terms on the right-hand side of
(4.2). The wake production is negative above the roughness occupied layer. The magnitude
of the wake production increases as a function of λ (from R25 to R50), stays constant
(from R50 to R60) and then decreases to zero (from R60 to R90). Figure 16(b) shows the
viscous dissipation. Its magnitude is similar to the production term. Figure 16(c) shows
the viscous diffusion. This term transports energy from the upper part of the RSL to the
lower part of the RSL. The transport terms and the pressure term are small and are not
shown here for brevity. Figure 17 shows the significant terms in (4.3), i.e. the DKE-specific
production term, the DKE-specific dissipation term, the DKE-specific transport term and
the DKE-specific diffusion term. All the terms peak at z = h, are decreasing functions of λ
and vanish as λ approaches one (at 100 % surface coverage density the dispersive stresses
are zero).

The data in figures 16 and 17 leads us to the following conclusions. TKE receives energy
from MKE in both the lower and the upper part of the RSL (figure 16(a), bold lines).
Viscous diffusion redistributes TKE in the RSL, transferring energy from the upper part
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of the RSL to the lower part of the RSL (figure 16d). In the lower part of the RSL, the
energy from MKE and viscous diffusion are transferred to viscous dissipation (figure 16d).
Wake production (figure 16(a), thin lines) transfers energy from TKE to DKE and is
the dominant energy flux to DKE. DKE also gets energy from MKE (figure 17a) and
viscous diffusion (figure 17d). However, both terms are smaller than the wake production
term. The energy influx is balanced by the DKE-specific dissipation (figure 17b) and the
DKE-specific transport. Because small-scale turbulence does not contribute significantly
to the two most dominant terms in the DKE-budget equation, i.e. the wake production
term and the DKE-specific dissipation term (note, the DKE specific dissipation term
involves only the mean flow), the results here suggest that the accurate prediction of
secondary turbulent flows’ presence does not critically depend on accurate modelling of
the small-scale turbulence. This is consistent with, e.g., Anderson et al. (2015), where
large-eddy simulation (LES) results agree well with the experiments although the small
scales are modelled in LES.

5. Concluding remarks

In this work, we report DNS results of flow over aligned cubes. The wall-mounted cubes
are closely packed with surface coverage densities of 0.25, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.
The nominal friction Reynolds number is kept constant at Reτ,N = 500. The flow is in the
fully rough regime at the surface coverage 0.25; at the surface coverage density 1, the top
surfaces of the wall-mounted cubes form a new wall, and the flow reduces to plane channel
flow. As few have studied roughness at such high surface coverage densities, this work fills
a gap in the literature.

We have reported the essential flow quantities including the mean velocity profiles, the
Reynolds stresses, the dispersive stresses and the roughness properties. The dispersive
stress decays to zero at approximately z = 1.5h,suggesting a thin RSL in all the DNSs.
The equivalent roughness height zo is a decreasing function of the surface coverage
density and the zero-plane displacement height d is an increasing function of λ. We show
that the method of Jackson (1981) for determining d, which works well for cubes with
low-to-moderate surface coverage densities, leads to underestimation of the zero-plane
displacement for closely packed cubes.

Special attention has been given to secondary turbulent motions in the RSL. The
spanwise alternating pattern of slits and cube surfaces gives rise to LMPs and HMPs above
the cube crests. The strengths and the spanwise positions of these LMPs and HMPs depend
on the surface coverage density for roughness within the d-type roughness regime. LMPs
and HMPs are found in R25, R60 and R80 only. In R25, LMPs lie above cubes, whereas
in R60 and R70, LMPs lie above the thin slits between two cubes. This result calls for
more detailed roughness categorization (than the simple k-type and d-type categorization).
More specifically, more data is needed before we can start to understand the positioning
of LMPs and HMPs in the d-type roughness regime. To determine the physical processes
responsible for the generation and destruction of the secondary flows, we analyse the DKE
budget. The analysis shows that the secondary motions get energy from the mean flow and
the fluctuating turbulence, and lose energy to DKE-specific dissipation.
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Figure 18. Correlation of the streamwise velocity fluctuation u′ in the streamwise and the spanwise directions
in R25, R60 and R/L80 at z = 1.2h. The bold lines are the correlations in the spanwise direction, and the thin
lines are the correlations in the streamwise direction. The thin black solid line is at 0. The undulations in the
correlations are due to turbulent dispersion (Borgas, Flesch & Sawford 1997). The reader is directed to Jimenez
(1983) and Kitoh & Umeki (2008) for more details.

Author ORCIDs.
Xiang I.A. Yang https://orcid.org/0000-0003-4940-5976;
Robert F. Kunz https://orcid.org/0000-0001-9504-1945.

Appendix A. Further discussion

We discuss the effects of domain size and grid resolution.

A.1. Domain size
In general, the size of the computational domain would have no/little effect on the flow
statistics as long as the velocity correlation drops to zero within the domain. Figure 18
shows the correlation of the streamwise velocity fluctuation u′ in the x and y directions.
Although the spanwise velocity correlation is zero at a distance of approximately ry = δ,
the streamwise velocity correlation 〈u′(x + r, y, z)u′(x, y, z)〉 is non-zero in our R cases as
well as the L80 case and would remain non-zero at the distance r = 20δ (Sillero, Jiménez
& Moser 2014), where δ is the half channel height. This puts a strict requirement on the
domain size.

Lozano-Durán & Jiménez (2014) discussed the effect of domain size and concluded
that the domain size has no effect on the first- and second-order statistics if Lx > 6δ,
Ly > 3δ. This domain size, i.e. Lx = 6δ, Lz = 3δ, is often referred to as the ‘minimal
(plane) channel’. The effect of domain size on flow statistics in a rough wall TBL was
discussed in Coceal et al. (2006), where the authors concluded that the computational
domain has no effect on the mean flow as long as the domain is larger than Lx × Ly =
4h × 4h. Our domain size of the R25-90 is Lx × Ly > 8h × 8h (in terms of half channel
height, Lx × Ly > 1.67δ × 1.67δ, δ = 4h − h = 3h is the half channel height), which is
more than twice the suggested domain size in Coceal et al. (2006), and should be sufficient.

Nonetheless, to re-confirm the adequacy of our domain, we compare R80 and L80. The
streamwise domain size of L80 is Lx = 19h (and 6.3δ, in terms of half channel height),
which is more than twice the streamwise domain size of R80. We have kept the spanwise
domain size the same between R80 and L80 considering that the velocity correlation drops
to zero in the spanwise direction. In figures 19(a) and 19(b), we compare the mean velocity
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Figure 20. (a) Contours of the spatial variation of the streamwise velocity on a constant x plane through the
centre of a wall-mounted cube for L80. The contour line that go through y = 0, z = 1.2h are highlighted. (b,c)
Contours of spatial variation of the mean streamwise velocity at wall normal height z = 1.2h, i.e. 0.2h above
the cubes for (b) L80 and (c) R80.

and the Reynolds stresses in R80 and L80, and there is barely any difference between the
two DNSs. Hence, we re-confirm the conclusions in Coceal et al. (2006). It is worth noting
that the fact that we are using a larger computational domain than Coceal et al. (2006) does
not mean that the minimum (rough wall) channel suggested in Coceal et al. (2006) is not
adequate. The discussion here only shows that our domain has no effect on the resolved
part of the flow.

In addition to the mean velocity profiles and the TKE, we also examine how domain size
affects the secondary flow structures. Figure 20(a) shows the streamwise velocity contour
at a constant x plane through the centre location of a wall-mounted cube for L80, and
figures 20(b) and 20(c) show the spatial variation of mean streamwise velocity contour at
z = 1.2h, and there is barely any difference between L80 and R80 (see also figure 11e).

A.2. Grid resolution
To reconfirm the adequacy/necessity of our somewhat excessive grid resolution, we
compare two coarse-grid DNSs, i.e. C50 and C80, with their fine-grid counterparts, i.e.
R50 and R80.
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Figure 21. (a) Mean flow in R50 and C50. The profile above the roughness layer is shown. Normalization is
by the friction velocity uτ,T in (1.5). (b) Same as (a) but for R80 and C80.
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Figure 22. Reynolds stresses in (a) R/C50 and (b) R/C80. Normalization is by the friction velocity uτ .
Symbols are for C50/80 and lines are for R50/80.

Figures 21(a) and 21(b) show the mean velocity profiles in R/C50 and R/C80.
Figures 22(a) and 22(b) show the Reynolds stresses. The coarse-grid calculations yield
practically the same mean flows and the Reynolds stresses, except for R11 in R/C80. The
coarse grid calculation C80 leads to a slightly larger R11 than its fine-grid counterpart R80.
This difference could be attributed to the less well-resolved small scales and the resulting
less well-resolved turbulent dissipation. In all, our grid resolution, which is approximately
twice as fine than the typical DNS resolution of DNS, helps us better resolve the small
scales and produce more accurate results.
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